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A Further discussion

A.1 Additional motivating examples for the counterfactual score

Here, we include three additional examples that motivate the counterfactual score. These illustrate
cases in which either (a) the missing predictions are utilized in a failure mode (Examples[A.T|and
or (b) the missing predictions are relevant to the evaluator’s future uses (Examples and[A.3).

Example A.1 (Inattentive driver in a self-driving car). Consider an ML classifier in a semi-
autonomous vehicle system that makes a prediction (the weather, time of day, etc.) given the
available sensory inputs. The prediction is used by the sequential decision making agent. In principle,
when facing a high-uncertainty input, the classifier can abstain from a prediction and alert the driver
to take back control. Yet, in reality, we would still greatly prefer a system that can make a safe
decision in case the driver is inattentiveE] at the time and cannot take back control. In such a case, we
require evaluating what a system would have done in situations where it decided to abstain.

Example A.2 (Comparing ML radiologist assistants). Suppose that a hospital is evaluating third-party
radiology application programming interfaces (API) that can assist with its diagnosis system. Each
API will either give a prediction or abstain from making one; if it abstains, then a human radiologist
will examine the input (Raghu et al.||2019). The hospital is wary that there are inputs for which the
professional would also abstain or have cognitive biases against (Busby et al., 2018 |Madras et al.,
2018)). Thus, it would need to occasionally rely on the classifier’s predictions even on examples that it
chose to abstain. If these “hidden predictions™ are not readily available from the third-party providers
(e.g., require extra costs), how can the hospital evaluate and compare their services?

Example A.3 (Evaluating an abstaining classifier’s internal biases). Suppose that an independent
agency is auditing an ML-based recidivism prediction systenﬂ that has been deployed for a certain
amount of time. Given the high stakes of misclassification, the system is equipped with a learned
abstention mechanism and decides to occasionally abstain from making a prediction, in which case the
rejected cases are examined by human judges. The auditing agency is interested in checking whether
the ML classifier possesses internal biases against certain demographic groups, and in particular, it
wants to estimate the classifier’s accuracy on each demographic group had it not abstained on any
input. While the agency has access to the system’s past predictions and abstentions, it does not have
access to the underlying predictive model or its abstention mechanism. In other words, the agency
requires a black-box evaluation method that estimates the counterfactual score of this system.

*This work was submitted while this author was at Carnegie Mellon University.

2Driver inattention is a serious issue for semi-autonomous vehicles: studies have shown that the lack of active
involvement correlates with both driver fatigue and tardy reactions to take-over requests (Vogelpohl et al.| 2019).

3 Algorithmic approaches to recidivism prediction, such as COMPAS, are both popular and controversial.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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A.2 An equivalent formulation in the potential outcomes framework

There are other equivalent ways to formulate our setup (Section [2.2)) using variants of the potential
outcomes framework. First, we can define a (potentially observed) prediction f(X; R), which equals
f(X)if R = 0and * if R = 1, where the symbol * indicates an abstention (the same notation is
used in |Rubin| (1976)’s missing data framework). The score S is then s(f(X),Y) if R = 0 and *
otherwise.

Alternatively, we can explicitly invoke |[Rubin| (1974)’s potential outcomes framework to write
S(0) « s(f(X),Y) and S(1) < *, where S(r) refers to the score of the abstaining classifier when
R = r for each r € {0,1}. We do not use this notation in our main paper because S(1) is not
meaningful in our case.

A.3 Comparison with Condessa et al.’s score

To better understand the counterfactual score ¢ = E[S], we can contrast it with (Condessa et al.
(2017)’s notion of the ‘classification quality score’ §. Assuming that S € [0, 1], their classification
quality score 0 can be defined as follows:

§:=E[S|R=0P(R=0)+E[1-S|R=1]P(R=1). (A.1)
In contrast, note that the counterfactual score (2.1)) is decomposed into
Yp=E[S|R=0P(R=0)+E[S|R=1]P(R=1). (A2)

Thus, our target quantity ) is large if the classifier is good on all inputs (abstentions or not), while 6
is large if the classifier is good on points it predicts on but poor on points it abstains on.

A concrete example To further elucidate the difference in what each score measures, we include a
hypothetical example. Consider comparing two abstaining classifiers A and B based on their accuracy
score over n = 100 data points, whose inputs (X7, X5) are sampled uniformly on [—1, 1] x [—1,1].

