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ABSTRACT

Recently, there has been a growing interest in automatically exploring neural
network architecture design space with the goal of finding an architecture that
improves performance (characterized as improved accuracy, speed of training, or
resource requirements). However, our theoretical understanding of how model
architecture affects performance or accuracy is limited. In this paper, we study the
impact of model architecture on the speed of training in the context of gradient
descent optimization. We model gradient descent as a first-order ODE and use
ODE’s coefficient matrix H to characterize the convergence rate. We introduce a
simple analysis technique that enumerates H in terms of all possible “paths” in the
network. We show that changes in model architecture parameters reflect as changes
in the number of paths and the properties of each path, which jointly control the
speed of convergence. We believe our analysis technique is useful in reasoning
about more complex model architecture modifications.

1 INTRODUCTION

Gradient descent and its variants are the cornerstones of deep learning. The theoretical properties
of gradient descent have been widely studied in the literature; study of the convergence bounds and
guarantees (5; 11; 13; 12), the characterization of the local geometry of stationary points (17; 10; 9; 16;
21; 26; 20; 19; 12), exploration of better algorithms to optimize the descent process (23; 14; 22; 27; 6)
are just a few example of active research areas in this domain. Another major research area is
the exploration of network architecture and its impact on performance. In recent years, network
architecture search and design have shown major performance boosts in various aspects of deep
learning (30; 29; 15; 7; 28).

Recent theoretical results are trying to relate model architecture and gradient descent properties. It has
been shown that over-parametrization in width guarantees convergence in deep neural network (13).
It has also been shown that increasing depth has an impact similar to adding momentum optimization
and adaptive learning rate to the objective function (3).

The gradient descent process can be described by a system of first-order differential equations in
the continuous-time limit, in the form of ẋ(t) = H(t)x(t). In this paper, we study the properties
of the coefficient matrix H(t), which governs the dynamics of the gradient descent. Specifically,
we formulate H(t) in terms of all possible paths in the network. This representation is powerful
as it enables us to analyze the gradient behavior symbolically and abstracts away the unnecessary
bookkeeping of derivatives and weights. Specifically, we use this representation to explore the
followings. (1) We study the impact of width on convergence. Using a simple path counting
argument, we show that H(t) is a sum of m i.i.d. terms where m is dictated by the width of the
network. This has been implied in the work of Simon Du, et al. (11) for the special case of a
2-layer RELU-activated network. We contrast the ease of arriving at such conclusions using our
representation against methods used in previous work (11; 13; 12; 5). This also answers the open
question of why a 2-layer student network needs to be wider than the teacher network to train fast.
(2) We study the impact of depth on convergence. We show that adding a new layer leads to H(t)
being decomposed into an adaptive learning rate term and a momentum term. Previous work (2) has
observed this for a special case of fully connected linear neural networks.
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2 RELATED WORK

Related work can be categorized into three groups which we will explain in detail below. In general,
the common theme across previous works is to show that if some conditions, such as bound on
models’ width or depth or assumptions on geometrical properties of the loss landscape are met,
gradient descent or its variance converges to a global minimum.

Landscape Analysis Researchers have extensively studied the properties of error surface in linear
neural network ((9; 17)) and have proved convergence to a global minimum for non-convex optimiza-
tions if error surface shows certain properties, such as all saddle points to be strict (i.e. there exists a
negative curvature)((10; 16; 21; 26; 20; 19; 12)). However, it has been shown that the strict saddle
property is not guaranteed for deep neural networks.

Width Analysis A number of recent work have characterized minimum width that guarantees
convergence in terms of model architecture parameters and input data. We on the other hand study
how convergence rate varies with width. Examples of finding width bounds include (13) where it
has been shown that for a 2-layer ReLU-activated neural network with squared loss, as long as every
hidden layer is wide enough, gradient descent converges to a global minimum at a linear rate. In (25),
it is extended to fully connected linear networks and ResNets. Du et. al. (11) has also generalized
this work to an L-layer fully connected linear neural network and shows the convergence rate as
a function of depth, output dimension and least eigenvalue of the Gram matrix for large enough
hidden layers. Ardalani et. al. (1) have shown empirically that for a wide range of RNN applications,
increasing width will reduce the number of steps to minimum validation loss. Neural tangent kernel
(18) studies convergence in the infinite width limit.

