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Abstract

Deep learning models are often sensitive to adversarial attacks, where
carefully-designed input samples can cause the system to produce incor-
rect decisions. Here we focus on the problem of detecting attacks, rather
than robust classification, since detecting that an attack occurs may be
even more important than avoiding misclassification. We build on ad-
vances in explainability, where activity-map-like explanations are used to
justify and validate decisions, by highlighting features that are involved
with a classification decision. The key observation is that it is hard to
create explanations for incorrect decisions.
We propose EXAID, a novel attack-detection approach, which uses model
explainability to identify images whose explanations are inconsistent with
the predicted class. Specifically, we use SHAP, which uses Shapley values
in the space of the input image, to identify which input features con-
tribute to a class decision. Interestingly, this approach does not require
to modify the attacked model, and it can be applied without modelling
a specific attack. It can therefore be applied successfully to detect unfa-
miliar attacks, that were unknown at the time the detection model was
designed. We evaluate EXAID on two benchmark datasets CIFAR-10

and SVHN, and against three leading attack techniques, FGSM, PGD and
C&W. We find that EXAID improves over the SoTA detection methods by
a large margin across a wide range of noise levels, improving detection
from ∼ 70% to over 90% for small perturbations.

1 Introduction

Machine learning systems can be tricked to make incorrect decisions, when presented
with samples that were slightly perturbed, but in special, adversarial ways (Szegedy et al.,
2013). This sensitivity, by now widely studied, can hurt networks regardless of the ap-
plication domain, and can be applied without knowledge of the model (Papernot et al.,
2017). Detecting such adversarial attacks is currently a key problem in machine learning.

To motivate our approach, consider how most conferences decide on which papers get
accepted for publication. Human classifiers, known as reviewers, make classification de-
cisions, but unfortunately these are notoriously noisy. To verify that their decision are
sensible, reviewers are also asked to explain and justify their decision. Then, a second
classifier, known as an area-chair or an editor, examines the classification, together with
the explanation and the paper itself, to verify that the explanation supports the decision.
If the justification is not valid, the review may be discounted or ignored.

In this paper, we build on a similar intuition: Explaining a decision can reduce misclas-
sification. Clearly, the analogy is not perfect, since unlike human reviewers, for deep
models we do not have trustworthy methods to provide high level semantic explanation
of decisions. Instead, we study below the effect of using the wider concept of explana-
tion on detecting incorrect decisions, and in particular given adversarial samples that are
designed to confuse a classifier. The key idea is that different classes have different ex-
plaining features, and that by probing explanations, one can detect classification decisions
that are inconsistent with the explanation. For example, if an image is classified as a dog,
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but has an explanation that gives high weight to a striped pattern, it is more likely that
the classification is incorrect.

We focus here on the problem of detecting adversarial samples, rather than developing a
system that provides robust classifications under adversarial attacks. This is because in
many cases we are interested to detect that an attack occurs, even if we cannot automati-
cally correct the decision.

The key idea in detecting adversarial attacks, is to identify cases where the network be-
haves differently than when presented with untainted inputs, and previous methods fo-
cused on various different aspects of the network to recognize such different behaviours
Lee et al. (2018); Ma et al. (2018); Liang et al. (2018); Roth et al. (2019); Dong et al. (2019);
Katzir & Elovici (2018); Xu et al. (2017). To detect these differences, here we build on
recent work in explainability Lundberg & Lee (2017b). The key intuition is that explain-
ability algorithms are designed to point to input features that are the reason for making a
decision. Even though leading explainability methods are still mostly based on high-order
correlations and not necessarily identify purely causal features, they often yield features
that people identify as causal (Lundberg & Lee, 2017a). Explainability therefore operates
directly against the aim of adversarial methods, which perturb images in directions that
are not causal for a class. The result is that detection methods based on explainability
holds the promise to work particularly well with adversarial perturbations that lead to
nonsensical classification decisions.

There is second major reason why using explainable features for adversarial detection
is promising. Explainable features are designed to explain the classification decision of
a classifier trained on non-modified (normal) data. As a result, they are independent
of any specific adversarial attack. Some previous methods are based on learning the
statistical abnormalities of the added perturbation. This makes them sensitive to the
specific perturbation characteristics, which change from one attack method to another, or
with change of hyperparameters. Instead, explainability models can be agnostic of the
particular perturbation method.

