
Under review as a conference paper at ICLR 2024

A Replica derivation of the fixed-point equations

In this Appendix, we will derive the fixed point equations for the order parameters following
the analysis by Loureiro et al. (2021); Pesce et al. (2023); Adomaityte et al. (2023) in the most
general setting discussed in Result 4.3: the case in Result 2.4 is obtained by fixing K = 1
and µ1 © 0 below, and by assuming a ridge regularisation. The dataset D := {(xi, yi)}iœ[n]

consists of n independent datapoints xi œ Rd each associated to a label yi œ Y. The elements
of the dataset are independently generated by using a law P (x, y) which we assume can be put
in the form of a superstatistical mixture model (SMM) involving K clusters C = {1, . . . , K},

P (x, y) © P0(y|—|
ıx)

ÿ

cœC

pcE‡c [N (x; µc, ‡2
c/dId)] , (23)

and P0(•|·) is the distribution of the scalar label y produced via the “teacher” —ı. In the
following, we assume that —

2
ı = 1/dÎ—ıÎ2

2
= �(1). In the equation above, ’c œ C, pc œ [0, 1]

and µc œ Rd with ÎµcÎ2
2

= �(1/d). It is assumed that
q

c pc = 1. The expectation is
intended over ‡c, a positive random variable with density Íc. We will perform our regression
task searching for a set of weights —̂⁄, that will allow us to construct an estimator via a
certain classifier f : R æ Y:

x ‘æ f(—̂
|
⁄x) = y, (24)

which will provide us with our prediction for a datapoint x. The weights will be chosen by
minimising an empirical risk function in the form

R(—) ©
nÿ

‹=1

¸ (yi, —|xi) + ⁄r(—), (25)

i.e., they are given by
—̂⁄ := arg min

—œRd
R(—). (26)

We will assume that ¸ is a convex loss function with respect to its second argument, and r

is a strictly convex regularisation function: the parameter ⁄ Ø 0 will tune the strength of
the regularisation. Note that this setting is slightly more general than the one given in the
main text. The starting point is to reformulate the problem as an optimisation problem by
introducing a Gibbs measure over the parameters — depending on a positive parameter �,

µ�(—) Ã e≠�R(—) = e≠—r(—)

¸ ˚˙ ˝
Pw

nŸ

i=1

exp [≠�¸ (yi, —|xi)]¸ ˚˙ ˝
P¸

, (27)

so that, in the � æ +Œ limit, the Gibbs measure concentrates on —̂⁄. The functions Py and
Pw can be interpreted as (unnormalised) likelihood and prior distribution respectively. Our
analysis will go through the computation of the average free energy density associated with
such Gibbs measure in a specific proportional limit, i.e.,

f� := ≠ lim
n,dæ+Œ

n/d=–

ED

5
lnZ�

d�

6
= lim

n,dæ+Œ
n/d=–

lim
sæ0

1 ≠ ED[Zs
�]

sd�
, (28)

where ED[•] is the average over the training dataset, and we have introduced the partition
function

Z� :=
⁄

e≠�R(—) d—. (29)

A.1 Replica approach.

In our replica approach, we need to evaluate

ED[Zs
�] =

sŸ

a=1

⁄
d—a

Pw(—a)
A
E(x,y)

C
sŸ

a=1

P¸(y|x|—a)
DBn

. (30)
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Let us take the inner average introducing a new set of local fields ÷
a and · ,

E(x,y)

C
sŸ

a=1

P¸(y
---x|—a)

D
=

ÿ

c

pcE‡c

C⁄

Y

dy

⁄

Rd

dxP0(y|x|—ı)N(x;µc,‡
2
c/dId)

sŸ

a=1

P¸(y|x|—a)
D

=
ÿ

c

pcE‡c

C⁄
d÷

⁄
d·

⁄

Y

dyP0(y|·)
sŸ

a=1

P¸(y|÷a)N
3

(·
÷);

1
µ|

c —ı

µ|
c —a

2
,
‡

2
c

d

1
d—2

ı —|
ı —b

—|
ı —a —a|—b

24D
. (31)

We can write then

ED[Zs
�] =

sŸ

a=1

⁄
d—a

Pw(—a)◊

A
ÿ

c

pcE‡c

C⁄
d÷

⁄
d·

⁄

Y

dyP0(y|·)
sŸ

a=1

P¸(y|÷a)N
3

(·
÷);

1
µ|

c —ı

µ|
c —a

2
,
‡

2
c

d

1
d—2

ı —|
ı —b

—|
ı —a —a|—b

24DBn

=
Ÿ

c

Q

a
Ÿ

aÆb

⁄⁄
DQab

DQ̂
ab

R

b
A

Ÿ

a

⁄
DMa

DM̂a

B A
Ÿ

a

⁄
dt

a dt̂
a

B
e≠d��

(s)
. (32)

