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ABSTRACT

While pre-training and fine-tuning, e.g., BERT (Devlin et al., 2018), GPT-2 (Rad-
ford et al., 2019), have achieved great success in language understanding and gen-
eration tasks, the pre-trained models are usually too big for online deployment in
terms of both memory cost and inference speed, which hinders them from practi-
cal online usage. In this paper, we propose LightPAFF, a Lightweight Pre-training
And Fine-tuning Framework that leverages two-stage knowledge distillation to
transfer knowledge from a big teacher model to a lightweight student model in
both pre-training and fine-tuning stages. In this way the lightweight model can
achieve similar accuracy as the big teacher model, but with much fewer parame-
ters and thus faster online inference speed. LightPAFF can support different pre-
training methods (such as BERT, GPT-2 and MASS (Song et al., 2019)) and be
applied to many downstream tasks. Experiments on three language understanding
tasks, three language modeling tasks and three sequence to sequence generation
tasks demonstrate that while achieving similar accuracy with the big BERT, GPT-2
and MASS models, LightPAFF reduces the model size by nearly 5x and improves
online inference speed by 5x-7x.

1 INTRODUCTION

Recently, the pre-training and fine-tuning frameworks (Devlin et al., 2018; Radford et al., 2018;
2019; Yang et al., 2019b; Liu et al., 2019; Lample & Conneau, 2019; Song et al., 2019) have
achieved great success in NLP by learning universal language representations on large-scale lan-
guage corpus and transferring knowledge from the pre-trained model to downstream tasks. Based
on the carefully designed unsupervised pre-training strategy, e.g., masked language modeling (De-
vlin et al., 2018), causal language modeling (Radford et al., 2018; 2019), permutation language
modeling (Yang et al., 2019b) and masked sequence to sequence modeling (Song et al., 2019), the
pre-trained model can extract semantic information, understand meanings, generate sentences, even
capture common-sense knowledge from large scale corpus. Some of the most representative pre-
trained models are BERT (Devlin et al., 2018), XLNet (Yang et al., 2019b) for language understand-
ing tasks, GPT/GPT-2 (Radford et al., 2018; 2019) for language modeling tasks, and XLM (Lample
& Conneau, 2019), MASS (Song et al., 2019) for sequence to sequence based language generation
tasks.

However, pre-trained models are usually of huge model parameter size, e.g., BERT has more than
300 million parameters while GPT-2 has more than 1.5 billion parameters, which brings challenges
in memory cost and inference latency when deploying the pre-trained models online or on mo-
bile devices. One straightforward solution is to use smaller model for pre-training and fine-tuning,
which will cause much accuracy degradation that cannot be acceptable for online usage. Previous
works (Yang et al., 2019a; Tang et al., 2019; Sun et al., 2019) have tried knowledge distillation to
reduce the number of parameters for BERT. However, they just distill the knowledge of fine-tuned
BERT to the task-specific small model, still with big accuracy drop compared with the original fine-
tuned BERT model. Meanwhile, most works focus on compressing BERT while few works study
on reducing the size of other models like GPT-2, XLNet, XLM, MASS.

Knowledge distillation is an effective and practical way to transfer the knowledge from a cumber-
some teacher model to a lightweight student model. However, unlike the previous works (Yang et al.,
2019a; Tang et al., 2019; Sun et al., 2019) that only leverage the knowledge in the fine-tuned task-
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specified model, the knowledge in the pre-trained model is also helpful and even more general for
language understanding and generation. In this work, we propose LightPAFF, a Lightweight Pre-
training And Fine-tuning Framework that incorporates knowledge distillation in both pre-training
and fine-tuning stages and transfers knowledge from a pre-trained big model into a smaller model.
As a result, LightPAFF can greatly reduce the number of model parameters and thus memory cost
and inference latency, without losing much of accuracy.

As a general framework, LightPAFF can be applied on a variety of pre-trained models (e.g., BERT,
GPT/GPT-2, XLNet, RoBERTa, XLM, MASS) and downstream tasks (e.g., language understand-
ing/modeling/generation). In this paper, we carefully choose BERT, GPT-2 and MASS as three
study cases, considering the model diversity that BERT leverages masked language modeling for
pre-training and is for downstream language understanding tasks, GPT-2 leverages causal language
modeling for pre-training and is for language modeling and generation tasks, while MASS leverages
masked sequence to sequence modeling for pre-training and is for sequence to sequence based lan-
guage generation tasks. We formulate LightPAFF on the pre-training and fine-tuning tasks of BERT,
GPT-2 and MASS uniformly, and conduct experiments on three language understanding tasks (SST-
2, QQP, polyphone disambiguation) for BERT, three language modeling tasks (WikiText-2, PTB,
WikiText-103) for GPT-2, and three sequence to sequence based language generation tasks (WMT
Zh-En, En-De, En-Fr translation) for MASS. Experimental results demonstrate that LightPAFF re-
duces the model parameter of BERT/GPT-2/MASS by nearly 5× and improves the inference speed
by 5× ∼7×, while achieves similar accuracy with the original BERT/GPT-2/MASS model.