The challenge in detecting adversarial attacks becomes more severe when the perturba-
tions of the input samples are small. Techniques like C&W Carlini & Wagner (2017b) can
adaptively select the noise level for a given input, to reach the smallest perturbation that
causes incorrect classification. It is therefore particularly important to design detection
methods that can operate in the regime of small perturbations. Explanation-based detec-
tion is inherently less sensitive to the magnitude of the perturbation, because it focuses
on those input features that explain a decision for a given class.

In this paper we describe an EXAID (EXplAIn-then-Detect), an explanation-based method
to detect adversarial attacks. It is designed to capture low-noise perturbations from un-
known attacks, by building an explanation model per-class that can be trained without
access to any adversarial samples.

Our novel contributions are as follows: We describe a new approach to detect adver-
sarial attacks using explainability techniques. We study the effect of negative sampling
techniques to train such detectors. We also study the robustness of this approach in the
regime of low-noise (small perturbations). Finally, we show that the new detection pro-
vides state-of-the-art defense against the three leading attacks (FGSM, PGD, CW) both for
known attacks and in the setting of detecting unfamiliar attacks.

2 Related work

Explainable AI.

Several methods have been recently proposed to address black box decisions of AI sys-
tems. LIME (Ribeiro et al., 2016) is based on locally approximating the model around
a given prediction with a simple interpretable model (e.g. a decision tree). DeepLIFT
(Shrikumar et al., 2017) uses a modified version of back propagation to compute the con-
tribution of each input feature to the output. SHAP (Lundberg & Lee, 2017a) approximates
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(a) (b)

Figure 1: Illustration of EXAID. First, an image is classified by a standard image clas-
sification system like ResNet. Then, an explanation is created based on the image, the
network activations and the network output. Finally, a detector checks if the generated
explanation is consistent with the predicted label. (a) An image of an owl is correctly
classified, and the produced explanation is consistent with the label “owl”. (b) An image
of peacock is perturbed and used as an attack. It is falsely classified as an owl, and is
detected as adversarial because its explanation is inconsistent with the predicted label.

the Shapley values of input features, which were derived in cooperative game theory to
distribute the total gains to the players. Specifically, for explaining deep neural networks,
SHAP use a variant of DeepLIFT as a approximation for Shapley values.

Adversarial attacks

The literature on adversarial attacks is vast. We focus here on three high-performing
adversarial attacks which are relevant for the experiments. Each of the three represents a
group of attacks that share the same main idea.

Fast Gradient Sign Method (FGSM). This attack by (Goodfellow et al., 2014) creates a
perturbation by ”moving” an example one step in the direction of the gradient. Let c
be the true class of x and J(C, x, c) be the loss function used to train our deep neural
network C. The perturbation is computed as a sign of the model’s loss function gradient
∆x = ε ∗ sign(∇x J(C, x, c)), where ε ranging from 0.0 to 1.0. The parameter ε controls the
magnitude perturbation and can be thought as the noise-level of the adversarial sample.

Projected Gradient Decent (PGD). Madry et al. (2017) suggested to improve FGSM, in the
following way. One can interpret FGSM as a one-step scheme for maximizing the inner
part of the saddle point formulation. A more powerful adversary will be a multi-step
variant, which essentially applies projected gradient descent on the negative loss function
xt+1 = xt + ε ∗ sign(∇x J(C, x, c)) while x0 = x.

Carlini and Wagner (C&W). Carlini & Wagner (2017b) employed an optimization algo-
rithm to seek the smallest perturbation that enables an adversarial example to fool the
classifier. As showed in (Carlini & Wagner, 2017a), this attack is considered to be one of
the most powerful attacks, and therefore is a common baseline.

When designing attacks, previous studies took into account various factors: the probabil-
ity that the attack is successful, the effect on the appearance of a perturbed image, and
the time it takes to run the attack. The above three methods prioritize these aspects dif-
ferently, reaching different tradeoff operating points. Specifically, FGSM is usually faster
and the C&W attack yields less-visible perturbation of the input images.

