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ABSTRACT

Few-shot classification may involve differentiating data that belongs to a different
level of labels granularity. Compounded by the fact that the number of available
labeled examples are scarce in the novel classification set, relying solely on the
loss function to implicitly guide the classifier to separate data based on its la-
bel might not be enough; few-shot classifier needs to be very biased to perform
well. In this paper, we propose a model that incorporates a simple prior: focusing
on differences by building a dissimilar set of class representations. The model
treats a class representation as a vector and removes its component that is shared
among closely related class representatives. It does so through the combination
of learned attention and vector orthogonalization. Our model works well on our
newly introduced dataset, Hierarchical-CIFAR, that contains different level of la-
bels granularity. It also substantially improved the performance on fine-grained
classification dataset, CUB; whereas staying competitive on standard benchmarks
such as mini-Imagenet, Omniglot, and few-shot dataset derived from CIFAR.

1 INTRODUCTION

Progress in artificial intelligence (AI) has been rapid. AI agents have been outperforming humans
in an increasing variety of tasks, such as in recognizing images on ImageNet (He et al., 2016) and in
the ancient game of Go (Silver et al., 2016). However, challenges remain – systems that outperform
humans usually require learning from very large-scale data. In contrast, humans only require few
examples to be able to rapidly adapt to a novel task; humans are still better learners. Few-shot
learning methods aim to bridge this gap.

In few-shot learning, a classification algorithm is trained on multiple tasks from a domain, before
being tested on a novel task. The novel task can involve classification into any subset of classes, with
possibly different levels of granularity. For example, it is possible that the classification algorithms
are only trained to differentiate between cats and dogs, but are tested on differentiating different
breeds of dogs. The training set for the novel task is also very limited; in the extreme case, only
one training example is provided for each class (called one-shot classification). A few-shot learning
algorithm can learn to identify features that are important for doing well on the learned tasks – these
can be transferred to the novel task as long as the domain remains similar. But with so few exam-
ples provided in the novel task and possible differences in the task granularity, few-shot learning
algorithms need to be very biased to perform well. The question is then: what kind of bias (prior) is
reasonable?

Our work. In this paper, we propose a model that focuses on the differences in the support set of
closely related classes in assigning the class label to a new instance in the novel task. Our prior is
loosely inspired by how scientists often work (Mill’s method of difference): in looking for poten-
tial causes of a phenomenon, a scientist would often focus on the differences in the circumstances
(features) in the instance in which the phenomenon occurred and the circumstances in instances
for which the phenomenon did not occur (Mill, 1875). We use a metric learning method, con-
structing class representatives by averaging the feature vectors of the examples in each class. Our
method focuses on the differences by removing components in each class representative that are
shared with closely related classes. More specifically, it builds a set of class representatives that
are orthogonal to the local average of closely related class representatives by removing its projec-
tion to the weighted average of the class representatives, where the weighting is performed using a
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learned attention mechanism. Our results show that our architecturally-induced prior, coupled with
the learned attention mechanism, is helpful to better handle fine-grained classification tasks, while
remaining competitive on other types of datasets.

Our contributions.

1. We introduce a method that is built on one simple yet effective prior: focusing on differ-
ences, and show that it works well on classifying closely related classes. Our results show
that the method achieves better performance on the fine-grained novel classification tasks
constructed from the benchmark CUB dataset and on a newly created benchmark consisting
of a mix of fine and coarse-grained classification tasks, Hierarchical-CIFAR. On other com-
monly used benchmark datasets, CIFAR-FS, mini-ImageNet, and Omniglot, performance
is competitive with existing methods.

2. We propose a methodology to build harder few-shot learning datasets from an existing
one by having different levels of labels granularity. This allows construction of more dif-
ficult datasets without requiring a very large hierarchical dataset. Through it, we build
Hierarchical-CIFAR which is derived from CIFAR-100. Our empirical evaluation shows
that the currently existing methods are not well equipped to handle this scenario.

2 DISSIMILARITY NETWORK

2.1 FEW-SHOT LEARNING

In few-shot learning, we are given a base set B and a novel set N. The base set contains labeled
examples from a large number of classes while novel set contains classes not found in the base
set. The objective of few-shot learning is to train a classification algorithm P on the training set
Xtrain = B, in such a way that it generalizes to the elements of the novel set N. Some methods
may also train on the small number of labeled examples from the novel set. In that case, the training
set becomes Xtrain = B ∪ Nlabeled, with labeled novel set Nlabeled ⊂ N. In one-shot learning, the
novel set only contains one labeled example for each class, while for k-shot learning, the novel set
contains k examples for each class.