Suppose that the base classifier for A achieves a SA = 1.0 accuracy when X; < 0 (the “left half”) but
only a SA = 0.8 when X; > 0 (the “right half”). So, it decides to abstain at an 80% rate on the right
half (A (21, x2) = 0.8 if ; < 0), while it does not abstain at all on the left half (7 (z1, 22) = 0
if z1 > 0). Assuming for the sake of simplicity that n/2 = 50 points are placed in each half, the
classifier makes 50 (out of 50) correct predictions on the left half, while on the right half, it makes 8
(out of 10) correct predictions and 40 abstentions, for which it would have been correct 80% of the
time. This classifier’s overall selective accuracy is thus (50 4+ 8)/(50 + 10) = 58/60 ~ 0.97, while
its coverage is (50 + 10)/100 = 0.6.

Plugging in the counts and probabilities to (A.2), we can calculate the empiricaﬂ counterfactual score
of classifier A:
- 50+8 1.0+02 0+32 0408 58 32
A
= . - =—-06+-—-04=0.9. A3

50 + 10 2 0+ 40 2 60 +40 A9
(A simpler calculation would be to use (2.1)) directly, but we use the equivalent decomposition (A.2)
here to contrast with (A.).) The empirical classification quality score of classifier A is

A 2
i % 06+ (1 _ f’m) 104 = 0.66, (A4)

Comparing the two scores, 1[)A is much larger than 6” because the classifier chose to abstain on 40%
of the data for which it would have gotten a 0.8 accuracy.

Next, suppose that classifier B is the same as classifier A, except that it achieves a meager 0.6 accuracy
on the right half. It also uses the same abstention mechanism as A. Then, analogous calculations
show that classifier B’s counterfactual score ¢® would be 56 /60-0.64+24/40-0.4 = 0.8, lower than
Y*, whereas the classification quality score §® would be 56/60 - 0.6 + (1 — 24/40) - 0.4 = 0.72,

higher than 6A. Thus, comparisons based on the two scores would lead to opposite conclusions. Note

“This is only ‘empirical’ up to the sampling of n data points; we do not need to estimate the counterfactuals
in this hypothetical example because they are already known.



that the classification quality score rewards B for hiding its low-accuracy predictions, even though A
uses the same abstention mechanism and has a better accuracy overall on the right half.

The choice between the two scores should ultimately be determined by the use case, although we
focus on the counterfactual score in the main paper, motivated by the various cases we described
earlier (Example[I.1]and the additional examples in Appendix [A.T)). In the example above, if the
evaluator needs to later access the classifier’s hidden predictions on the right half, then they can use
the counterfactual score and choose A, which has a higher accuracy in its hidden predictions than B.

Estimation As mentioned in Section |1} (Condessa et al.| (2017) focus on the “white-box™ setup
where the hidden predictions are known to the evaluator, and it is not obvious how to estimate
their score in the black-box setup. However, much like the counterfactual score v, the challenge of
estimating 6 is driven entirely by the E [S|R = 1] term, as the remaining terms are directly observed.
As the decompositions and show, estimates of ¢ (from the DR CI in Section [3) also
yield estimates of 6, since 6 + v is an observable quantity that can be straightforwardly estimated.
Subtracting an estimate of ¢ from the sum gives an estimate of 6.

A.4 The plug-in and inverse propensity weighting estimators

The uniqueness of efficient influence functions tells us that the DR estimator outperforms two
intuitive yet suboptimal estimators in an asymptotic and locally minimax sense. The first is the plug-
in estimator, which is derived directly from the identified target ) = E[uo(X)] in Proposition

. 1 n
Ui =~ fio(Xi), (A5)
i=1

where [i is any estimate of the regression function pg(xz) = E[S | R = 0, X = z]. The quality of
this simple estimator directly depends on the estimation quality of jig for z1g, and in a nonparametric
setting, the estimator can suffer from the statistical curse of dimensionality. Another point of concern
is that it makes no use of the missingness patterns.

The second is inverse probability weighting (IPW) estimator (Horvitz and Thompson) [1952; Rosen-
baum, |1995):

n

- 1 (1-R))
oy = = — S, A.6
where 7 is an estimate of the abstention mechanism 7(z) = P(R =1| X = z). If & consistently
estimates 7, the IPW estimator is unbiased; yet, it has the opposite problem to the plug-in estimator

as it does not model the conditional score pg at all.

A.5 Positivity and policy

Our identification results in Section[2.2]impose a requirement of positivity (Assumption[2.3) on the
abstaining classifier (f, 7), i.e., a demand that for some ¢ > 0, the essential supremum of 7(z) is
smaller than 1 — €. This requirement is necessary: intuitively, if no feedback about the behaviour of f
is available in a region, it is impossible (without further strong assumptions about the global structure
of f) to determine the behaviour of the score in this region. Operationally, this is seen quite directly
in the validity of the confidence intervals inferred from data (Figure [App.5). Of course, the parameter
€ also plays a quantitative role: the higher the ¢, the better the validity and widths of our CIs. In other
words, our ability to identify decays gracefully with e, with complete inability if () = 1 in a region
of large mass.