Detecting adversarial attacks

Several previous techniques have been proposed to detect adversarial examples. Liang
et al. (2018) measured the effect of quantization and smoothing of the image on the net-
work classification, both parameterized as a function of image entropy. Similarly, Xu
et al. (2017) suggested to reduce the degrees of freedom of the input space by applying
transformations like quantization and smoothing, and then compare model predication
before and after each transformation. Ma et al. (2018) measures the characteristics of the
region surrounding a reference example. Lee et al. (2018) models the distribution of ac-
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tivation at the hidden layers of the classifier, using a Gaussian mixture model, and feeds
the likelihood to a classifier. Katzir & Elovici (2018) models the changes in the labels of a
k-nn for each activation layer in the base model. Pang et al. (2018) propose using a new
loss in training, which encourages the neural network to learn latent representations that
better distinguish adversarial examples from normal ones. Roth et al. (2019) models the
statistical robustness of log-odds to perturbations, for normal and adversarial examples.
Generally speaking, these methods assume that adversarial examples differ intrinsically
from natural images, either in the sample space or because the perturbation affects prop-
agation of activity in the neural network. Some of those methods require modifying the
base model. Very recently, (Fidel et al., 2019) described an explanation-based approach to
detection, related to the current paper.

3 EXAID: EXplAIn then Detect

EXAID consists of two components: (1) Explain. Create per-class explanations for both
correct predictions and incorrect ones. (2) Detect. Train a binary classifier to decide if an
explanation is consistent with the class decision. These two components are schematically
shown in Figure 1.

3.1 Explain

The first step in EXAID implements an explanation model. Given a pretrained classifier
that may be attacked, we used an explainability model to extract explanations for every
sample classified by the model. The explanation model can take as input the raw input
image, as well as the whole base model architecture and weights, and produces an expla-
nation in the terms of the input features. Formally it is a function that maps a sample and
a classifier, and its prediction into explanation space E : (x, ftheta(x)) → Rn, where ftheta
is a classification model producing a predicted label y = output( f (x)).

Since our goal is to learn which explanations are typical for each class, we collected both
positive explanations - applying an explanation model to a correct prediction of the network,
and negative explanations - corresponding to incorrect predictions of the model.

Sampling explanations

Creating positive explanations E(xi, yi) is usually straight forward, as one simply applies
the explanation model on each sample that was correctly classified f (xi) = yi. More care
should be given to creating negative explanations. We consider three types of negative
explanations: wrong negatives, adversarial negatives and other-class negatives.

First, one may collect samples (xi, yi) where the model made an incorrect decision f (xi) 6=
yi, and collect their explanations E(xi, f (yi)). We name these wrong negatives. For models
that are well trained, the number of these explanations is small. Furthermore, not all
classes are confused by other classes, and only some classes may lead to explanations of
some other classes.

Second, one can employ an adversarial attack on the training data and collect negative
explanations of adversarially perturbed samples. We name them adversarial negatives.
As with wrong negatives, these explanations correspond to cases where the model made
an incorrect decision, but unlike wrong negatives the explanations may have a different
distribution, because the input was designed to confuse the network. Even if the specific
type of adversarial attack is not known, these samples may be useful because they are
based on fooled decisions and may reflect typical patterns of adversarial examples. How-
ever, training against an incorrect attack may cause overfitting to a specific type of attack
and hurt detection accuracy.

Third, for every labeled sample (xi, yi), we produce explanations E(xi, y) for all incorrect
classes y ∈ Y , y 6= yi. For example, for a car image correctly classified as a car, we produce
explanations for classes like dogs and cats. These explanations are used as other-class
negatives for the correct class yi.
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The explainability model

As an explainable AI approach we used SHAP deep explainer. As shown in (Lundberg
& Lee, 2017b) SHAP is considered a leading explainer, providing explanations that have
stronger agreement with human explanations than other methods. We therefore believe
it is likely to capture the ”correct” features by which people make labeling decisions. In
addition, Lundberg & Lee (2017b) has shown that SHAP is the only explainer that has
both local accuracy and consistency, which are desirable properties.

3.2 Detect

Given a set of positive and negative explanations per class, we train a deep binary classifier
per class, to detect explanations that are inconsistent with model predictions. Note that in
this settings, it is natural to train a detector as a binary multiclass multi-label classifier, and
not as a multiclass classifier, because we wish to condition the decision on the prediction
of the image classifier.