We use the episodic training proposed by Vinyals et al. (2016): at every step, samples some examples
to form an episode T ⊂ Xtrain to train the classification algorithm P . Each episode T consists of a
small set of N -labeled examples (called support set) S = {(x1, y1), ..., (xN , yN )} and a set of M
examples to be labeled (called query set) Q = {x1, ...,xM}, where xi ∈ RD is a D-dimensional
feature vector with label yi (for computing the loss on the query set), simulating the conditions for
learning the novel set N.

Our method adopts the approach of metric learning (Davis et al., 2007), in which we learn a metric
space (embedding) that works well with a classifier that classifies using the inner product in the met-
ric space as a similarity measure. We define two levels of embedding based on how the embedding
utilizes task information:

Global task embedding learns an embedding function that is optimized for all episodes that it is
trained upon. The assumption is that the produced embedding will learn a meaningful and general
representation that is sufficient to separate data points on the novel task without knowing what
classes appear in the novel task.

Task-aware embedding removes the assumption that the learned global embedding is sufficient
for the novel task. Instead, it takes the possible classes of the novel task into account. On the
novel task, the embedding function will embed query set conditioned on support set which is aware
of its member, giving the full context to the prediction. Our model builds an explicit task-aware
embedding that separate a class from the weighted average of its closely-related classes. It is explicit
in the sense that our model explicitly encodes such prior into its function (architecture). In contrast,
implicit task-aware embedding only relies upon its loss function to adjust its function such that it
induces separations between classes.
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Figure 1: Dissimilarity Network architecture

2.2 MODEL

For each class, our model, which we call the Dissimilarity Network, computes a class representative,
called a prototype, that is used to classify a new instance through the similarity (inner product) of
the new instance representation with the prototype. For 1-shot classification, each training example
in the novel task is transformed into the prototype, while for k-shot classification, the mean of the
the k instance representations that belongs to each class transformed is into the prototype.

The Dissimilarity Network computes prototypes that are dissimilar to one another, in the sense that
the components of the class prototypes in the direction of the weighted average of closely-related
classes have been removed. This allows the model to focus on their differences in classification. The
model works by iteratively enhancing the representation of the prototypes through a set of learned
transformations (embedding function). The first transformation builds a global task embedding
through a learned dimensionality-reduction function. The global embedding retains features that
are useful for the tasks that are present in the set of training tasks (episodes) but does not take into
account the classes that are present in the novel task. The second transformation transforms the class
representations into a task-aware embedding using self-attention networks, taking into account other
classes that are present in the task. Finally, the last transformation computes the class prototypes
that are dissimilar, by locally orthogonalizing the representations to the weighted average of other
closely related class representations.

When presented with a new point to classify, it computes the global embedding for that point, trans-
form it using the task-aware embedding, locally orthogonalize the point for each possible class, and
select the most similar prototype’s class as the class of the new point. Figure 1 illustrates how the
model construct class representations as well as predict the new point.

2.2.1 GLOBAL EMBEDDING

All our tasks are images classification tasks. For global embedding, we learn a feature extraction
function ff : RD → RH for the images. We used deep convolutional neural networks (Krizhevsky
et al., 2012) which captures the local interaction of neighboring pixels and build a hierarchical
representation of them. This feature extractor construct our first level of embedding, which is trained
to extract information useful for all the training episodes but is not specialized to the particular novel
test task.

2.2.2 SELF-ATTENTION

To give the prototypes awareness of the other class representations, we introduce the additional pa-
rameterized function self -attn : RK×M → RK×M . By seeing the prototypes as a set of vector:
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C = {c1, ..., cK}, this function can learn a dynamic set-to-set operation that maximizes the objec-
tives of the downstream operation (Section 2.2.3), which, in our case, is building a set of vectors that
are locally orthogonal to its shared components. This gives task-awareness to our prototypes.