2 TWO-STAGE DISTILLATION FRAMEWORK

Different from existing knowledge distillation methods for pre-trained models (Yang et al., 2019a;
Tang et al., 2019; Sun et al., 2019), which only perform distillation in the fine-tuning stage, we
perform distillation not only in the fine-tuning stage but also in the pre-training stage to ensure the
accuracy of the final student model. The basic idea of our two-stage distillation is shown in Figure 1,
and we call this Light-weight Pre-training And Fine-tuning Framework as LightPAFF for short.

Big Pre-trained Model Big Fine-tuned Model

Small Pre-trained Model Small Fine-tuned Model

Fine-tune

Fine-tune

Knowledge distillation Knowledge distillation

Figure 1: LightPAFF pipeline.

LightPAFF runs in four steps:

1. Pre-train the big teacher model using the pre-training dataset.
2. Fine-tune the big teacher model using the dataset of a downstream task.
3. Distill the pre-trained big teacher model and obtain a light-weight pre-trained model using

the pre-training dataset.
4. Fine-tune the light-weight pre-trained model for the downstream task by using the dataset

of the task and distilling the fine-tuned big teacher model.

As can be seen, the first and second steps are exactly the same as previous pre-training methods such
as BERT (Devlin et al., 2018) and GPT-2 (Radford et al., 2019). The third step performs distillation
in the pre-training stage, and the fourth step performs distillation in the fine-tuning stage. We adopt
a general formulation for knowledge distillation in LightPAFF:

L(θ) =
∑
(x,y)

(1− λ) ·MLE(x, y; θ) + λ ·KL(P (x; θT ), P (x; θ)), (1)

where MLE(x, y; θ) is the maximal likelihood loss of the student model θ over a training data pair
(x, y), KL(P (x; θT ), P (x; θ)) is the KL divergence between the predicted probability distribution
on the data x of the teacher model θT and the distribution of the student model θ, and λ is a hyper-
parameter to trade off the two loss terms.
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LightPAFF is a general framework and can be applied to many pre-training fine-tuning tasks. In
the following sections, we choose three representative models considering their diversity and code
availability: BERT (Devlin et al., 2018), which is popular and effective for language understanding
tasks such as GLUE benchmark, GPT-2 (Radford et al., 2019), which is popular and effective for
language modeling tasks, and MASS (Song et al., 2019), which is popular and effective for sequence
to sequence generation tasks such as machine translation. Detailed descriptions of two-stage knowl-
edge distillation for BERT, GPT-2 and MASS can be found in Appendix (Section 1). We conduct
experimental study of LightPAFF on BERT in Section 3, GPT-2 in Section 4 and MASS in Section 5,
and then conduct some general analyses of LightPAFF in Section 6.

3 LIGHTPAFF FOR BERT

We follow Equation 1 to conduct knowledge distillation for BERT in both pre-training and fine-
tuning stages. The BERT teacher model provides the probability distribution of the masked tokens
to the student model during pre-training distillation1, while provides the probability distribution of
the class label to the student model during fine-tuning distillation. In the following sections, we
describe the experimental setting and results of LightPAFF for BERT.

3.1 EXPERIMENTAL SETTING

Datasets For BERT pre-training, we use BooksCorpus (800M words) and Wikipedia (2500M
words) for English BERT as used in Devlin et al. (2018), and NewsCorpus (2000M words) and
Wikipedia (300M words) for Chinese BERT. For downstream language understanding tasks, we
choose SST-2 (Socher et al., 2013) and QQP (Iyer et al., 2017) on English and polyphone dis-
ambiguation (PolyDis) (Zhang et al., 2002) on Chinese. Additionally, we add 1M unlabeled data
for SST-2, 2M for QQP and 1M for PolyDis in the fine-tuning stage, where we simply use the
teacher model to generate probability distribution to train the student model. More descriptions
about datasets can be found in Appendix (Section 2).

Model Configuration We denote L, H, A as the number of layers, hidden size and the number of
attention heads in Transformer. For BERT teacher model, we choose the pre-trained BERT-base
model (L=12, H=768, A=12) with 110M parameters released by Devlin et al. (2018). For BERT
student model, we use the configuration (L=3, H=512, A=8) with 25M parameters for English and
20M parameters for Chinese, where the parameter difference is due to the different vocabulary sizes.