When training the detector, one may consider two learning setups, aiming to protect
against unknown-attacks, or against familiar attacks. It appears as if defending against a
known attack would be an easier task, because one may learn the properties of the attack.
Unfortunately, since new attacks can be easily designed, it is highly desirable to devise
generic defenses.

We address this topic by controlling the data that is used for training the detector. Specif-
ically, we consider two variants of EXAID.

EXAID familiar. During training, the binary detector is presented with adversarial nega-
tives. It can therefore learn a distribution of explanations resulting from a specific adver-
sarial attack. Specifically, we trained using high-noise FGSM.

EXAID unknown. The binary detector is not presented with any adversarial negatives
during training. The only negative explanation the classifier trained on are other-class
negatives and wrong negatives.

Below we tested both variants on the known attack (FGSM) and on unfamiliar attacks
(PGD, C&W).

4 Experimental results

We evaluated EXAID on two benchmark data sets, in the task of attack detection. Our
code will be available at https://github.com/[anonymous-author]/EXAID.

Datasets

We evaluated EXAID on two standard benchmarks: CIFAR10 (Krizhevsky et al.) and
SVHN (Netzer et al., 2011). As Carlini & Wagner (2017a) showed, MNIST is not a good
dataset for evaluating adversarial defences. This is probably due to the fact that it is a
low-dimension dataset, making it easier to detect changes an attacker made to the image.
(Carlini & Wagner, 2017a) show their results on CIFAR-10. In order to show the validity of
our results on more than one dataset, we also used SVHN that has similar complexity. The
CIFAR-10 dataset consists of 60,000 32x32 colour images in 10 classes, with 6,000 images
per class. There are 50,000 training images and 10,000 test images. The SVHN dataset
is obtained from house numbers in Google Street View images. It consists of more than
600,000 32x32 colour images in 10 classes. While similar in flavor to MNIST, it comes from
a significantly more diverse distribution. We used the 73,257 digits provided for training
and the 26,032 digits for testing.
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Implementation details

For both CIFAR-10 and SVHN we used a pretrained Resnet34 as a base model. To train the
EXAID detector we extract positive explanation, wrong negative and other-class negative
from natural images as described in algorithm 1. The EXAID-unknown model was trained
on those explanations. To train EXAID-familiar we extracted adversarial negative using a
FGSM attack with a noise level of ε = 0.1.

Algorithm 1 Create positive and negative explanation, and train bad explanation detector
for each class

1: Input: F - Trained model, (X, Y) - Dataset of labeled samples
2: Initialize: positives← array of empty sets, negatives← array of empty sets
3: for (x, y) ∈ (X, Y) do
4: ŷ = F(x)
5: explanation = SHAP(F, x)
6: if ŷ == y then
7: positives[ŷ].append(explanation[ŷ])
8: for i = 1..ŷ− 1, ŷ + 1..n do
9: negatives[i].append(explanation[i]) ; // Collect other-class negative

10: end for
11: else
12: negatives[ŷ].append(explanation[ŷ]) ; // Collect wrong negatives
13: end if
14: end for
15: for i = 1..n do
16: Ci ←− Train(positives[i],negatives[i]) ; // Train classifier for class i
17: end for

As described, we used SHAP as an explainability model (Lundberg & Lee, 2017a). The
original implementation of SHAP runs on CPU and is therefore suitable for use only on a
small number of samples, rather than on entire datasets. To enable us to run SHAP on a
large number of examples we modified the original implementation to run on GPU. The
new version is available in our Git repository.

Defense Baselines

We compared EXAID with three recently-published adversarial detection baselines, and
two new variants of these baselines.

(1) ANR (Liang et al., 2018). A method based on measuring the effect of quantization
and smoothing of the image on the network classification, both are parameterized as a
function of the image entropy. We used the implementation provided by the authors.
Since ANR was not tested in the original paper on CIFAR-10 and SVHN as done here, we
tuned the hyperparameters of their method using hyperopt (Bergstra et al., 2013).

(2) Mahanalobis (Lee et al., 2018). This approach models the distribution of activations in
the hidden layers of the classifier, as obtained in response to natural (unperturbed) sam-
ples, using a Gaussian mixture model. Given a set of likelihood scores from the GMM,
a classifier is trained to determine if a set of activations is obtained in response to an ad-
versarial example or a natural one. That classifier is trained on adversarial examples. We
used the implementation provided by the authors, and as the original paper, we trained
the classifier with adversarial examples crafted by FGSM.