Our set-to-set operation is a dot-product self-attention (Vaswani et al., 2017) with embedding func-
tions for query hQ, key hK , and value hV , where each embedding function is parameterized by a
neural network that computes a mapping RK×M → RK×M . For simplicity we assume that for any
input in the form of set of vector A, it will automatically be cast into matrix A ∈ RK×M , whereas
the output will be cast back into a set. The self-attention mechanism is formulated as follows.

self -attn(C) = softmax
(hQ(C)hK(C)T√

M

)
hV (C) (1)

Intuitively, the self-attention computes a weighted average of element of the input matrix C ∈
RK×M , representing set K, which in this case is the prototypes. This operation has the effect of
averaging out noisy components from global embedding that may be relevant for other tasks but
are irrelevant to the set of classes in the current novel task. The weights are obtained using the
learned attention function, which in this case, is parameterized by hQ and hK . In our case, our
prototype ck learns to be aware of the other class representations C \ ck by incorporating some of
their components through attention.

We use bidirectional LSTM (BLSTM) (Hochreiter & Schmidhuber, 1997) for our attention em-
bedding function for query hQ and key hK , while using either identity function or BLSTM
on hV . BLSM computes a concatenation of two sequence of opposing-direction by sequen-
tially applying the element xt ∈ RH of its input x = [x1, ...,xT ] into an LSTM, ht,ut =
LSTM(xt−1,ht−1,ut−1). The computation yields a sequence of vector that each are conditioned
on its neighboring elements.

2.2.3 FOCUSING ON DIFFERENCES

We encode our prior in the form of architecture inductive bias, in which we remove components
that are shared with other class representations, thereby giving the model the ability to focus only
on class differences. Since we treat the prototypes as a vector, one natural way to form such fo-
cused representation is by making the prototype locally orthogonal to a weighted average of similar
components.

For an H-dimensional vector prototype ck ∈ C, we learn to find similar components among C \ ck
by using attention mechanism attn : RH × RK×M → RH , that has previously been implicitly
parameterized by the self -attn (Section 2.2.2), since W = self -attn(C), w ∈ W, and W ′ ∈
RK×M matrix representation of W′ = W \ w. Following the same set-matrix assumption from
Section 2.2.2, the attention mechanism is computed as follows.

attn(w,W ′) = softmax
(w ·W ′T
√
M

)
W ′ (2)

Essentially, through weighted average, it select components among the other class prototypes based
on how similar the embedded vector prototype w is to them.

We use the shared components bk = attn(wk,W′ \ w) that belongs to class k as the basis of the
projection proj(wk, bk), which computes a mapping RH × RH → RH as follows:

proj(w, b) =
w · b
||b||2

b (3)

Intuitively, it maps the vector of prototype wk to represent its direction using the given basis bk (i.e.,
projecting it into the basis). It produces a components that are completely linearly dependent to the
basis, thereby removing it: zk = wk − proj(wk, bk) will give an orthogonal vector, which in this
case with respect to the weighted average of the components.

2.2.4 CLASSIFICATION AND LEARNING

We summarize the structure of the Dissimilarity Network here and describe how it is used for clas-
sification and learning. The network consists of two major parts: an embedding function f and
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a classifier p. The embedding function f = (fg ◦ ff ) is a composition of the global embed-
ding feature extractor ff : RD → RH and the task aware local orthogonal embedding function
fg : RH × RH → RH . It first computes the class mean (or prototype) ck of the H-dimensional
representation of the support points after global embedding,

ck =
1

|Sk|
∑

(xi,yi)∈Sk

ff (xi). (4)

For the task aware embedding, we have augmented the prototypes with task-awareness by incor-
porating components from other prototypes through self-attention (self -attn): a learned weighted
averaging function. Given a set of self-attention embedded vector W = self -attn(C), wk ∈ RH :
w ∈W that belongs to class k, we compute an H-dimensional vector of local orthogonal prototype
zk = fg(wk, bk) using projection function proj(w, b) that projects the vector w into b.

fg(w, b) = w − proj(w, b) (5)

with bk computed using attention mechanism attn which takes the components of other prototypes
W \wk that are similar to wk.

bk = attn(wk,W \wk) (6)

Each new prototype representation zk is orthogonal to weighted average of the components of other
closely-related prototypes.

For classification on a new point x̂, we first compute the global embedding for the point v̂ = ff (x̂)
then compute the task aware embeddings ẑk = fg(ŵk, bk) for comparison with each prototype
using Ŵ = self -attn({v̂, ..., v̂}), with ŵk ∈ RH representing Ŵ at index k, |Ŵ| = K. As much
as possible, we embed the new point in the same way as the prototypes as it will be compared with
the prototypes for classification. If the attention value embedding hV (Section 2.2.2) is an identity
function (or any other element-wise function), wk = vk since its taking a weighted average of a
set of identical vectors. When hV is a BLTSM (or function that operates on a set of elements), hV

transforms the vector through multi-stage non-linear processing.