Training and Inference The hyperparameter λ in Equation 1 is set as 1.0 in pre-training according
to the performance of pre-training on a held out validation set, and the λ in fine-tuning is chosen
according to the validation performance on each downstream task. We pre-train BERT on 8 NVIDIA
V100 GPUs, each with 16GB memory, and with batch size of 400 sentences and max sequence
length of 128 tokens. We fine-tune on 4 NVIDIA V100 GPUs with batch size of 32 sentences.

3.2 RESULTS

Accuracy of LightPAFF The results of LightPAFF on BERT tasks (SST-2, QQP and PolyDis)
are shown in Table 1. It can be seen that LightPAFF achieves similar accuracy (maintains nearly
99.5% of accuracy) with the BERT teacher model, but reduces the model size by nearly 5× (from
110M to 25M or 20M). Compared with the model with the same size of parameters (Transformer
small and BERT small) and the previous works (Patient KD and Distilled BiLSTM) that only use
knowledge distillation in the fine-tuning stage, LightPAFF achieves much better accuracy2. The
trade-off between accuracy and size of the student model can be found in Appendix (Section 3).
Since BERT leverages additional unlabeled data for distillation, we also study the effect of unlabeled
data in Appendix (Section 4).

1BERT leverages masked language modeling and next sentence prediction for pre-training. Considering
some works (Yang et al., 2019b; Liu et al., 2019; Joshi et al., 2019) have achieved good results without next
sentence prediction, we only distill BERT on the masked language modeling task in pre-training.

2Note that Distilled BiLSTM (Tang et al., 2019) uses BERT-large as teacher model while LightPAFF uses
BERT-base. LightPAFF can achieve better accuracy by using BERT-large as the teacher model, which is left
for future work.

3



Under review as a conference paper at ICLR 2020

SST-2 QQP PolyDis
Acc. #Param F1/Acc. #Param Acc. #Param

BERT (Devlin et al., 2018) 93.5 110M 71.2/89.2 110M 95.9 110M

Patient KD (Sun et al., 2019) 87.5 35M 68.1/87.8 35M - -
Distilled BiLSTM (Tang et al., 2019) 90.7 10M 68.2/88.1 10M - -

Transformer small 83.4 25M 61.1/81.5 25M 89.3 20M
BERT small 89.7 25M 65.4/85.1 25M 93.6 20M

LightPAFF 92.9 25M 70.6/88.6 25M 95.4 20M

Table 1: Results of LightPAFF on BERT tasks. “BERT” represents the BERT-base model released
by Devlin et al. (2018) and is taken as the teacher model, “Patient KD” distills BERT-base model into
Transformer model during fine-tuning, “Distilled BiLSTM“ distills BERT-large model into LSTM
model during fine-tuning, “Transformer small” and “BERT small” share the same model structure
and number of parameters, with the only difference that “Transformer small” has no BERT pre-
training, “LightPAFF” is our method applied on “BERT small”.

Inference Speedup of LightPAFF We further measure the inference latency of LightPAFF on both
GPU and CPU. As shown in Table 2, LightPAFF achieves about 6× speedup over the big model on
GPU and about 7× speedup on CPU in BERT task, demonstrating the advantages of LightPAFF for
inference speedup.

#Param Latency (GPU) Speedup Latency (CPU) Speedup

BERT 110M 25 ms 1.00 × 78 ms 1.00 ×
LightPAFF 25M 4 ms 6.25 × 11 ms 7.09 ×

Table 2: Inference speedup of LightPAFF. Evaluation is conducted on NVIDIA Tesla 16GB V100
GPU or Intel(R) Xeon(R) Platinum 8168 CPU, with batch size of 1 sentence and max sequence
length of 128 tokens.

4 LIGHTPAFF FOR GPT-2

Since GPT-2 (Radford et al., 2019) uses language modeling for both pre-training and fine-tuning,
the knowledge distillation is similar in the two stages, where the GPT-2 teacher model provides the
probability distribution of each token in a sentence to the student model during distillation. In the
following sections, we describe the experimental setting and results of LightPAFF for GPT-2.

4.1 EXPERIMENTAL SETTING

Datasets For GPT-2 pre-training, we use the same English training corpus as used in BERT de-
scribed in last section3. For downstream language modeling tasks, we choose WikiText-2 (Merity
et al., 2017), PTB (Mikolov et al., 2010) and WikiText103 (Merity et al., 2017). More descriptions
about datasets can be found in Appendix (Section 2).