In the equation above we introduced the order parameters

Q
ab
c = ‡

2
c

d
—a|—b œ R, a, b = 1, . . . , s, (33)

M
a
c = ‡

2
c

d
—|

ı—a œ R, a = 1, . . . , s, (34)

t
a
c = µ|

c —a œ R, a = 1, . . . , s, (35)

whilst the integration is over all possible order parameters, Q
ab
c and m

a
c to be intended as

functions of ‡c. In the equation, we have also denoted the replicated free-energy

��(s)(Q,M , Q̂,M̂) =
ÿ

c

ÿ

a

E‡c [M̂a
c M

a
c ] +

ÿ

c

ÿ

aÆb

E‡c [Q̂ab
c Q

ab
c ] + 1

d

ÿ

c,a

t̂
a
c t

a
c

≠1
d

ln
sŸ

a=1

⁄
Pw(—a)d—a

Ÿ

c

exp

Q

a
ÿ

aÆb

E‡c [‡2

c Q̂
ab
c ]—a|—b+

ÿ

a

E‡c [‡2

c M̂
a
c ]—a|—ı+

ÿ

a

t̂
a
c —a|µc

R

b

≠ – ln
ÿ

c

pcE‡c

C⁄
d÷

⁄
d·

⁄

Y

dy P0 (y|·)
sŸ

a=1

P¸ (y|÷a) N

1
( ·

÷ );
1

t0
c

ta
c

21
‡2

c —2
ı Mb

c

Ma
c Qab

c

22D
, (36)

where, for the sake of brevity, t
0
c := µ|

c —ı. At this point, the free energy f— should be
computed functionally extremisizing with respect to all the order parameters by virtue of
the Laplace approximation,

f� = lim
sæ0

Extr
M ,M̂ ,t
Q,Q̂,t̂

�(s)(Q,M , Q̂,M̂ , t, t̂)
s

. (37)

Replica symmetric ansatz. Before taking the s æ 0 limit we make the replica symmetric
assumptions

Q
aa
c =

;
Rc, a = b

Qc a ”= b

M
a
c = Mc

t
a
c = tc

Q̂
aa
c =

I
≠ 1

2
R̂c, a = b

Q̂c a ”= b

M̂
a
c = M̂c ’a

t̂
a
c = t̂c ’a

(38)

If we denote Vc := Rc ≠ Qc we obtain, after some work we obtain
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ln
ÿ

c

pcE‡c

C⁄
d÷

⁄
d·

⁄

Y

dy P0 (y|·)
sŸ

a=1

P¸ (y|÷a) N

1
( ·

÷ );
1

t0
c

tc1s

2
,

1
‡2

c —2
ı Mc1|

s
Mc1s Qc1s◊s

22D

=s

ÿ

c

pcE‡c,’

5⁄

Y

dyZ0

3
y,t

0

c+ Mc’Ô
Qc

,‡
2

c —
2

ı≠M
2
c

Qc

4
lnZ¸

1
y,tc+


Qc’,Vc

26
+o(s), (39)

with ’ ≥ N(0, 1) is normally distributed and we have introduced the function

Z•(y, µ, V ) :=
⁄ d·P•(y|·)Ô

2fiV
e≠ (·≠µ)2

2V , • œ {0, ¸}. (40)

On the other hand, denoted by V̂c = R̂c + Q̂c, and introducing q̂c := E‡c [‡2
c Q̂c], v̂c :=

E‡c [‡2
c V̂c], and m̂c := E‡c [‡2

c M̂c]

1
d

ln
sŸ

a=1

Q

a
⁄

Pw(—a)d—a
Ÿ

c

e≠ v̂c
2 Î—aÎ2

2+—a|
(m̂c—ı+t̂cµc)

Ÿ

b,c

e 1
2 q̂c—a|—b

R

b=

= s

d
E›ln

C⁄
Pw(—)d—

Ÿ

c

exp
3

≠ v̂cÎ—Î2
2

2 +—|(m̂c—ı+t̂cµc)+


q̂c›|—

4D
+o(s). (41)

In the expression above we have introduced › ≥ N(0, Id). Therefore, the (replicated) replica
symmetric free-energy is given by

lim
sæ0

�

s
�(s)

RS
=1

d

ÿ

c

t̂ctc+
ÿ

c

M̂cMc+

q
cE‡c

Ë
V̂cQc≠Q̂cVc≠V̂cVc

È

2 ≠–��¸(M,Q,V )≠��w(m̂,q̂,v̂)

(42)
where we have defined two contributions

�¸(M,Q,V ):= 1
�

ÿ

c

pcE‡c,’

5⁄

Y

dyZ0

3
y,t

0

c+ Mc’Ô
Qc

,‡
2

c —
2

ı≠M
2
c

Qc

4
lnZ¸

1
y,tc+


Qc’,Vc

26
,

�w(m̂,q̂,v̂):= 1
�d

E›ln
C⁄

Pw(—)d—
Ÿ

c

exp
3

≠ v̂cÎ—Î2
2

2 +—|!
m̂c—ı+t̂cµc

"
+


q̂c›|—

4D
.