Depth Analysis Bartlett et al. (5) have proven for a deep linear neural network with isotropic input
and identity initialization that the number of steps to ε-proximity of the best answer is polynomial
in the number of layers. Others (2; 3) have shown that over-parametrization introduced by depth
can accelerate training under assumptions on initialization (balanced) and input data being whitened.
Neural ODE is a study in the infinite depth limit (8).

3 NOTATIONS AND CONVENTIONS

Matrix entries are denoted with row and column indices, for instance H = (Hij) is a matrix with
entries Hij . When H is diagonalizable, we denote by λmin(H) its smallest eigenvalue. For a
matrix W , W (i, :) and W (:, j) denote the row vector in the i-th row and the column vector in
the j-th column, respectively. Write

∑
w∈W for summing over all elements of W . We use pairs

{Xi, yi}, 1 ≤ i ≤ N to represent labeled data where Xi is input and yi is the output. We write Xi,k

for the k-th component of Xi. We denote loss by L. We work with feed-forward neural networks,
which we sometimes denote abstractly by a function f , or f(w, x) as a function of input x and
weights w. We denote network weights individually by wi. Predictions are denoted by ui = f(w,Xi)
1 ≤ i ≤ N . The prediction on all inputs is denoted by the vector u. lp loss is defined as

∑
(y − ui)p

for even integers p ≥ 2. We use angle brackets to denote inner products, i.e. 〈−→v ,−→w 〉 =
∑
i viwi

represents inner product of two vectors. i.i.d. random variables stands for independent and identically
distributed random variables. ODE stands for ordinary differential equations. NN stands for neural
networks. GD stands for gradient descent.

4 MAIN FORMULA

4.1 PRELIMINARIES

Convergence rate can be characterized as the rate of change in loss during the training process. If
steps are infinitesimally small, the rate of change in loss can be characterized as:

dL

dt
=

N∑
i=1

∂L

∂ui
· dui
dt

(1)
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Where ui(t) = f(w(t), xi) is the prediction on input xi at time t. For simplicity we focus on the
dynamics of dui

dt , which can be expanded as follows:

dui
dt

=

m∑
r=1

∂ui
∂wr

· dwr
dt

=

m∑
r=1

( ∂ui
∂wr

N∑
j=1

−η ∂L
∂uj
· ∂uj
∂wr

)
= −η

N∑
j=1

m∑
r=1

( ∂ui
∂wr

∂uj
∂wr

· ∂L
∂uj

)
= −η

N∑
j=1

( m∑
r=1

∂ui
∂wr

∂uj
∂wr

)
· ∂L
∂uj

(2)

We use the definition of gradient descent and chain rule to derive the equation above. Gradient
descent at infinitesimal small step is defined by:

dwi
dt

= −η ∂L
∂wi

= −η
N∑
j=1

∂L

∂uj
· ∂uj
∂wi

(3)

Observe that
−→
∂L
∂u is a column vector. Hence, if we define Hij as:

Hij =

m∑
r=1

∂ui
∂wr

∂uj
∂wr

(4)

Then we can simplify equation (2) in a vector form as:
du1

dt
...

duN

dt

 = ηH ·


∂L
∂u1

...
∂L
∂uN

 (5)

Assuming L is l2 loss, equation (5) simplifies to the following. This result will hold for other lp
losses (see Appendix A).

du

dt
= ηH(y − u) (6)

d(y − u)

dt
= −du

dt
= −ηH · (y − u) (7)

Notice that this puts y − u in a system of differential equations whose single variable analogue is:

df(t)

dt
= hf(t) (8)

The above equation’s solution is:

f(t) = c0e
ht = c0(1− ξ)t (9)

when h < 0, eh < 1 and let eh = 1− ξ. ξ governs the convergence rate in Equation (9). In the actual
system of equations (7), ξ will be determined by the minimum eigenvalue of H(t), λmin(H(t))) as
we will explain next.