Model Configuration For GPT-2 teacher model, we choose the pre-trained model (L=24, H=1024,
A=16, 345M parameters) released by Radford et al. (2019). For student model (we call GPT-2
small), we use the configuration (L=4, H=768, A=12, 67M parameters). L, H, A are same meaning
as defined in last Section.

Training and Inference The hyperparameter λ for pre-training is set as 0.4 according to the zero-
shot results, and λ for fine-tuning is chosen according to the validation performance on each down-
stream task. We pre-train on 16 NVIDIA V100 GPU, each with 16GB memory, and with the batch

3Due to the constraint of computation resource, we do not use the huge training data as in GPT-2 (Radford
et al., 2019), but we believe using more data can achieve better accuracy, and leave it for future work.

4



Under review as a conference paper at ICLR 2020

size of 512 sentences and max sequence length of 1024 tokens. We fine-tune on 1 NVIDIA V100
GPU with batch size of 8 sentences and max sequence length of 512 tokens. We report the word-
level perplexity via de-tokenizer following Radford et al. (2019).

4.2 RESULTS

Accuracy of LightPAFF The results of LightPAFF on GPT-2 tasks (WikiText-2, PTB, Wiki-
Text103) are shown in Table 3. It can be seen that lightPAFF achieves large improvements than
the models under the same size of parameters without pre-training (Transformer small) and with
pre-training (GPT-2 small), while approaches the perplexity of the GPT-2 teacher model in the
downstream tasks but with only 1/5× number of parameters.

WikiText-2 PTB WikiText103
#Param w/o FT w/ FT w/o FT w/ FT w/o FT w/ FT

GPT-2 345M 22.8 15.5 47.3 17.0 26.4 13.0

Transformer small 67M - 71.6 - 77.0 - 28.5
GPT-2 small 67M 58.5 25.5 129.6 31.2 61.4 19.8

LightPAFF 67M 32.6 18.8 70.0 22.8 38.7 16.4

Table 3: Results of LightPAFF on GPT-2 tasks in terms of perplexity (ppl). “w/ FT” and “w/o
FT” mean the pre-trained model is evaluated on downstream tasks with and without fine-tuning.
“GPT-2” represents the model released by Radford et al. (2019) and is taken as the teacher model,
“Transformer small” and “GPT-2 small” share the same model structure and number of parameters,
with the only difference that “Transformer small” has no GPT-2 pre-training, “LightPAFF” is our
method applied on “GPT-2 small”.

Inference Speedup of LightPAFF The inference latency of LightPAFF is shown in Table 4. Light-
PAFF achieves more than 5× speedup over the big model on GPU while nearly 7× speedup in CPU,
which indicates the effectiveness of LightPAFF for inference speedup on GPT-2.

#Param Latency (GPU) Speedup Latency (CPU) Speedup

GPT-2 345M 553 ms 1.00 × 1683 ms 1.00 ×
LightPAFF 67M 101 ms 5.47 × 245 ms 6.87 ×

Table 4: Inference speedup of LightPAFF on GPT-2. Evaluation is conducted with batch size of 1
sentence and max sequence length of 512 tokens.The GPU/CPU configurations follow that in last
Section.

5 LIGHTPAFF FOR MASS

Similar to BERT, the MASS teacher model provides the probability distribution on each token in a
masked segment to the student model during pre-training distillation, and provides the probability
distribution on each token in a target sequence to the student model during fine-tuning distillation.
In the following sections, we describe the experimental setting and results of LightPAFF for MASS.

5.1 EXPERIMENTAL SETTING

Datasets For MASS pre-training, we use 50M monolingual data of each language from the
Newscrawl dataset, following Song et al. (2019). For fine-tuning tasks, we choose a rich-resource
task (WMT17 Chinese-English, briefly Zh-En) and two low-resource tasks (WMT14 English-
French, briefly En-Fr and WMT16 English-German, briefly En-De), where we simulate the low-
resource scenario by only choosing a small part of training data. More descriptions about datasets
can be found in Appendix (Section 2).

Model Configuration For MASS teacher model, we choose the pre-trained model with the configu-
ration (L=6, H=1024, A=16) for both encoder and decoder, which is released by Song et al. (2019).
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For student model, we use the configuration (L=6, H=512, A=8) for the encoder and (L=4, H=512,
A=8) for the decoder. L, H, A are same meaning as described in the BERT section.

Training and Inference The hyperparameter λ for pre-training is set as 0.7 according to the per-
formance of pre-training on a held out validation set, and λ for fine-tuning is adjusted according
to the validation performance on each downstream task. We pre-train on 8 NVIDIA V100 GPUs
with batch size of 48,000 tokens. We fine-tune on 8 NVIDIA V100 GPUs with batch size of 25,600
tokens. We report the BLEU score by SacreBLEU4.