(43)

Note that we have separated the contribution coming from the chosen loss (the so-called
channel part �¸) from the contribution depending on the regularisation (the prior part �w).
To write down the saddle-point equations in the � æ +Œ limit, let us first rescale our order
parameters as M̂c ‘æ �M̂c, t̂c ‘æ d�t̂c, Q̂c ‘æ �2

Q̂c, V̂c ‘æ �V̂c and Vc ‘æ �≠1
Vc. Also, for

future convenience, let us rescale Qc ‘æ ‡
2
c qc, Mc ‘æ ‡

2
c mc, Vc ‘æ ‡

2
c vc. For � æ +Œ the

channel part is

�¸(m, q, v, t) =

=≠
ÿ

c

pcE‡c,’

5⁄

Y

dyZ0

3
y,t

0

c+‡cm’
Ô

qc
,‡

2

c —
2

ı≠‡
2
c m

2
c

qc

43 (hc≠tc≠‡c
Ô

qc’)2

2‡2
c vc

+¸(y,hc)
46

. (44)

where we have written �¸ of a Moreau envelope, i.e., in terms of a proximal

hc := arg min
u

5
(u ≠ Êc)2

2‡2
c vc

+ ¸(y, u)
6

with Êc = tc + ‡c
Ô

qc’. (45)

A similar expression can be obtained for �w. Introducing the proximal

g = arg min
—

A
Î—Î2

2

q
c v̂c

2 ≠ —| ÿ

c

!
m̂c—ı + dt̂cµc

"
≠ ›|—

ÿ

c


q̂c + ⁄r(—)

B
œ Rd (46)

We can rewrite the prior contribution �w as

�w(m̂, q̂, v̂, t̂) = ≠1
d
E›

C
ÎgÎ2

2

2
ÿ

c

v̂c ≠ g| ÿ

c

!
m̂c—ı + t̂cµc

"
≠ ›|g

ÿ

c


q̂c + ⁄r(g)

D
(47)
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The parallelism between the two contributions is evident, aside from the di�erent dimen-
sionality of the involved objects. The replica symmetric free energy in the � æ +Œ limit is
computed by extremising with respect to the introduced order parameters,

fRS=Extr
C

ÿ

c

E‡c [‡2

c M̂cmc]+1
2

ÿ

c

E‡c

Ë
‡

2

c

1
V̂cqc≠Q̂cvc

2È
+

ÿ

c

tct̂c

≠–�¸(m, q, v, t) ≠ �w(m̂, q̂, v̂, t̂)
$

. (48)

To do so, we have to write down a set of saddle-point equations and solve them.

Saddle-point equations. The saddle-point equations are derived straightforwardly from
the obtained free energy functionally extremising with respect to all parameters. It is easily
seen that vc, qc and mc are independent from ‡c, and that it is possible to reduce the number
of variables by introducing v̂ =

q
c v̂c, so that we can write

vc = E›[g|›]
d
Ô

q̂c
, (49a)

q = E›[ÎgÎ2
2
]

d
, (49b)

m = E› [g|—ı]
d

, (49c)

tc = E› [g|µc] . (49d)

and the remaining equations can be rewritten as

q̂c=–pc

⁄

Y

dyE‡c,’

5
‡

2

c Z0

3
y,t

0

c+‡cm
Ô

q
’,‡

2

c —
2

ı≠‡
2
c m

2

q

4
f

2

c

6
, (50a)

v̂=≠–

ÿ

c

pc

⁄

Y

dyE‡c,’

5
‡

2

c Z0

3
y,t

0

c+‡cm
Ô

q
’,‡

2

c —
2

ı≠‡
2
c m

2

q

4
ˆÊfc

6
, (50b)

m̂c=–pc

⁄

Y

dyE‡c,’

5
‡

2

c ˆµZ0

3
y,t

0

c+‡cm
Ô

q
’,‡

2

c —
2

ı≠‡
2
c m

2

q

4
fc

6
, (50c)

t̂c=–pc

⁄

Y

dyE‡c,’

5
Z0

3
y,t

0

c+‡cm
Ô

q
’,‡

2

c —
2

ı≠‡
2
c m

2

q

4
fc

6
(50d)

with

fc := arg min
u

5
‡

2
c vcu

2

2 + ¸(y, Êc + ‡
2

c vcu)
6

, Êc = tc + ‡c
Ô

q’,

g = arg min
—

A
Î—Î2

2
v̂

2 ≠ —| ÿ

c

!
m̂c—ı + dt̂cµc

"
≠ ›|—

ÿ

c


q̂c + ⁄r(—)

B
.

(51)

To obtain the replica symmetric free energy, therefore, the given set of equations has to
be solved, and the result is then plugged in Eq. 48. The obtained saddle-point equations
correspond to the ones given in the Result 4.3.