Given an unlabeled data x̂, the model gives a set of locally orthogonalized vector {ẑ1, ..., ẑK} for
comparison with the prototypes. Dissimilarity Network then computes a distribution over classes
for point x̂ using Softmax over inner product:

p(y = k|x̂) = exp(〈ẑk, zk〉)∑
k′ 6=k exp(〈ẑk′ , zk′〉)

(7)

Learning is then done using the cross-entropy loss with the label of the instance.

3 RELATED WORKS

There are many works on few-shot learning, which was started on the assumption that currently
learned task can help in making a prediction in a new task (Fei-Fei et al., 2006). It soon gained
interest from many researchers, which introduced many interesting techniques which contributes to
huge strides of progress in few-shot learning.

Transfer learning-based methods follows the idea that the features that are learned on some
datasets can be used to help classification on a novel task. It follows the standard transfer learn-
ing procedure in which involves network pre-training on the base datasets, followed by fine-tuning
on the novel dataset. Gidaris & Komodakis (2018); Qi et al. (2018) propose to directly predicting
weights of the classifiers on novel task. Chen et al. (2019) shows how such a simple approach is
often severely underestimated, and in fact, can compete with the more complex few-shot learning
technique.

Initialization based methods address few-shot learning by finding a way to better initialize a model.
One line of works are concerned with how few-shot learning can be thought of learning an optimizer
that can update the network rapidly and efficiently. Ravi & Larochelle (2016) uses LSTM as a meta-
optimizer to rapidly adapt neural network on the novel task, whereas Munkhdalai & Yu (2017)
uses external memory to update weights. Another line of works is concerned on finding a good
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initialization, as such that finetuning can be done using fewer steps (Finn et al., 2017; Nichol &
Schulman, 2018; Rusu et al., 2018).

Metric and similarity learning-based methods assumes that representation produced by some
model on a task share some similarities with those that are produced by another task. Essentially,
the goal is to learn a comparison model that can distinguish different classes on the novel task by
measuring its distance (or score) or similarity to some representation produced by support set.

Our proposed method is related to prototypical networks (Snell et al., 2017) and matching network
(Vinyals et al., 2016). Similar to prototypical networks (and Mensink et al. (2013)), we use mean
representation of the class (prototypes) to represent each class. However, instead of relying on the
assumption that each class prototype will have reasonable distance against each other, we explicitly
set a simple architecture inductive bias to separate points belonging to different class apart (through
orthogonalization). Moreover, instead of using euclidian distance over softmax for classification, we
use the inner product scoring function which measures how related the vector representations are.

Dissimilarity Network use context embedding similar to the full context embedding (FCE) extension
of the matching network, which also performed a set-to-set operation. As pointed out by Snell et al.
(2017), FCE extension of the matching network does not make that much difference due to the
limited number of data in few-shot learning. Here, we adopt a different architecture that supports
the downstream operation to explicitly induce a local class-orthogonal representation. Instead of
conditioning the prediction on the full set of support points, our task-aware embedding function
only provides context for the prototypes in the form of weighted average of themselves. In the
downstream operation, the embedded prototypes are orthogonalized locally, with new points being
removed of their projections against local averages of prototypes that they do not belong to.

Similar to prototypical networks, our distance function (scoring function) can be set differently. One
interesting extension is to use learned distance function similar to RelationNet (Sung et al., 2018).

4 EXPERIMENTS

Datasets & scenarios. We evaluate all models on the standard dataset that is widely used in few-
shot learning: omniglot, miniImageNet, and CUB. Apart from that, we also evaluate all models on
CIFAR dataset with the two splits: hard and normal split (which we will elaborate later).

Evaluation. Our evaluation follows Chen et al. (2019), that is by sampling N -class to form N -way
classification (with N=5 unless otherwise stated). For k-shot task, we pick k labeled instances for
each class to be the support set and 16 instances for query set. All results are averaged over 600
experiments which follow the above settings. We evaluate all models on 1-shot and 5-shot setting,
which is the most common setting adopted in few-shot learning. To better match the inference at
a test time, we use episodic training as introduced by Vinyals et al. (2016), which is also widely
adopted by other (Snell et al., 2017; Chen et al., 2019; Ravi & Larochelle, 2016).