4.2 RELATIONSHIP BETWEEN λmin(H(t)) AND CONVERGENCE

In this subsection, we briefly explain why λmin(H(t)) replaces the ODE coefficient h as convergence
rate. For more insight we refer the readers to previous literature such as (13). By rewriting equation
(6) in a discrete space, we have:

u(k + 1)− u(k) = ηH(k)(y − u(k)) =⇒ −u(k + 1) = −ηH(k)y − u(k) + ηH(k)u(k) (10)

Then:

y−u(k+1) = (1−ηH(k))(y−u(k)) = (1−ηH(k))(1−ηH(k−1))(y−u(k−1)) = . . . (11)

Hence, suppose λ0 = min
k

(λmin(H(k))) > 0, we have a convergence rate as follows:

||y − u(k)|| ≤ (1− ηλ0)k||y − u(0)|| (12)

This implies an exponential decay, also referred to as "linear" convergence in the literature.
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4.3 CHARACTERIZING H IN TERMS OF NETWORK PATHS

In order to state the path decomposition formula, we first establish some notations.

• We denote the neural network abstractly with a function f(X).
• For any neural network, we view the underlying network as a directed graph where edges are in

the backward propagation direction.
• We define path p, as a series of connected nodes and directed edges. We define an output path as

a path that starts with the output node.
• We index the nodes as follows. Index the output node by 0, the one after by 1, and so on. We

denote the j-th node in the i-th path by pij .
• We allow different activation functions at nodes. We denote the activation function at ps by σs.
• An example path that ends in an input node may look like this:

σ0

σ1
σ2 . . .

σs

Xi,k

w0
w1

ws

Figure 1: Illustration of a multilayer perceptron

• The post-subnetwork at ws is defined as the network formed by the subgraph rooted at the right
vertex of ws. The pre-subnetwork at ws is defined as the union of all output paths ending in ws,
denoted by pre(ws).

• For every input Xi, we denote the activation value at node ws with activation(ws, Xi) or
f [ws](Xi). Note that this is equivalent to the value at the right vertex of ws once Xi propa-
gated through the post-subnetwork at ws.

• We denote the local gradient wrt. input at node s along the path p with τ ips .

• Given the pre-subnetwork at ws, we write the explicit formula for ∂ui

∂ws
:

∂ui
∂ws

= activation(ws, Xi) ·
∑

p∈pre(ws)

path_gradientp(ws, Xi) (13)

where path_gradientp(ws, Xi) is the gradient value along the path p at the left vertex of ws, and
can be expanded as follows using the chain rule:

path_gradientp(ws, Xi) = (τ i0w0τ
i
p1w1 . . . τ

i
pl(p)−1

wl(p)−1)(p) (14)

we refer to path_gradientp(ws, Xi) as PGp(ws, Xi) for brevity from now on.
Theorem 4.1. For a network f ,

Hij =
∑
w

(
f [w](Xi) · f [w](Xj) ·

( ∑
p∈pre(w)

PGp(w,Xi)
)
·
( ∑
p∈pre(w)

PGp(w,Xj)
))

(15)

which easily follows by substituting Equation (13) in Equation (4). In the rest of the paper, we will
make many arguments most of which rely on the number of terms in this equation. Number of terms
in Equation 15 is itself controlled by the number of paths in the pre-subnetworks at each weight.
Following examples provide some intuition.
Example 4.2. In this example, our network has a structure as illustrated in Figure 2a. The output
node is denoted with value one, indicating that the activation function at output layer is an identity
function. As shown in Figure 2b, there are only one path in each weight’s pre-subnetwork. Therefore,
there are only three terms in Equation 15, where each summand is of form PGp(w,Xi)PGp(w,Xj).
We refer to these terms as symmetrical pairs since both multipliers are representing the same path.
Example 4.3. A more complicated application of the formula can be found in Figure 2d. There is
one path in each of the following weights’ presubnetwork: w0,w1,w2,w3, and w4, and three paths
at w5’s presubnetwork. Therefore, Equation 15 would have 5 + 32 = 14 summands, 8 of which are
terms with symmetrical pairs and 6 are cross-terms induced by the paths in w5’s pre-subnetwork. In
general, cross-terms will appear only if there are two paths that share a final edge which can only
happen if there are three or more number of layers in the network.
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x2
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w2

(a) Example 4.2
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(b) Paths Example 4.2
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(c) Example 4.3
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1

σ1
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presum(w1)

1 σ2
w4

presum(w4)

1

σ0

σ2

w0
w2

presum(w2)

1

σ1
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1

σ0

σ2 x
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w2

w5

1 σ2 x
w4 w5

presum(w5)

1

σ1

σ2 x
w1 w3

w5

(d) Paths Example 4.3

Figure 2: Path Decomposition Examples.