Training and test errors. Let us show how to use the previous result to estimate the
training loss and the generalisation error. Let us start from estimating

Á¸ := lim
næ+Œ

1
n

nÿ

i=1

¸(yi, —̂
|
⁄xi). (52)

The best way to proceed is to observe that

Á¸=≠ lim
�æ+Œ

ˆ�(��¸)=
ÿ

c

pc

⁄

Y

dyE‡c,’

5
Z0

3
y,t

0

c+‡cm
Ô

q
’,‡

2

c —
2

ı≠‡
2
c m

2

q

4
¸(y,hc)

6
. (53)

16



Under review as a conference paper at ICLR 2024

This concentration result holds for a generic function Ï : Y ◊R æ R, so that more generally,
under Assumption 2.3,

1
n

nÿ

i=1

Ï(yi,—̂
|
⁄xi)

P≠≠≠≠≠≠æ
n,dæ+Œ

ÿ

c

pc

⁄

Y

dyE‡c,’

5
Z0

3
y,t

0

c+‡cm
Ô

q
’,‡

2

c —
2

ı≠‡
2
c m

2

q

4
Ï(y,hc)

6
. (54)

The expressions above hold in general, but, as anticipated, important simplifications can
occur in the set of saddle-point equations Eq. 50 and Eq. 49 depending on the choice of
the loss ¸ and of the regularization function r. The population’s expectation (e.g., in the
computation of the test error) of a performance function Ï : Y ◊R æ R is given instead by

Ág := lim
næ+Œ

E(y,x)

Ë
Ï(y, —̂

|
⁄x)

È
, (55)

where the expectation has to be taken on a newly sampled datapoint (y, x) ”œ D. This
expression can be rewritten as

Ey|x

5⁄
d÷Ï(y, ÷)Ex

Ë
”

1
÷ ≠ —̂

|
⁄x

2È6

P≠≠≠≠≠≠æ
n,dæ+Œ

⁄
d÷

⁄
d·

⁄

Y

dy P0 (y|·) Ï(y, ÷)
ÿ

c

pcE‡c

Ë
N

1
( ·

÷ );
1

t0
c

tc

2
, ‡

2

c

1
—2

ı m
m q

22È
. (56)

This can be easily computed numerically once the order parameters are given. Finally,
another relevant quantity for our investigations is the estimation mean-square error

Áest := lim
dæ+Œ

1
d
ED

#
Î—̂⁄ ≠ —ıÎ2

2

$
= —

2

ı ≠ 2m + q. (57)

A.2 Bayes-optimal estimator for K = 1

A derivation similar to the one discussed above can be repeated to obtain information on
the statistical properties of the Bayes optimal estimator presented in Result 2.6. Given a
dataset D of observation, we have that

P (—|D) = P (—)P (D|—)
Z(D) = P (—)

Z(D)

nŸ

i=1

P0(yi|—|xi) (58)

where P (—) is the prior on the teacher that we assume to be Gaussian, P (—) = N(—; 0, —
2
ıId),

and

Z(D):=
⁄

d—P (—)
nŸ

i=1

P0(yi|—|xi)=
1

(2fi)n/2

⁄
d—exp

A
≠Î—Î2

2

2—2
ı

+
nÿ

i=1

lnP0(yi|—|xi)
B

. (59)

The calculation of Z(D) gives access in particular to the free entropy „(D) := limn
1

n lnZ(D).
The computation of „, which has an information-theoretical interpretation as mutual infor-
mation, provides us the statistics of — according to the true posterior P (—|D). By assuming
a concentration in the large n limit, the calculation is performed on ED[lnZ(D)]. Using the
replica trick as before, the calculation can be repeated almost identically. For the sake of
simplicity, we focus on the case in which only one cluster is present, centered in the origin. It
is found that the statistics of a Bayes optimal estimator can be characterised therefore by an
order parameter q satisfying a self-consistent equation not di�erent from the one presented
above (we will use below a di�erent font to stress that we are currently analysing the Bayes
optimal setting)

q̂ = –

⁄

Y

dy E‡,’

C
‡

2
Z0(y, µ, V ) (ˆµ ln Z0(y, µ, V ))2

--- µ=‡
Ôq’

V =‡2
(—2

ı≠q)

D
, q = —

4
ı q̂

1 + —2
ı q̂ . (60)

with Z0(y, µ, V ) := Ez[P0(y|µ +
Ô

V z)] with z ≥ N(0, 1). We can then compute the Bayes
optimal estimation error for the Bayes optimal estimator —̂BO = E—|D[—] as

ÁBO = lim
dæ+Œ

1
d

Î—ı ≠ —̂BOÎ2

2
= —

2

ı ≠ q. (61)
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B Asymptotic results for ridge-regularised losses