(3) Mahanalobis Unsupervised. We modified the method of (Lee et al., 2018) to reach an
attack-agnostic baseline as follows. Instead of training an attack-dependent discriminator
on adversarial samples, we estimated the likelihood of a set of network activations as the
product of likelihoods of all layers.

(4) LID (Ma et al., 2018). LID measures the characteristics of the region surrounding a
reference example, and give it a likelihood score. This is done separately for each repre-
sentation of the example, in the classifier’s hidden layers. As in Mahalanobis, a classifier
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is trained to determine if a set of activations is obtained in response to an adversarial
example or a natural one. We used the implementation from (Lee et al., 2018), and trained
the classifier with adversarial examples crafted by FGSM.

(5) Unsupervised LID. As for Mahalnobis, we test an unsupervised version of LID, based
on the product of likelihoods of individual layers, without training a classifier.

(a) CIFAR-10 FGSM (b) SVHN FGSM

(c) CIFAR-10 PGD (d) SVHN PGD

(e) CIFAR-10 C&W (f) SVHN C&W

Figure 2: Defense methods comparison. Each sub-figure compares 2 EXAID variants to
five baselines. (a,b) defend against FGSM, for CIFAR-10 and SVHN. (c,d) same against
PGD (d,e) Same against C&W. EXAID outperforms all baselines in low-noise scenarios,
and is comparable in the high-noise regime.
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4.1 Experimental Setup

We test the detection models against oblivious adversaries, an attack scenario in which
an attacker has full knowledge about the model (white box attack), but is not aware
of the existence of the defense model. We believe this is a relevant scenario, since in
the real world, most attackers will not have direct access to the attacked model and its
defense. In this case, the attacker will be forced to use a black box attack. However,
as (Papernot et al., 2017) showed, adversarial examples are transferable between models.
Given transferability, attacking a black box model is not marginally harder than a white
box. Because of that, we baseline our model against a white box attack as which is harder
to detect. This is not the case when the model is defended, since (Li et al., 2019) shows that
the transferability of adversarial examples works well between vanilla neural networks,
but fail to transfer between defended neural networks.

We believe that the magnitude of perturbation used by an attack is a major factor that
determines the success of adversarial detection methods. There is still no clear protocol
in the literature about comparing attacks and detections depending on this factor, and
different reported experiments use different values. We therefore repeated all experiments
for a wide range of noise levels and report performance across that wide range.

4.2 Attacks

We used three attack methods to test EXAID: (1) One step gradient attack (FGSM) (Good-
fellow et al., 2014), (2) Iterative projected gradient (PGD) (Madry et al., 2017) and the
Carlini and Wagner attack, which uses optimization to add as small as possible perturba-
tion (C&W) (Carlini & Wagner, 2017b). All attacks were implemented using Advertorch
(Ding et al., 2019). Opposed to other defense methods benchmarks, we examined the
effect of noise-level on a range of three orders of magnitude.

5 Results

The results for all detection methods are shown in figure 2. EXAID significantly outper-
forms the other methods when the noise level is small (small perturbations), and with
attack methods that use adaptive noise levels (C&W). Typically, the AUC is increased
from 70% to over 90%.

LID and Mahalanobis both perform well in high noise scenarios, and slightly outperform
EXAID on SVHN in these scenarios. However, when the noise level decreases LID and
Mahalanobis performance suffers drastically, while EXAID’s remains high. Interestingly,
our unsupervised variant of LID, performs at least as well, and sometimes better, than
the original LID. This may be because LID was trained with FGSM samples and may de-
teriorate in cross-attack scenarios. These findings show the importance of benchmarking
defense models against a wide range of noise levels.

6 Conclusion

In this paper we proposed EXAID, a novel attack-detection approach, which uses model
explainability to identify images whose explanations are inconsistent with the predicted
class. Our method outperforms previous state-of-the-art methods, for three attack meth-
ods, and many noise-levels. We demonstrated that the attack noise level has a major
impact on previous defense methods. We hope this will encourage the research commu-
nity to evaluate future defense methods on a large range of noise-levels.
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