5 ARCHITECTURE IMPLICATIONS

5.1 CONVERGENCE RATE SCALES LINEARLY WITH WIDTH

In this Section, we show that for sufficiently wide neural networks, convergence rate has a linear
relationship with the network’s width. Results are drawn theoretically at time 0 assuming random
i.i.d initialization. For these results to generalize across time, we assume that H stays close to its
initial value. In the Appendices D and E, we show empirical results that suggest this assumption
is true. A heuristic justification for the persistence of these properties across training time is that
over-parameterization allow weigh vectors to vary small amounts to change loss but overall stay
close to their initialization for all iterations. For the extreme case of infinitely-wide networks, it has
been shown that H is constant throughout training (18). Others (4; 13) have also shown that for
sufficiently-wide neural networks weights remain close to initialization, and so our argument holds
true across training.
Proposition 5.1. For a 2-layer neural network with hidden dimension m, the convergence rate scales
linearly with m.

To demonstrate the simplicity and expressiveness of our approach, next we will discuss proofs with
and without our approach.

Brute-force approach A 2-layer fully-connected linear neural network can be modeled as:

u(X) = V ×W ×X = (v1 ... vm)×

w11 ... w1d

...
...

wm1 ... wmd

×
x1...
xd

 (16)

where V ∈ R1,m and W ∈ Rm,d are the weights of the second and first layer, respectively and the
input X is a d-dimensional column vector. We begin the analysis with the simple case of a 2-layer
linear network where the network’s width is one, i.e. m = 1 and u(X) = v0 · 〈W (:, 1), X〉.
Hij can be decomposed into two terms, partial derivatives with respect to weights of the first layer
and partial derivatives with respect to weights of the second layer.

Hij =
∂ui
∂v0

∂uj
∂v0

+
∑
w∈W

∂ui
∂w

∂uj
∂w

= 〈W (:, 1), Xi〉 · 〈W (:, 1), Xj〉+ v20

d∑
k=1

Xi,k ·Xj,k (17)

For a more general case where the width is m, we have:

Hij =

m∑
l=1

(
〈W (:, l), Xi〉 · 〈W (:, l), Xj〉+ v2l

d∑
k=1

Xi,k ·Xj,k

)
(18)
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Adding non-linearity would make this equation even more complex, which is the approach used in
previous literature together with induction:

Hij =

m∑
l=1

(
σ(〈W (:, l), Xi〉)·σ(〈W (:, l), Xj〉)+v2l

d∑
k=1

Xi,k·σ′(〈W (:, l), Xi〉)·Xj,k·σ′(〈W (:, l), Xj〉)

)
(19)

See Appendix B for details of how we derive these equations. Since we assume all weights (wlk, v0)
are independent and identically distributed, the summands within Equations (18) and (19) are also
independent and identically distributed. This indicates that Hij is composed of m i.i.d components,
hence convergence rate scales linearly with m.

Our approach: Using Theorem 4.1 More generally, by applying Theorem 4.1, it is immediate
to see every pre-subnetwork will be a path in a 2-layer fully connected network. There are two
types of paths; m length 1 paths and m length 2 paths. The weights are independent and follow the
same distribution, hence, a 2-layer network’s H matrix always decomposes as m i.i.d sums. Hence
convergence rate scales linearly with m. This proves Proposition 5.1. �

See Section 6 for empirical analysis that motivated this study. We show for a 2-layer linear and
non-linear networks that convergence rate has linear relationship with width.
Remark 5.2 (Properties of H∞). Others (13) have studied the properties of H∞ = 1

m ·H and have
shown that it is constant at infinite width limit. Using Prop. 5.1, it is easy to see that 1

m ·H converges
to a constant value as m approaches infinity.