Implementation details. All methods are trained using Adam optimizer Kingma & Ba (2014) with
the initial learning rate of 10−3, which we cut half every 2000 episodes. We apply the following
standard data augmentation on all datasets (except CIFAR): random crop, right-left flip, and color
jittering. Following Snell et al. (2017), we use a four-layer convolution backbone (Conv-4) with an
input size of 84x84 as a feature extractor for all methods. We use the open-source implementation of
Chen et al. (2019) for other methods that we reported. We pick the best performing model based on
the validation for meta-learning methods, whereas for baseline and baseline++ Chen et al. (2019),
we follow the recommended settings prescribed in their paper. We trained our model on 800 epochs.
Our best performing model on all datasets, based on validation set, uses identity function for the
value attention embedding hV except on the CUB dataset, which uses BLSTM. BLSTM context
sharing between key attention embedding hK and query attention embedding hQ were found to
improve performance for all datasets.

4.1 STANDARD BENCHMARKS

Omniglot (Lake et al., 2011) dataset consist of 1623 handwritten digits from 50 different alphabets.
There are 20 examples per character which is drawn by different people. We follow Vinyals et al.
(2016) procedure for evaluation.
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mini-ImageNet is a 100 classes subset of ImageNet (Deng et al., 2009) dataset (ILSVRC-12
dataset), which was first proposed by Vinyals et al. (2016). It consists of 600 images per class.
Recent works follow the setting proposed by Ravi & Larochelle (2016), which consist of randomly
selected 64 base, 16 validation, and 20 novel classes.

CUB or Caltech-UCSD Birds 200-2011 dataset (Wah et al., 2011) is a fine-grained classification
dataset which consist of 200 classes (bird species) and 11,788 images in total. We follow Hilliard
et al. (2018) setting which is composed of 100 base, 50 validation, and 50 novel classes.

CIFAR-FS dataset is derived from CIFAR-100 dataset (Krizhevsky et al., 2009) consist of 60,000
32x32 color images with 100 classes (belonging to 20 superclasses), with 600 images for each class.
Our split consists of randomly sampled 40 base, 15 validation, and 45 novel classes (detail of the
split can be found on appendix).

Results. Table 1 shows how our method fares against others. Our method performs the best on a fine-
grained classification task such as CUB and improved on a wide margin on its 1-shot classification
task. As we have suspected, there is an increasing need to focus on the difference between classes
when the classification task becomes increasingly fine-grained. Despite also being trained on fine-
grained classification task on CUB dataset, our prior still seems to help classify similar-looking
yet different classes as it further separate class representation by explicitly removing latent features
shared among classes. On CIFAR-FS, the Dissimilarity Network are slightly better than the rest,
whereas being competitive on Omniglot and mini-ImageNet dataset. Overall, our method surpasses
the state-of-the-art methods on average, on both 1-shot and 5-shot classification task.

4.2 HARDER BENCHMARKS

General setting. Assume a J-labeled dataset D = {(x1, y
coarse
1 , yfine1 ), ..., (xJ , y

coarse
J , yfineJ )}

where the labels comes from a two-level hierarchy: coarse-grained label ycoarsei ∈ Kcoarse and
fine-grained label yfinei ∈ Kfine. Kfine

s denote a subset of labels Kfine that belongs to coarse-
grained label (superclass) s ∈ Kcoarse. For example, Siamese, Persian, and Ragdol belongs to
superclass Cat, and we refer to them as subclasses of Cat. The base set B and novel set N can be
derived using the following method (illustrated in Figure 2).

Method. For all coarse-grained label ycoarsei ∈ Kcoarse, select some yfinei ∈ Kfine that is the
subclasses of ycoarsei (i.e., Kfine

ycoarse
i

), producing a set of fine-grained labels from all superclasses

Kfine
base . Construct the base set: B = {(xi, y

coarse
i )|(xi, y

coarse
i , yfinei ) ∈ D, yfinei ∈ Kfine

base}. The
novel set can be built by taking the rest of unused data and pair them with their fine-grained labels:
N = {(xi, y

fine
i )|(xi, y

coarse
i , yfinei ) ∈ D, yfinei /∈ Kfine

base}. Validation set is constructed the same
way as novel set. We leave out the detail of its construction for simplicity.