5.2 RESULTS

Accuracy of LightPAFF The results of LightPAFF on MASS tasks are shown in Table 5. It can
be seen that compared with the pre-trained model with the same size of parameters (MASS small),
LightPAFF achieves 2.5-3.8 BLEU points improvement in low-resource tasks and 1.1 BLEU points
improvement in rich-resource task. LightPAFF achieves similar accuracy with the MASS teacher
model, but reduces the model size by nearly 5× (from 213M to 42M or from 307M to 67M).

WMT17 Zh-En WMT16 En-De (100K) WMT14 En-Fr (100K)
BLEU #Param BLEU #Param BLEU #Param

MASS 25.2 307M 33.1 213M 26.7 213M

Transformer small 21.3 67M 23.8 42M 14.1 42M
MASS small 23.8 67M 28.4 42M 23.2 42M

LightPAFF 24.9 67M 32.2 42M 25.7 42M

Table 5: Results of lightPAFF on sequence to sequence based language generation tasks in terms
of BLEU score. “MASS” represents the MASS model released by Song et al. (2019) and is taken
as the teacher model, “Transformer small” and “MASS small” share the same model structure and
number of parameters, with the only difference that “Transformer small” has no MASS pre-training,
“LightPAFF” is our method applied on “MASS small”.

Inference Speedup of LightPAFF As shown in Table 6, LightPAFF achieves nearly 5× speedup
over the big pre-trained model on both GPU and CPU, which demonstrates the advantages of Light-
PAFF for inference speedup.

#Param Latency (GPU) Speedup Latency (CPU) Speedup

MASS 213M 27 ms 1.00 × 94 ms 1.00 ×
LightPAFF 42M 6 ms 4.50 × 18 ms 5.22 ×

Table 6: Inference speedup LightPAFF on MASS. Evaluation is conducted by generating one sen-
tence at a time autoregressively. The GPU/CPU configurations follow that in last Section.

6 FURTHER ANALYSIS

To better understand LightPAFF, we conduct some deep analyses on LightPAFF in this section.

6.1 ABLATION STUDY

To study the impact of knowledge distillation in each stage, we conduct ablation studies by removing
distillation from one of the stages. The results are shown in Table 7. We have several observations:
1) The comparison between Method 1 with 2 shows that without pre-training, using knowledge
distillation in fine-tuning stage can improve the accuracy of the model. 2) Comparing Method 1
and 3 or Method 2 and 5, we see that using pre-training can always boost accuracy. 3) Comparing
Method 3 and 4 or Method 5 and 6, it can be seen that using knowledge distillation in pre-training

4https://github.com/mjpost/sacreBLEU
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can boost the accuracy. 4) Comparing Method 3 and 5 or Method 4 and 6, it can be seen that using
knowledge distillation in fine-tuning can boost the accuracy. Overall, the distillation in both stages
are effective and necessary in LightPAFF.

ID PT PT + KD FT FT + KD BERT GPT-2 MASS

1 (Transformer small) X 83.4 71.6 23.8
2 X 86.9 34.3 26.2

3 (Pre-trained small) X X 89.7 25.5 28.4
4 X X 90.8 21.6 29.5

5 X X 92.0 22.1 31.0
6 (LightPAFF) X X 92.9 18.8 32.2

Table 7: Ablation study on knowledge distillation in pre-training and fine-tuning stages, where “PT”
means pre-training, “FT” means fine-tuning and “KD” means knowledge distillation. The results of
BERT/GPT-2/MASS are the accuracy on SST-2 task, the perplexity on WikiText-2, and the BLEU
score on WMT16 En-De (100K) respectively.

6.2 GENERALIZATION ANALYSIS

Previous works (Yang et al., 2018; Lan et al., 2018) have shown that knowledge distillation can
help improve the generalization ability, and some studies (Shirish Keskar et al., 2016; Chaudhari
et al., 2016) indicate the relationship between model generalization and the width of local minima in
the loss surface, where models with wider local minima are more robust to perturbations. Inspired
by Tan et al. (2019), we perturb the parameters of the models to observe the accuracy changes, in
order to demonstrate that the knowledge distillation in both pre-training and fine-tuning stages in
LightPAFF improves the generalization ability.