Let us fix now r(x) = 1

2
ÎxÎ2

2
. In this case, the computation of �w can be performed explicitly

via a Gaussian integration, and the saddle-point equations can take a more compact form
that is particularly suitable for a numerical solution. In particular, the prior proximal is
found as

g =
q

c

!
m̂c—ı + dt̂cµc

"
+

q
c

Ô
q̂c›

⁄ + v̂
(62)

so that the prior saddle-point equations obtained from �w become

q= 1

d

1q
c

m̂c—ı+dt̂µc
⁄+v̂

22

+
1q

c

Ô
qc

⁄+v̂

22

m=
q

c
(—2

ım̂c+t0
c t̂c)

⁄+v̂

vc= 1

⁄+v̂

q
cÕ

Ò
q̂cÕ
q̂c

tc=
q

cÕ(t̂cÕ µcÕc+t0
cm̂cÕ)

⁄+v̂ ,

q̂c=–pc

s
Y

dyE‡c,’

#
‡

2
c Z0f

2
c

$
,

v̂=≠–
q

cpc

s
Y

dyE‡c,’

#
‡

2
c Z0ˆÊfc

$
,

m̂c=–pc

s
Y

dyE‡c,’

#
‡

2
c ˆµZ0fc

$
,

t̂c=–pc

s
Y

dyE‡c,’ [Z0fc]

(63)

We have used the shorthand notation Z0 © Z0

1
y, t

0
c + ‡cmÔ

q ’, ‡
2
c —

2
ı ≠ ‡2

c m2

q

2
and µccÕ :=

dµ|
cÕµc.

Regression on one cloud: consistency In the special case in which |C| = 1 and the
cloud is centered in the origin, we have t1 = t̂1 = 0 and, dropping the subscript referring to
the cluster,

q = —
2
ım̂

2 + q̂

(⁄ + v̂)2

m = —
2
ım̂

⁄ + v̂

v = 1
⁄ + v̂

,

q̂ = –
s
Y

dy E‡,’

Ë
‡

2
Z0

1
y,

‡mÔ
q ’, ‡

2
—

2
ı ≠ ‡2m2

q

2
f

2

È
,

v̂ = ≠–
s
Y

dy E‡,’

Ë
‡

2
Z0

1
y,

‡mÔ
q ’, ‡

2
—

2
ı ≠ ‡2m2

q

2
ˆÊf

È
,

m̂ = –
s
Y

dy E‡,’

Ë
‡

2
ˆµZ0

1
y,

‡mÔ
q ’, ‡

2
—

2
ı ≠ ‡2m2

q

2
f

È
,

(64)

where as usual f := arg minu

Ë
‡2vu2

2
+ ¸(y, Ê + ‡

2
vu)

È
and Ê = ‡

Ô
q’. Let us now perform

the rescaling v ‘æ –v, q̂ ‘æ –q̂, m̂ ‘æ –m̂, and v̂ ‘æ –v̂, where v = O(1), v̂ = O(1), m̂ = O(1),
q̂ = O(1). Then, under these assumptions, in the – æ +Œ limit

q = —
2
ım̂

2

v̂2

m = —
2
ım̂

v̂

v = 1
v̂

,

q̂ =
s
Y
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2
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È
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(65)

Moreover, in the large – limit, f = ≠ˆ÷¸(y, ÷)|÷=‡
Ô

q’ . It follows that, independently from
the adopted loss, the angle fi

≠1 arccos m
—ı

Ô
q between the estimator —̂⁄ and the teacher —ı

goes to zero as – æ +Œ. In this limit, it is easily found that Áest æ —
≠2
ı (m ≠ —

2
ı)2, hence

the estimator is consistent if m æ —
2
ı .

Uncorrelated teachers: universality To study the universality properties in the ridge
setting, let us introduce two possible new assumptions.
Assumption B.1. For all c œ [K], limdæ+Œ t

0
c = 0.

This assumption holds, for example, by assuming the centroids µc ≥ N(0, 1/dId). It expresses
in general the fact that the teacher —ı is completely uncorrelated from the di�erent centroids
µc.
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Assumption B.2. The following symmetry properties hold

P0(y|·) = P0(≠y| ≠ ·), ¸(y, ÷) = ¸(≠y, ≠÷). (66)

Under Assumption B.1 and Assumption B.2, tc = t̂c = 0 ’c is a saddle-point solution of
the equations 63. Indeed, if t̂c = 0 the prior equation implies tc = 0. On the other hand,
if tc = 0, t̂c = 0 for parity reason (Pesce et al., 2023). We recover therefore in our setting
the mean universality discussed by Pesce et al. (2023) in the Gaussian setting: the learning
task is mean-independent and equivalent to one on c clouds all centered in the origin, i.e., a
problem obtained assuming x ≥

q
c pcE‡c [N(0, ‡c/dId)]. Note that in the Gaussian setting

(i.e., assuming flc(‡) = ”(‡ ≠ ‡̄c) for some fixed ‡̄c for each c œ [C]) Pesce et al. (2023) also
observed that in the limit ⁄ æ 0+, covariance universality holds in the Gaussian case: Ág

and Á¸ are independent on the covariance of the clouds. This fact does not extend to the
case in which the distribution of ‡c is not atomic (not even in the case in which ‡c are all
identically distributed), as it has been verified by Adomaityte et al. (2023).