It’s trivial to see that this approach can work on smaller datasets. This approach is advantageous as
on each task, the labels can vary from being fine-grained to coarse-grained depending on the random
selection. As such, the methods that rely on the awareness of the overall novel tasks will likely to
fail as it builds a general embedding that works on all but not optimized for the current task. On the
other hand, a dynamic method that conditions the prediction on the support set of the given task will
likely to perform better.

Hierarchical-CIFAR is derived from CIFAR-100, through the use of the aformentioned method.
The following is the detail for each split (more detail on the appendix). 20 coarse-grained base
classes from 40 fine-grained classes (derived from the entire 20 superclasses, 2 classes each). 15
validation classes (derived from 5 superclass, 3 classes each). 45 novel classes (derived from 15
superclass, 5 classes each).

Results. From Table 1, we can compare the performance of all models on the randomly-split CIFAR-
FS dataset and hierarchically split Hierarchical-CIFAR dataset. All methods perform substantially
worse on the latter dataset, confirming the dataset to be, in fact, harder.

As can be seen from the results, our method substantially outperforms others on the more difficult
CUB and Hierarchical-CIFAR datasets while giving comparable performance on the other datasets.
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Figure 2: Illustration on construction of harder dataset. The base dataset uses the superclass taxon-
omy (e.g., cat, dog, and bird) instead its subclass (e.g., siamese, boxer, and owl).

Table 1: 5-shot and 1-shot classification accuracy on all datasets. We test our method against Match-
ingNet (Vinyals et al., 2016), ProtoNet (Snell et al., 2017), MAML (Finn et al., 2017), RelationNet
(Sung et al., 2018), and Baseline++ (Chen et al., 2019). Our method consistently surpassed state-of-
the-art methods on Hierarchical-CIFAR (H-CIFAR), CUB, and CIFAR-FS dataset, whereas being
competitive on mini-ImageNet and Omniglot dataset. All accuracy results are averaged over 600 test
episodes and are reported with 95% confidence intervals. *Results reported by Chen et al. (2019).

5-shot classification accuracy (%)
Method H-CIFAR CUB CIFAR-FS mini-ImageNet Omniglot Average
DissimilarityNet (Ours) 68.45± 0.74 81.23± 0.63 71.10± 0.71 65.40± 0.61 99.27± 0.10 77.09± 0.56
MatchingNet 63.34± 0.78 72.86± 0.70* 67.14± 0.77 63.48± 0.66* 99.37± 0.11* 73.24± 0.60
ProtoNet 64.30± 0.81 70.77± 0.69* 69.96± 0.77 64.24± 0.72* 99.15± 0.12* 73.68± 0.62
MAML 62.87± 0.77 72.09± 0.76* 65.98± 0.81 62.71± 0.71* 99.53± 0.08* 72.64± 0.63
RelationNet 63.15± 0.83 76.11± 0.69* 68.87± 0.76 66.60± 0.69* 99.30± 0.10* 74.81± 0.61
Baseline++ 57.25± 0.77 79.34± 0.61* 59.86± 0.80 66.43± 0.63* 99.38± 0.10* 72.45± 0.58

1-shot classification accuracy (%)
Method H-CIFAR CUB CIFAR-FS mini-ImageNet Omniglot Average
DissimilarityNet (Ours) 51.02± 0.89 65.82± 0.94 54.66± 0.82 49.34± 0.78 97.90± 0.25 63.75± 0.74
MatchingNet 50.42± 0.92 61.16± 0.89* 53.92± 0.92 48.14± 0.78* 97.78± 0.30* 62.28± 0.76
ProtoNet 47.16± 0.90 51.31± 0.91* 50.08± 0.88 44.42± 0.84* 98.01± 0.30* 58.20± 0.77
MAML 48.64± 0.93 55.92± 0.95* 51.78± 0.94 46.47± 0.82* 98.57± 0.19* 60.28± 0.77
RelationNet 50.78± 0.95 62.45± 0.98* 54.24± 0.93 49.31± 0.85* 97.22± 0.33* 62.80± 0.81
Baseline++ 39.30± 0.70 60.53± 0.83* 43.38± 0.73 48.24± 0.75* 95.41± 0.39* 57.37± 0.68