While necessary, this positivity requirement is at odds with the practical deployment of client-facing
abstaining classifiers. Indeed, there are two major reasons to implement an abstaining mechanism in
such scenarios. In a positive sense, abstentions signal that the use of the underlying classifier f is
inappropriate in a particular domain. However, in a negative sense, abstentions can also be employed
in order to artificially limit a vendor’s liability when their predictions (and the actions driven by the
same) are incorrect. A pertinent example is the recent investigation of the Tesla autopilot by the
NHTSA|(2022) which found that in 16 incidents, the autopilot would deactivate and hand-off control
to the driver at the very last seconds before a crash, thus artificially inflating the safety metrics of the
system.



Part of the impetus behind studying a metric such as the counterfactual score is precisely to identify
such behaviours before unsafe incidents bring them to light. Nevertheless, if vendors can stymie
this investigation simply by ensuring that abstention is accompanied by a very high 7(z), then the
method is not particularly useful.

This technical impasse begs for a policy-level treatment: through regulatory action, the executive may
ensure that vendors supply evaluators (whether government agencies or independent reviewers) with
abstaining classifiers that reveal the counterfactual decision of f at least an e-fraction of the times
when the decision is to abstain, where € is set by mutual agreement of the stakeholders. Note that
it is not enough to just supply evaluators with the predictions of f (although this would solve our
particular problem formulation), since it is important to understand its behaviour in the context of
when the abstaining classifier actually tends to reject points (i.e., it is equally important for evaluators
and users to understand E [S | R = 1], which of course is estimable under our setup).

A.6 Extension to learning-to-defer settings

In the learning-to-defer setting involving an expert (Madras et al.||2018)), the counterfactual score
would refer to the expected score of the overall system had the classifier not deferred at all. The
counterfactual score is thus an evaluation metric primarily for the classifier, and it is independent of
the expert’s predictions, even when the classifier is adaptive to the expert’s tendencies.

On the other hand, in the case where the goal is to assess the joint performance of the algorithm
and the expert, then it may be useful to estimate a variation of the classification quality score (A.T)
defined in Appendix[A.3] If we denote the expert’s score as F, then equation (A.I)) can further be
generalized to

0F .=E[S|R=0P(R=0)+E[E-S|R=1P(R=1). (A7)

For each rejection (R = 1), the score would assess the system by the difference in the quality of
expert prediction and the model prediction (F — S); in the black-box evaluation case, the model
prediction score in the case of deferral (S given R = 1) is a counterfactual.

Finally, the estimation approach from Appendix still applies to 8. If the expert is an oracle
(E = 1), then 0¥ coincides with the classification quality score § (AI). Even if the expert’s
predictions are random, E[E | R = 1] is an observable quantity and #¥ can be re-written as
0+E[E—1|R=1]P(R=1),s00F can be estimated within our counterfactual framework.

B Proofs

B.1 Proof of Proposition 2.2]

Since (X,Y) is independent of the training data Dy, for (f, 7), and because £ is an independent
source of randomness, we can treat the functions f and 7 as fixed. Then, by definition, S =
s(f(X),Y) is a deterministic function of (X,Y) and R = r(7(X), &) is a deterministic function of
X and &. This means that the condition S 1L R | X is equivalent to saying that Y Il £ | X. Given
that £ is independent of (X, Y"), the latter condition follows.

B.2  Proof of Proposition 2.4]

Positivity (Assumption[2.3) ensures that the conditional expectation 1io(X) = E[S | R = 0, X] is
well-defined. Then,

E[uo(X)| =E[E[S | R=0,X]] "2V E[E[S | X)) = E[S] = ¢, (B.1)

where the second inequality follows from the MAR condition (Assumption , ie,S 1 R|X.

B.3 Proof Sketch of Theorem [3.1]

We follow the relevant notations and derivations from Kennedy| (2022). Denote P {f} = Ep [f(Z)]
and P, {f} =n~"'>"" | f(Z;) where Z; ' P. We use the centered influence function for ¥ (P) =



Ep [1o(X)] (upon identification), defined as follows:

1—r

T—n(2) (s = po(x)) + po(z) | — ¥(P). (B.2)

IFp(z,r,s):=

Here, IFp depends on P, which determines 7 and 1. Analogously, we let PP denote the distribution of
abstentions and score outcomes involving estimators 7 and /i (in place of 7 and jig), and let IF; and

1 (IP) denote the corresponding influence function and target functional, respectively, defined using 7
and fig. Also, note that an uncentered version is shown in the main text for ease of explanation; the
resulting variance does not change due to this centering. Using these definitions, we proceed with the
proof in two steps.