We perturb a model θ as θli(σ) = θli + θ̄l ∗ N (0, σ2), where θli is the i-th parameter of θl, where
θl represents the parameter named by l (e.g., WQ, WK or WV in self-attention) in model θ, and θ̄l

is the average of parameter θl . We sample from the normal distribution N with standard variance
σ where larger σ represents bigger perturbation on the parameter. The results with varying σ are
shown in Figure 2. It can be seen that the accuracy of the model without knowledge distillation drops
faster no matter in pre-training and fine-tuning stage, which demonstrates knowledge distillation in
both pre-training and fine-tuning stages make the model more robust.
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Figure 2: Generalization Analysis. The result of BERT is the accuracy of SST-2 on valid set while
the result of GPT-2 is the perplexity of WikiText-2 on valid set.
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6.3 HYPERPARAMETER FOR DISTILLATION AND DIFFICULTY OF PRE-TRAINING TASKS

Hyperparameter λ LightPAFF employs a hyperparameter λ (see Equation 1) to control the trade-
off between knowledge distillation from the teacher and learning from the original label in the data.
During pre-training, the optimal λ according to our experiments is 1.0 for BERT, 0.7 for MASS and
0.4 for GPT-2. Bigger λ means to use more information from teacher while less information from
ground-truth label in the original data. This seems to suggest that the pre-trained BERT teacher
model preserves the most information of the data, while the pre-trained GPT-2 teacher model pre-
serves the least information of the data. To verify this, we further check the training results of the
three models.

Model Accuracy Input Tokens

BERT 0.73 85%
MASS 0.62 75%
GPT-2 0.42 50%

Table 8: The comparison of accuracy, and average number of input tokens in the pre-training task
between BERT, GPT-2 and MASS.

Prediction Accuracy of Pre-training For this study, we pre-train BERT, GPT-2 and MASS mod-
els on the same data corpus, with similar model configurations (12-layer BERT, 12-layer GPT-2
and 6/6-layer MASS, with hidden size of 768) and same vocabulary. We test the three models on a
held-out dataset. In particular, we compute the accuracy of token predictions. The results are shown
in Table 8. It can be seen that BERT achieves the highest accuracy while GPT-2 the lowest. Since
the three models are of similar complexity (e.g., with similar architecture and similar number of
parameters), our hypothesis is that the pre-training task of BERT is easiest and that of GPT-2 is the
most difficult, which is verified intuitively as below.

Task Difficulty of Pre-training Many pre-training tasks in natural language processing are to
predict a token conditioned on a sequence of input tokens. BERT masks 15% tokens in a sequence
and predicts these 15% tokens given the remaining 85% tokens5. GPT-2 pre-trains a language model,
i.e., predicting every token in a sequence conditioned on all its preceding tokens. For a sentence with
n tokens, when predicting the i-th token, the model can see the previous i−1 tokens. Therefore, the
average tokens that can be seen is (n − 1)/2, which is about 50%. For MASS, 50% tokens can be
seen in the encoder, while 50% tokens are predicted in the decoder side through language modeling,
where on average 50%/2 tokens can be seen following the calculation in GPT-2. Therefore, to predict
a token, on average MASS uses 75% tokens. To summarize, as shown in Table 8, to predict each
token, on average BERT uses 85% tokens of a sequence, MASS uses 75% while GPT-2 only 50%.
Thus, the difficulty of the pre-training tasks should be BERT<MASS<GPT-2, which is consistent
with the observations in last two paragraphs.

7 CONCLUSION

In this work, we have proposed LightPAFF, a two-stage knowledge distillation method to reduce
the size of the big pre-trained models, which transfers the knowledge from big pre-trained model
into small model in both pre-training and fine-tuning stages. We formulate LightPAFF on BERT,
GPT-2 and MASS models uniformly and conduct experiments on BERT, GPT-2 and MASS with 9
downstream tasks in total. The experimental results demonstrate that LightPAFF reduces the model
size by nearly 5× and improves the inference speed by 5× ∼ 7×, while achieves similar accuracy
with the original BERT/GPT-2/MASS model. For future works, we will cover more pre-trained
models and downstream tasks. On the other hand, we will also explore other methods such as
quantization, pruning to compress the big pre-trained models.

5We ignore the 8:1:1 strategy in BERT, which does not affect the percentage much.
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APPENDIX

1 TWO-STAGE DISTILLATION FOR BERT, GPT-2 AND MASS

We formulate the knowledge distillation for pre-training and fine-tuning tasks in BERT, GPT-2 and
MASS, where BERT (Devlin et al., 2018) pre-trains on masked language modeling6 and fine-tunes
on language understanding tasks, GPT-2 (Radford et al., 2019) pre-trains and fine-tunes both on
causal language modeling tasks, while MASS (Song et al., 2019) pre-trains on masked sequence to
sequence modeling and fine-tunes on sequence to sequence based language generation tasks.