5.2 DEPTH-INDUCED MOMENTUM

For a special case of linear neural networks, it has been shown that overparametrization through depth
results in implicit acceleration in training (2; 3). Specifically, it has been shown that impact is much
similar to the momentum acceleration (24), hence the term depth-induced momentum. Here, we will
showcase how a similar conclusion is derivable using our explicit path formula. Take a network f .
Construct a new network g by adding a multiplication layer on top, i.e. g(X) = µf(X) with an extra
trainable parameter µ. Then in g, there’s a new path of length 1 whose edge is µ and all paths in f
are annexed by µ at the front. Hence Hij for the new network g can be computed in terms of Hij for
the network f as follows:

Hij(g) = µ2Hij(f) + f(Xi) · f(Xj) (20)
This can be written in the matrix form as:

H(g) = µ2H(f) +K (21)

where K is the matrix whose elements at Kij are: fifj = 1
µ2 gi.gj . Note here that K is a symmetric

positive semidefinite matrix with only one nonzero eigenvalue 1
µ2 (g

2
1 + · · ·+ g2n) with associated

eigvenvector (g1, ..., gN ) (Proof in Appendix F). From Equation 5.2, it is easy to see that eigenvalues
of H(g) are pushed in the direction of g. So the updates du1

dt , ...
du
dt prefer the direction of u1, ...un

which itself carries accumulative information about the past directions. This is similar to the concept
of momentum acceleration where the gradient dynamics from the past controls the future direction.

With our formula, the argument applies to the non-linear network without change, as we are not
making any assumptions about the structure of network f or activation functions. See Experiment
Depth induced momentum.

5.3 ON THE IMPORTANCE OF NUMBER OF PATHS FOR CONVERGENCE

Here, we will provide some heuristic arguments, based on our formula, on why over-parametrization
through increasing the number of paths can be more effective than increasing the number of nodes (pa-
rameters) and conclude that increasing depth is more effective than increasing width for accelerating
the training process. We first introduce an important terminology which we will use below.
Definition 5.3. Given a collection of vectors {gi}, the Gram matrix G is defined as a matrix whose
ij-th entry is 〈gi, gj〉 under the Euclidean inner product.
Remark 5.4. Based on the definition above it is easy to see that Gram matrix is symmetric and
positive-semidefinite and its rank is exactly the dimension of the subspace spanned by {gi}. Suppose
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H = H1 + · · ·+Hn are all Gram matrices. Then H is positive definite if any of the Hi is positive
definite. This is because of supperadditivity of the minimum eigenvalue function, i.e. λmin(H) ≥
λmin(H1) + · · ·+ λmin(Hn).

Strongly-Gram vs. Weakly-Gram Equation(15) in Theorem 4.1 can be expanded further as follows
and the terms can be classified into two groups. The first group will include all the symmetrical pairs
and the second group will include all the cross-terms.

Hij(f) =
∑
w

( ∑
p∈pre(w)

PGp(w,Xi)f [w](Xi)

)
·

( ∑
p∈pre(ws)

PGp(w, ‘Xj)f [w](Xj)

)

=
∑
w

∑
p∈pre(w)

PGp(w,Xi)f [w](Xi) · PGp(w,Xj)f [w](Xj) + (22)

∑
w

∑
p1,p2∈pre(w)

p1 6=p2

PGp1(w,Xi)f [w](Xi) · PGp2(w,Xj)f [w](Xj)

=
∑
p

PGp(w,Xi)f [w](Xi) · PGp(w,Xj)f [w](Xj)+∑
w

∑
p1,p2∈pre(w)

p1 6=p2

PGp1(w,Xi)f [w](Xi) · PGp2(w,Xj)f [w](Xj)

= HS
ij(f) +HW

ij (f) (23)

We refer to the first group as strongly Gram, and denote it by HS
ij(f), and refer to the second group

as weakly Gram and denote it by HW
ij (f), i.e. we have:

Remark 5.5 (Gramness of the strongly-Gram component). Suppose there are q paths in the network,
p1, p2, . . . , pq . Then Equation (22) implies that the strongly Gram component is Gramian with vectors

gi =

(
PGp1(w,Xi)f [w](Xi), . . . ,PGpq (w,Xi)f [w](Xi)

)
(24)

Remark 5.6 (Insignificance of the weakly Gram component). We claim that the weakly Gram
component is insignificant, see Appendix C for heuristics and empirical evidence.
Remark 5.7 (Number paths vs. number of nodes). The Gram matrix HS should ideally be of full
rank for good convergence. So we want the subspace spanned by {gi} to have dimension at least
N . N is the dimension of H and also the number of sample points. On the other hand, as shown in
Equation 24 gi’s are embedded as vectors in a q-dimensional vector space where q is the number of
paths.Therefore, to ensure H is full-rank, q should satisfy q ≥ N . The bigger q is, the more likely
they are linearly independent and make the matrix full rank. In deep learning, N is usually large,
therefore, we need to have networks whose number of paths is comparable to N for best convergence.
Remark 5.8 (Depth vs. width). Adding a new parameter at a new layer can increase the number
of paths more effectively than adding it at an existing layer. In other words, making models deeper
increases the number of paths faster than making models wider.