B.1 Square loss

If we consider a square loss ¸(y, ÷) = 1

2
(y ≠ ÷)2, then an explicit formula for the proximal

can be found, namely

fc = y ≠ Êc

1 + vc‡2
c

, Êc = tc + ‡c
Ô

q’, (67)

so that the second set of saddle-point equations Eq. 50 can be made even more explicit. Let
us assume, that labels are generated according to the linear model in Eq. 1a, where the noise
term ÷i has E[÷i] = 0 and ‡̂

2
0

:= E[÷2

i ] < +Œ. In this setting, the channel equations can be
written as

q̂c = –pc‡̂
2

0
E‡c

5
‡

2
c

(1 + vc‡2
c )2

6
+ –pcE‡c

C3
‡

2
c

1 + vc‡2
c

42
D

(—2

ı ≠ 2m + q + (t0

c ≠ tc)2), (68a)

v̂ = –

ÿ

c

pcE‡c

5
‡

2
c

1 + vc‡2
c

6
, (68b)

m̂c = –pcE‡c

5
‡

2
c

1 + vc‡2
c

6
(68c)

t̂c = –pc(t0

c ≠ tc)E‡c

5
1

1 + vc‡2
c

6
. (68d)

In this setting the generalisation error becomes

Ág := lim
dæ+Œ

E
51

y ≠ —̂
|
⁄x

22
6

= ‡̂
2

0
+

ÿ

c

pc(t0

c ≠ tc)2 + (—2

ı ≠ 2m + q)
ÿ

c

pcE‡c [‡2

c ], (69)

which is finite if and only if E‡c [‡2
c ] < +Œ for all c. Note that the dependence on Í̂ is

through its second moment only. Observe that the possible power-law behavior of the noise
on the label does not influence the generalisation performances, that only depends on the
noise variance ‡̂

2
0
. The training loss, on the other hand, is

Á¸ := lim
dæ+Œ

1
2n

nÿ

i=1

1
yi ≠ —̂

|
⁄xi

22 dæ+Œ≠≠≠≠≠æ ‡̂
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2
ÿ

c

pcE‡c

5
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(1 + vc‡2
c )2
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+
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E‡c

5
1

(1+vc‡2
c )2

6
(t0

c≠tc)2+E‡c

5
‡

2
c

(1+vc‡2
c )2

6
(—2

ı≠2m+q)
6
. (70)

Strong universality of Á¸ for ⁄ æ 0+ We will show now that, under the Assumption
B.1 (Assumption B.2 is satisfied in the setting under consideration), the strong universality
of the training loss observed by Pesce et al. (2023) is preserved. Let us put ourselves in the
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case of a single cluster centered in the origin (an assumption that is not restrictive, as shown
above). In this case, let us introduce

Sv := E‡

5
1

1 + v‡2

6
(71)

which can be interpreted in terms of the Stieljes transform of the random variable ‡
2. The

saddle-point equations are

q̂=≠–‡̂
2

0
ˆvSv+–(1≠Sv+vˆvSv)—

2
ı≠2m+q

v2
,

v̂=–
1≠Sv

v
,

m̂=–
1≠Sv

v
,

q=m̂
2
—

2
ı+q̂

(⁄+v̂)2

m=—
2
ım̂

⁄+v̂

v= 1
⁄+v̂

.

(72)

The training loss can be written as

Á¸ = ≠ ‡̂
2
0
ˆvSv

2 ≠ (—2
ı ≠ 2m + q)ˆvSv

2 . (73)

In the limit ⁄ æ 0,

x := —
2
ı ≠ 2m + q

v
= (1 ≠ Sv + vˆvSv)x ≠ vˆvSv‡̂

2
0

1 ≠ Sv
∆ x = ‡̂

2

0
(74)

so that Á¸ = 1

2
Sv‡̂

2
0
. The quantity Sv can be extracted from the equation for v, as it has to

satisfy, in the zero regularisation limit, –(1 ≠ Sv) = 1 ∆ Sv = 1 ≠ 1

– which is a valid solution
for – > 1 only. As a result, we obtain a universal formula for the training loss

Á¸ = ‡̂
2
0

2

3
1 ≠ 1

–

4

+

, where (x)+ := x◊(x). (75)

Note that the formula above is valid for any distribution of ‡, including distributions with
no second moment.