1.1 KNOWLEDGE DISTILLATION IN PRE-TRAINING

Masked Language Modeling The knowledge distillation loss for masked language modeling (De-
vlin et al., 2018) LMLM is as follows:

LMLM (θ) = −
∑
x∈D

∑
m∈M

|V|∑
k=1

((1−λ)·1{xm = k}+λ·Q(xm = k|x\M; θT ))·logP (xm = k|x\M; θ), (2)

where D is the corpus for pre-training, x is a sentence,M is the set of indices of the masked tokens
in sentence x and xm is the corresponding prediction of the masked token, |V| is the vocabulary
size. x\M is the sentence with token indices inM are masked. The masking operation in BERT is
as follows: 15% tokens are randomly masked, where 80% are masked with the token “[MASK]”,
10% are masked with a random token, and the rest 10% are remained unchanged. 1 is the indicator
function indicating if xm equals to k, Q(xm = k|x\M; θT ) is the probability distributions for the
predicted token generated by the teacher model θT which is fixed during training.

Causal Language Modeling The knowledge distillation loss for causal language modeling (Rad-
ford et al., 2019) LCLM is formulated as:

LCLM (θ) = −
∑
x∈D

|x|∑
m=1

|V|∑
k=1

((1−λ)·1{xm = k}+λ·Q(xm = k|x<m; θT ))×logP (xm = k|x<m; θ), (3)

where |x| is the length of the sentence x, x<m is the tokens preceding position m.

6BERT leverages masked language modeling and next sentence prediction for pre-training. Considering
some works (Yang et al., 2019b; Liu et al., 2019; Joshi et al., 2019) have achieved good results without next
sentence prediction, we only distill BERT on the masked language modeling task in pre-training.
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Masked Sequence to Sequence Modeling The knowledge distillation loss for masked sequence
to sequence modeling (Song et al., 2019) LMSSM is formulated as:

LMSSM (θ) = −
∑
x∈D

t∑
m=s

|V|∑
k=1

((1− λ) · 1{xm = k}+ λ ·Q(xm = k|xs:t<m))

× logP (xm = k|xs:t<m, x
\s:t; θ),

(4)

where s and t are the start and end position of the masked segment in masked sequence to sequence
modeling, xs:t denotes the sentence segment from position s to t, x\s:t denotes the sentence where
the segment from position s and t are masked. The masking strategy in Song et al. (2019) is as
follows: the masked tokens in the sentence will be a [M] token 80% of the time, a random token
10% of the time and a unchanged token 10% of the time.

1.2 KNOWLEDGE DISTILLATION IN FINE-TUNING

Language Understanding Language understanding task usually refers to the tasks like QQP (Iyer
et al., 2017), SST-2 (Socher et al., 2013), MNLI (Williams et al., 2018), which requires understand-
ing of the sentence in order to make predictions. The loss function of the knowledge distillation for
fine-tuning on the language understanding task is formulated as:

LLU (θ
′) = −

∑
(x,y)∈D′

|V|∑
k=1

((1− λ) · 1{y = k}+ λ ·Q(y = k|x; θ′T ))× logP (y = k|x; θ′), (5)

whereD′ is the supervised training corpus in downstream tasks, x is the input sentence, y is the label
and |V| is the size of label set, e.g., y represents the sentiment classes for sentiment classification
task, and |V| is the number of classes7. Q is output probability of the teacher model θ′T that is fine-
tuned from pre-trained teacher model θT , while P is the output probability of student model θ′ that
is initialized from the pre-trained model θ and only differs from θ in the task-specific output layer.

Language Modeling/Generation Language modeling/generation refers to the tasks like
WikiText-2 (Merity et al., 2017), PTB (Mikolov et al., 2010) and WikiText103 (Merity et al., 2017).
The knowledge distillation loss is

LLM (θ′) = −
∑
x∈D′

|x|∑
m=1

|V|∑
k=1

((1−λ) ·1{xm = k}+λ ·Q(xm = k|x; θ′T ))× logP (xm = k|x<m; θ′), (6)

which is similar to that in Equation 3, except for that training corpus is from the specific downstream
task, and teacher model θ′T and student model θ′ are already pre-trained.

Sequence to Sequence based Language Generation Sequence to sequence based language gen-
eration tasks include neural machine translation, text summarization, grammatical error correction,
text style transfer, etc. The knowledge distillation loss is formulated as

LSS(θ
′) = −

∑
(x,y)∈D′

|y|∑
m=1

|V|∑
k=1

((1− λ) · 1{ym = k}+ λ ·Q(ym = k|y<m, x; θ
′
T ))

× logP (ym = k|y<m, x; θ
′),

(7)

where (x, y) is the supervised sentence pair, |y| is the length of the target sentence.