6 EXPERIMENTS

In this section, we provide experimental results that demonstrate the impact of model structure on
convergence.

Setup We employ a teacher-student framework to put our ideas to test. Our teacher model is a
two-layer neural network with hidden dimension 100, input dimension 50 and output dimension 1.
We assume a Gaussian distribution both for the inputs and ground-truth weights. The student models
are also two-layer neural networks with variable hidden dimensions, and l2 loss. We assume the
training curve follows the y(k) = λ−ky(0) equation, where y(k) is the loss at kth step, and λ is the
rate of convergence. We study how λ vary with model size.

Two-Layer Linear Neural Network As shown in Figure 3a, training curve has a power law rela-
tionship with number of steps which can be perfectly characterized by the y(k) = λ−ky(0) equation.
As shown in Figure 3b, convergence rate (λ) grows linearly with width.
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Figure 3: Training Curve Characterization for Two-layer Linear Neural Network.
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Figure 4: Training Curve Characterization for Two-layer Non-Linear Neural Network.

Two-Layer Non-Linear Neural Network As shown in Figure 4a, training curve for models with
the sigmoid non-linearity begins in a steep region where loss drops very quickly for a short period of
time and ends in a steady region where loss drops very slowly. We are interested in characterizing the
curve in the steady region. As shown in Figure 4b, convergence rate (λ) grows linearly with width.

Depth induced momentum Figure 5 compares the convergence rate curves for 2-layer, 3-layer and
4-layer NN using GD, against a 2-layer network with a momentum optimizer. The deeper networks
are constructed from 2-layer networks with additional scalar multiplication layers. We quantify the
convergence rate at step t as 1− Losst+1

Losst
. As discusses in Section 4.5, one can observe depth-induced

momentum in convergence rates, similar to using momentum optimizer with a 2-layer NN.

7 CONCLUSION

In this paper, we provide a path-based combinatorial formula for the coefficient matrix H which
governs the gradient descent dynamics. We use this representation to explore the impact of network
structure on convergence symbolically. We believe this high-level representation is simple to work
with, is more generalizable and interpretable than previous work; we were able to explain how width
and depth affect gradient descent convergence rate with simple reasoning about the number of paths
in the network.

Figure 5: Depth induced momentum.
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A lp LOSS

We argue very briefly that without loss of generality, we can assume that we work with l2 loss instead
of other Lp norms. For lp loss,

∂L

∂uj
= p · (yj − uj)p−1 (25)

So for l2 loss, Equation 5 becomes
du

dt
= ηH(y − u) (26)

Recall the argument for decay rate under Equation 8. The single variable analogue of the system is:

df(t)

dt
= hf(t) (27)

the solution looks like:
f(t) = c0e

ht (28)

and decays like:
f(t) = c0(1− ξ)t (29)

with
ξ = 1− eh (30)

When h is small, by Taylor expansion

ξ ≈ 1− (1 + h+
h2

2
...) ≈ −h (31)

Instead of using the closed form solution, this ODE could equivalently be solved using the series
method and we would be getting the Taylor expansion of equation (28) on the right and equation (31)
remains the same. Note that the series method (more fundamentally, Taylor expansion involving only
one matrix) works for both ODEs and systems with convergent assumptions on the coefficient matrix
H . ηH is small by assumption, so we have convergent Taylor expansions, so we continue to argue
for lp loss as if we are in the single variable case.

For general lp loss, we have:

f ′ = hfp−1 (32)

then
f = c0e

h
p t (33)

and the decay rate would be h
p , scaled down by p, so all the convergence rate statements we make for

the rest of the paper for l2 remains true if scaled by p
2 .

B 2 LAYER LINEAR NETWORK

The detailed brute-force calculation of Hij for a 2-layer fully connected linear network with m = 1
is as follows. Recall m is the width of the hidden layer.