Generalisation error rate — We conclude this section by extracting the generalisation
error rate for n æ +Œ and large but fixed d, i.e., for – æ +Œ. For simplicity, let us focus,
once again, on the case K = 1 and µ1 = 0, corresponding to the fixed-point equations given
in Eq. 72. Let us assume that ‡̂

2
0

< +Œ and that ‡
2
0

:= E[‡2] < +Œ. From Eq. 72 v satisfies
the equation –(1 ≠ Sv) = 1 ≠ ⁄v: as Sv œ [0, 1] and v > 0, then for – æ +Œ we must have
Sv æ 1 and v æ 0, so that for – æ +Œ, Sv = 1 ≠ 1

– + O(–≠1). In this limit, therefore, by
direct inspection of the fixed-point equations, q æ —

2
ı and m æ —

2
ı so that Áest æ 0 and the

estimator —̂⁄ is unbiased.
In the hypothesis that ‡
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≠2a≠1 with a > 1 for ‡ ∫ 1), then, for small
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+ o(v), it is found that
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, (76)

which, together with our general formulas for Áest, imply Áest ≥ –
≠1 for large –.

On the other hand, let us consider the case in which Í(‡) ≥ ‡
≠2a≠1 for ‡ ∫ 1, with 0 < a < 1.

In this case, ‡
2
0

= +Œ and Sv has an expansion in the form Sv = 1 ≠ ‡̃
2
0
v

a + O(v) for some
finite positive quantity ‡̃

2
0
. Such asymptotic implies that v ƒ (‡̃2

0
–)≠1/a for – ∫ 1. By

replacing this in the fixed point equations, it is found that m = —
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–)≠1/a + o(1/–), so that in the end Áest ≥ –
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The a = 1 case is marginal, as Sv ƒ 1 + ‡̃
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v log v for – ∫ 1 for some positive constant ‡̃
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.

Therefore v = (‡̃2
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– ln –)≠1. By consequence, for – ∫ 1 m ƒ —
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B.2 Huber loss and robust regression in the presence of fat tails

B.2.1 A model for the study of robustness

A toy model for the study of robustness has been introduced recently by Vilucchio et al.
(2023). Here we will consider a more general setting to include the possibility of having fat
tails. We consider the case of one cloud only, K = 1, so that P (x) = E‡[N(x; 0, ‡2

/dId)],
and P0(y|·) = E‡̂[N(y; ÷̂·, ‡̂

2)], where the expectation is taken over the joint distribution Í̂

for the pair (÷̂, ‡̂) of (possibly correlated) random variables. Vilucchio et al. (2023) adopted,
in particular, the distribution Í̂(÷̂, ‡̂) = ‘”÷̂,÷̂out”‡̂,‡̂out + (1 ≠ ‘)”÷,1”‡̂,‡̂in for ‘ œ [0, 1], with
(÷̂out, ‡̂out) referring to “outlier labels”, and (1, ‡̂in) referring to “inlier labels”. The general
fixed-point equations can be adapted to this case quite easily. We assume, once again, a
ridge regularisation. Here we comment on the fact that in this case, it can be interesting to
consider, beyond the ERM estimator —̂⁄ and the Bayes-optimal estimator —̂BO, the estimator
that minimises the (posterior-averaged) mean-square test error

—̂g,BO = arg min
—

E—̂|D

Ë
E

(y,x)|—̂

Ë
(y ≠ —|x)2

ÈÈ
= E[÷̂]—̂BO. (77)

In the expression above, E
(y,x)|—̂ expresses the fact that the pair (y, x) has been generated

with a teacher vector —̂, sampled by the posterior. Using the results on the Bayes optimal
estimator, it is simple to derive the errors obtained by using —̂g,BO. Under the assumptions
that ‡

2
0

:= E[‡2] < +Œ and ‡̂
2
0

:= E[‡̂2],

Ág,BO := E(y,x)
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2

0

!
—

2
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"

+ ‡̂
2

0
,

where q is provided by Eq. 60. As in the pure Gaussian case, by imposing the ansatz
q = —

2
ı ≠ 1

– q0 + �(–≠2), and consequently q̂ = –q̂0 + �(1) for large –, we can obtain
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. (78)

In the – æ +Œ limit, then, q æ fl and Áest,BO := limdæ+Œ
1

dED[Î—̂g,BO ≠ —Î2
2
] = q0

– +
�(–≠2) æ 0. On the other hand, Ág,BO = ‡̂

2
0

+ ‡
2
0
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2
ıVar[÷̂] ≠ ‡2

0q0
– + �(–≠2).

B.2.2 Huber loss and its application

The Huber loss is a strongly convex loss depending on a tunable parameter ” Ø 0 and is
defined as

¸”(y, ÷) =
I

(y≠÷)
2

2
if |y ≠ ÷| < ”

”|y ≠ ÷| ≠ ”2

2
otherwise.