5 CONCLUSION

We have proposed Dissimilarity Network for few-shot learning based on the idea of focusing on
differences in the class representation. Our approach directly addresses the failure modes of some
few-shot classifiers that do not explicitly take into account the classification task at hand, yielding
non-satisfactory results on some task such as fine-grained novel classification with coarse-grained
base classification task. To demonstrate the necessities of building task-aware embedding for such
task, we came up with a challenging dataset, Hierarchical CIFAR, which we have shown to be harder
than the CIFAR-FS. Dissimilarity Network introduced an architecture inductive bias which removes
the shared components among classes in the prototypes by orthogonalizing them (i.e., removing
their projected components) to their leave-self-out weighted local average. Our method performs
comparably to the state-of-the-art methods on standard benchmarks such as Omniglot and mini-
ImageNet, and substantially outperform other methods on CUB dataset and on the newly constructed
Hierarchical CIFAR dataset.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Wang, and Jia-Bin Huang. A closer look at
few-shot classification. In International Conference on Learning Representations, 2019.

Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic
metric learning. In Proceedings of the 24th international conference on Machine learning, pp.
209–216. ACM, 2007.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions
on pattern analysis and machine intelligence, 28(4):594–611, 2006.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126–1135. JMLR. org, 2017.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–
4375, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Nathan Hilliard, Lawrence Phillips, Scott Howland, Artëm Yankov, Courtney D Corley, and
Nathan O Hodas. Few-shot learning with metric-agnostic conditional embeddings. arXiv preprint
arXiv:1802.04376, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of
simple visual concepts. In Proceedings of the annual meeting of the cognitive science society,
volume 33, 2011.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image
classification: Generalizing to new classes at near-zero cost. IEEE transactions on pattern anal-
ysis and machine intelligence, 35(11):2624–2637, 2013.

John Stuart Mill. A system of logic, ratiocinative and inductive: Being a connected view of the
principles of evidence, and the methods of scientific investigation, vol. 1. 1875.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 2554–2563. JMLR. org, 2017.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2, 2018.

Hang Qi, Matthew Brown, and David G Lowe. Low-shot learning with imprinted weights. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5822–
5830, 2018.

9



Under review as a conference paper at ICLR 2020

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4077–4087, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1199–1208, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630–3638, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

A APPENDIX

A.1 SPLITS FOR CIFAR

Base: forest, house, television, wolf, cloud, sweet pepper, dinosaur, tank, caterpillar, cup, sun-
flower, whale, can, bottle, road, crocodile, woman, bear, otter, willow tree, snail, aquarium fish,
girl, trout, bowl, worm, pear, streetcar, castle, flatfish, lobster, turtle, poppy, orchid, man, seal, lamp,
lawn mower, beetle, clock

Validation: oak tree, kangaroo, mushroom, porcupine, squirrel, lizard, train, spider, keyboard,
maple tree, bicycle, orange, lion, rabbit, motorcycle

Novel: fox, boy, skyscraper, bridge, mouse, shrew, plain, possum, tiger, tulip, wardrobe, sea, couch,
mountain, leopard, camel, shark, plate, dolphin, table, bee, pickup truck, palm tree, beaver, baby,
bus, butterfly, ray, apple, cattle, crab, pine tree, raccoon, tractor, chair, rose, telephone, chimpanzee,
snake, bed, hamster, skunk, cockroach, rocket, elephant

A.2 SPLITS FOR HIERARCHICAL CIFAR

Base: aquatic mammals, fish, flowers, food containers, fruit and vegetables, house-
hold electrical devices, household furniture, insects, large carnivores, large man-
made outdoor things, large natural outdoor scenes, large omnivores and herbivores,
medium mammals, non-insect invertebrates, people, reptiles, small mammals, trees, vehicles 1,
vehicles 2

Validation: rabbit, hamster, bed, house, kangaroo, lamp, skyscraper, squirrel, castle, table, chim-
panzee, telephone, television, wardrobe, elephant

Novel: baby, beaver, beetle, bicycle, bottle, bus, butterfly, can, caterpillar, crocodile, cup, dol-
phin, flatfish, forest, girl, lion, lobster, man, mountain, oak tree, orange, orchid, otter, pear,
pickup truck, pine tree, porcupine, possum, ray, rocket, rose, sea, shark, skunk, snail, snake, street-
car, sweet pepper, tank, tiger, tulip, turtle, willow tree, wolf, worm
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