Hij =
∑
v∈V

∂ui
∂vs

∂uj
∂vs

+
∑
w∈W

∂ui
∂w

∂uj
∂w

= 〈W (:, 1), Xi〉 · 〈W (:, 1), Xj〉+
d∑
k=1

(v0 · w1k ·Xi,k) · (v0 · w1k ·Xj,k)

= 〈W (:, 1), Xi〉 · 〈W (:, 1), Xj〉+ v20

d∑
k=1

(w1k ·Xi,k) · (w1k ·Xj,k) (34)
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Figure 6: Convergence Rate for a 3-layer RELU-activated Network.

For a general m, we have:

Hij =
∑
v∈V

∂ui
∂vs

∂uj
∂vs

+
∑
w∈W

∂ui
∂w

∂uj
∂w

=

m∑
l=1

〈W (:, l), Xi〉 · 〈W (:, l), Xj〉+
m∑
l=1

d∑
k=1

(vl ·Xi,k) · (vl ·Xj,k)

=

m∑
l=1

(
〈W (:, l), Xi〉 · 〈W (:, l), Xj〉+

d∑
k=1

(vl ·Xi,k) · (vl ·Xj,k)

)

=

m∑
l=1

(
〈W (:, l), Xi〉 · 〈W (:, l), Xj〉+ v2l

d∑
k=1

Xi,k ·Xj,k

)
(35)

C WEAKLY GRAM MATRIX IS EMPIRICALLY INSIGNIFICANT

In terms of network architecture, the weakly Gram term would only appear when two paths share
a final edge. That means the network needs to have at least 3 layers. The number of pairs could
grow quadratically with width. Heuristically, each term E[PGp1(w,Xi) · PGp2(w,Xj)] tend to be
0 because of independent weights in PG and the weights having expectation 0. Hence, we focus
on the strongly Gram part for the rest of the section. As in Equation (22), the number of terms in
weakly Gram component grows quadratically in the width of the hidden layer. One might expect
this results in a quadratic growth in convergence, given all the terms are i.i.d. random variables and
strictly positive. In order to test this hypothesis, we exploit a teacher-student framework as outlined
in Section 6, however the student models are 3-layer RELU-activated networks to ensure the number
of terms in weakly Gram component is non-zero. We choose RELU activation function to ensure that
the expected value of the activation to be greater than zero. Our experimental results shows that the
convergence rate relationship with width is linear (see Figure 6) and not quadratic. This implies that
weakly Gram components have expectation zero.

D JUSTIFY H STAYS CLOSE TO INITIALIZATION

Weights and H are indeed time-dependent and follow their respective stochastic process. However,
theoretical results in the overparametrized regime suggest that every weight vector remains close to
initialization (Lemma 5.3 (4) and Lemma 3.3 (13)). We also observe that the mean and variance stay
very close to initialization,N (0, 0.1) (Figure 7). In Figure 8, we ran the Kolmogorov-Smirnov test to
compare the weight distribution against the initialization distribution. As shown, the p-values are
overall stable and far from significance levels to invalidate the null hypothesis (H0: trained weights
follow N (0, 0.1)).

12
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Figure 7: Mean and std across the training process. (X-axis is the number of steps)

Figure 8: KS test p-values across the training process.

Figure 9: Turning point test p-values

E JUSTIFY IID ASSUMPTION FOR WEIGHTS

The Turning Point Test is commonly used to check iid-ness. Figure 9 shows the p-value through the
training process. As shown, p-values do not exhibit any major regime shifts and the null hypothesis
(the weights are iid samples) stays far from rejectable with any commonly used significance levels
(0.1, 0.05 . . . ). iid-ness can also be seen as a consequence of closeness to initialization in response 1.
By staying close to initialization, statistical properties are preserved and the weights remain an iid
sample of the original distribution.

F EIGENVALUE AND EIGENVECTOR OF K

In this section, we prove that K as defined in 5.2, we have the following:

Proposition F.1. K = (Kij) = (gigj) has one nonzero eigenvalue (g21 + ...g2N ) with eigenvector
(g1, ..., gN )
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Proof.

K =

 g1
...
gN

× (g1 ... gn) (36)

hence K has rank one. Therefore K one nonzero eigenvalue.

K ×

g1...
gd

 =

 g1
...
gN

× (g1 ... gn)×

g1...
gd


=

 g1
...
gN

×( (g1 ... gn)×

g1...
gd

) =

 g1
...
gN

 · (g21 + ...g2N ) (37)

Hence the conclusion is true.
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