(79)

This loss is widely adopted in robust regression as it is less sensitive to outliers than the
most commonly adopted square loss, and is associated with the following expression for the
proximal

hc=Êc+ (y≠Êc)vc‡
2
c

max(”≠1|y≠Êc|,1+vc‡2
c )…fc= y≠Êc

max(”≠1|y≠Êc|,1+vc‡2
c ) , Êc=tc+‡c

Ô
q’. (80)

The prior equations are therefore the usual in Eq. 64. The channel equations are instead
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(81a)
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where the expectation is over all random variables involved in the expressions (namely, ‡, ‡̂,
and ÷̂) and we used the short-hand notation

Â := ‡̂
2 + ‡

2(÷̂2
—

2

ı ≠ 2÷̂m + q), ‰ := ”(1 + v‡
2)Ô

2Â
(82)

Note that we recover the expressions obtained for the square loss for ” æ +Œ.
With the usual notation convention ‡̂

2
0

:= E[‡̂2] and ‡
2
0

:= E[‡2], the estimation error is
given by the general formula in Eq. 57, whereas the generalisation error is
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ıE[÷̂2] ≠ 2E[÷̂]m + q)‡2

0
, (83)

Ág being finite if ‡
2

< +Œ, ‡̂
2
0

< +Œ and E[÷̂] < +Œ. We aim now at extrapolating the
large-– behavior of such errors and at studying the consistency of —̂⁄ with respect to the
Bayes optimal estimators discussed in Section A.2. To do so, we rescale m̂ ‘æ –m̂, v̂ ‘æ –v̂,
v ‘æ –

≠1
v and q̂ ‘æ –q̂. We also assume that ⁄ ‘æ ⁄ + –⁄

Õ (the role of ⁄
Õ ”= 0 will be clear in

the following). The set of fixed point equations become, for – æ +Œ
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In this limit, as —
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ıq = m
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It is possible to choose ⁄
Õ so that lim–æ+Œ Ág = lim–æ+Œ Á

BO
g , i.e.,
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We can try to satisfy this condition by tuning properly ⁄1, under the constraint that ⁄
Õ Ø 0.

We can write in particular

⁄
Õ = m̂

E[÷̂] ≠ v̂ = E[‡2
÷̂ erf ‰̄] ≠ E[÷̂]E[‡2 erf ‰̄]
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to be computed with
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ı(E[÷̂] ≠ ÷̂)2
. (88)

Note that the condition is always satisfied in the case of the square loss (i.e., for ” æ +Œ …
‰̄ æ 1).

Consistency of the estimator. The consistency of the estimator can be imposed by
properly tuning ⁄, by requiring that lim–æ+Œ Áest = 0, i.e., m = —

2
ı in this limit. In the

same spirit as above, this implies a condition on ⁄
Õ given by

⁄
Õ = m̂ ≠ v̂ = E[‡2

÷̂ erf ‰̄] ≠ E[‡2 erf ‰̄] Ø 0 ∆ E[‡2(÷̂ ≠ 1) erf ‰̄] Ø 0 (89)
to be computed with
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2

ı(1 ≠ ÷̂)2
. (90)

When imposing the equality, the conditions above provide the values of ” (if any) for a
consistent estimator if ⁄ = �(1) in the – æ +Œ limit.
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Figure 5: Gaussian covariates fully-contaminated by fat-tailed noise with distribution
p÷(÷) = E‡[N(x; 0, ‡

2)], where parameters of various Í(‡) are varied: inverse-gamma (see
Table. 1, left) and Pareto (right). (Top) Estimation error Áest as a function of the sample
complexity – = n/d for optimally regularised ridge regression (black), Huber with optimal
location parameter and optimal regularisation (orange) and Bayes-optimal performance
(crosses). (Center.) Value of the optimal regularisation parameter ⁄

ı for the Huber loss.
(Bottom.) Value of the optimal location parameter ”

ı for the Huber loss. Both optimal
values are displayed by varying the scale parameter a controlling the tails of the noise
distribution. Dots indicate numerical simulations averaged over 20 seeds with d = 103.

C Further numerical results

C.1 Further results for the case of fat-tailed noise

In this Appendix, we add some details about the case of ‘-contamination in the labels, as in
Eq. 5, for di�erent Í0 generating the contaminating noise. Figure 5 compares the performance
of various losses for di�erent fully-contaminated (‘n = 1) label noise distributions, obtained
picking for Í0(‡) taken to be inverse-Gamma as in Table 1 with a = b + 1 > 1 (left) or
Pareto (right). In all cases, the chosen parametrisations enforce unit variance for the noise,
E[÷2] = 1. Taking the limit a æ Œ in the inverse-Gamma or in the Pareto distributions
results in recovering the Gaussian distribution for label noise. In our experiments, we observe
the same phenomenology as in Fig. 2 (bottom) for all these densities which generate di�erent
noise label distributions. As long as the label noise variance is kept the same, optimally
tuned regularised Huber loss performs the task better with heavier tails, in terms of the
estimation Eq. 11. As in the cases discussed in the main text, optimally regularised Huber
achieves Bayes-optimal performance.
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