7We make two clarifications here: 1) Language understanding can also take multiple sentences as input,
such as QQP, where the two sentences are concatenated together and regarded as one sentence. Therefore, we
just formulate the input as one sentence for simplicity. 2) Language understanding tasks can also take multiple
tokens or labels as output, such as sequence labeling task like NER, polyphone disambiguation. As there is no
explicit dependency when predicting different labels in BERT model, we just formulate the task as single label
for simplicity.
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2 DATASET

BERT We select 3 different datasets to evaluate our method on language understanding tasks for
BERT. SST-2 (Stanford Sentiment Treebank 2) is a movie review dataset with binary labels indi-
cating positive or negative sentiment of the sentences. QQP (Quora Question Pairs) contains ques-
tion pairs with binary labels indicating whether they are duplicate. More details about the above
two datasets can be found in Devlin et al. (2018). PolyDis (Polyphone Disambiguation) consists
of sentences with polyphonic characters whose labels are their pronunciations on Chinese Man-
darin. PolyDis dataset contains 166,185 sentences for training and 43,426 sentences for testing
with 79 most frequent polyphonic characters. To further reduce the gap between teacher model
and lightPAFF, we add additional unlabeled source data in the fine-tuning stage of BERT distilla-
tion. For PolyDis, we simply extract unlabeled data which contains polyphonic words from the
pre-training corpus. For SST-2 and QQP, we get unlabeled data of movie reviews and question
pairs from Kaggle, a competition website with a lot of open datasets, and we remove all the data
that occurs in the valid and test set of SST-2 and QQP. The additional dataset of SST-2 can be
got from https://www.kaggle.com/utathya/imdb-review-dataset and QQP from
https://www.kaggle.com/develina/quora-pairs

GPT-2 Different from BERT, GPT-2 (Radford et al., 2019) proposed a web scrape to filter data
from web pages by emphasizing document quality. These resulting dataset, named as WebText,
contains nearly 40GB text after de-duplication and basic cleaning operations. The size of WebText
dataset is 2.5 times to BERT training corpus. Due to computation resource constraint, we do not use
the huge training data as in GPT-2, but we believe using more data can achieve better accuracy. For
language model tasks (PTB, Wikitext-2, Wikitext-103), each task has been split into train/valid/test,
and the detail of each dataset is shown in Table 9:

PTB Wikitext-2 Wikitext-103
Train Valid Test Train Valid Test Train Valid Test

Tokens 887K 70K 78K 2.08M 217K 245K 103M 217K 245K

Table 9: Statistics of the three datasets of language modeling tasks in GPT-2.

MASS We conduct experiments on one rich-resource and two low-resource machine translation
datasets to evaluate the effectiveness of LightPAFF in sequence to sequence tasks. For rich-resource
task, we use WMT17 Chinese-English (Zh-En). For low-resource scenario, We build the datasets
by randomly sampling 100K bilingual data from the standard WMT14 English-French (En-Fr) and
WMT16 English-German (En-De) datasets. For similar language pairs (i.e., En-Fr and En-De), we
learn a jointed dictionary with 32,000 tokens. For discrete language pair (i.e., Zh-En), we respec-
tively learn a dictionary for each language with 40,000 tokens.

3 TRADE-OFF BETWEEN ACCURACY AND MODEL SIZE

We compare the accuracy of our LightPAFF models with different model size, and report the results
of PolyDis task on BERT, as shown in Table 10. It can be seen that there is a trade-off between accu-
racy and model size. Different models can be chosen for online deployment when taking accuracy,
memory cost and inference latency into consideration.

#Param Acc.

BERT 110M 95.9
LightPAFF 30M 95.5
LightPAFF 20M 95.4
LightPAFF 8M 93.9

Table 10: The accuracy of LightPAFF with different number of parameters on PolyDis task. We also
list the results of the original BERT model with 110M parameters.
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4 ANALYSIS ON THE USE OF UNLABELED DATA

During the fine-tuning in BERT, we leverage unlabeled data for knowledge distillation to reduce the
accuracy gap between the teacher model and student model. We study how unlabeled data can help
improve the accuracy of student model, as shown in Table 11. It can be seen that using unlabeled
data for knowledge distillation can indeed boost the accuracy of the student model (LightPAFF).

SST-2 QQP PolyDis
unlabeled data Acc. F1/Acc. Acc.

without 91.3 67.5/87.7 94.5
with 92.9 70.6/88.6 95.4

Table 11: The accuracy comparison of LightPAFF without and with unlabeled data on the BERT
fine-tuning tasks.

To further check if teacher model can benefit from unlabeled data, we also use BERT teacher model
to generate labels of unlabeled data and then teach itself. The result on SST-2 test set shows that the
accuracy drops 0.1% (from 93.5% to 93.4%), which means unlabeled data may not help the teacher
model itself but help student models.
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