Step 1: Showing that IF (B.2) is the efficient influence function for ) To show that IF is indeed
the unique efficient influence function for ¢, we show that P {IFp} = 0 and that its bias term is
second-order. The uniqueness and asymptotic efficiency of this EIF in a nonparametric setting, in
general, is well-known (e.g., [van der Vaart| (2002)). First, observe that

PAIFs) = B | 12— (5 = polX) + ()] — v ®3
O (B.5)

where (a) follows from the fact that

E[(1-R)S|X]=n(X) 0+ (1-n(X)NE[S|R=0,X]=(1—7(X)uo(X). (B.6)

Furthermore, for any distributions PP and P, the bias term is given by

Ry(P,P) = ¢(P) — (P) + P{IF;} (B.7)
— (B) = 9(P) + Be | Ty (S~ in(X)) + io(X)] —0(B)  B)
— B | Tt (5 o) + o) — o(X)] ®9)
120 | 122 (o) — (X))~ (uo(X) ~ (X)) (B10
— [ EL)= CD 10) = )] B
< =l =l ey o = ol ey (B.12)

This is a second-order product term in the difference of PP and P, showing that IF is an influence
function for P.

Step 2: Showing the asymptotic normality of \/ﬁ(ﬁzd, — 1) To derive the explicit form of the
limiting distribution, denote IF = IF;, and observe that the DR estimator is a “one-step” bias-

corrected estimator (Bickel, |1975), given by idr = IPn{Ii:} + w(]IAD). Then, we have the following
three-term decomposition:

dar = ¥ =Pu {IF} + 0(B) - p(P) (B.13)
— (P, — P) {rF} + Ro(B, P) (B.14)
- (P,L—P){IF}+(PH—P){I?—IF}+R2(1@’,P). (B.15)



The first term, which is a sample average term, has the desired limiting distribution by the central
limit theorem:

V- (P, —P){IF} = % f: IF(Z:) — Ep [IF(2)]] ~ N (0,Varz [IF]).  (B.16)
=1

Then, by Slutsky’s theorem, it suffices to show that the other two terms are of order op(1/4/n). The

third term, Ry (P, P), is precisely the second-order bias term we derived in (B-12)), and it is op(1/1/72)
by the DR assumption (3.2).

The second term, called the empmcal process term, can be shown to be of order op(1/ f ) when

using cross-fitting to estimate P. Specifically, the sample splitting procedure guarantees that P P,
(where IP,, now refers to the held-out fold in each step of cross-fitting), which is enough to show that

(B, — P) {lif _ IF} — Op (W) . (B.17)

Since |[IF — IF|| 2(p) = op(1) by assumption, the term itself is of order op(1/+/n) as desired. The
loss of sample efficiency due to a single sample splitting can be recovered by the cross-fitting
procedure. See, e.g., Lemma 1 and Proposition 1 of Kennedy|(2022)) for details.

B.4 Proof of Theorem3.2]

Given that IF5® = IFp — IFP, it is immediate that it is an influence function for AAE = yA — B
because P{IFp®} = P{IFp} — P{IFE} = 0 and

- 1
Ry(B,P) < = (||7?A = mallp, @ [10.a = 1ol L,y + 178 = 78l 1, @) 0,8 — MO,BHLZ(P)) :
(B.18)
The limiting distribution can also be derived analogously, where the upper bound in reveals
the additive form of the DR assumption (3.4).

C Illustration of the MAR condition via causal graphs

Intuitively, the MAR condition is satisfied as long as the evaluation label is unknown to either classifier,
simply because the classifier cannot access the actual score S = s(f(X),Y"), which is a function of the
true label Y, in making its abstention decision. This already implies P(R = 1|5, X) = P(R = 1| X).
We can further elucidate how the causal relationships between the random variables in our setup,
and highlight how the MAR condition is generally satisfied, via graphical representations of the
evaluation setup. The comparison case is an analogous extension to two abstaining classifiers.

Assuming that the abstaining classifier (f,7) does not depend on the evaluation output label Y,
we (the evaluator) can treat both functions as fixed given the input X. We can then illustrate the
MAR condition via two causal graphs. First, suppose X — Y (for the sake of simplification). Then,
we have the relationships X — Y, X — R (Bernoulli with probability 7(X)), and (X,Y) — S
(deterministic via f and s). In the resulting graph, shown in Figure [App.Ta] the variables S and R are
d-separated (Pearl,2000) given X, i.e., S 1L R | X. Note that S is partially observed and thus drawn
as a diamond node, but it does not affect the conditional independence relationship. An alternative
representation is possible via missingness graphs (Mohan et al., [2013)), which would give us the same
conclusion.

Next, we can remove the assumption on the relationship X — Y, and allow any possible relationship
between X and YV: X — Y (causal), Y — X (anticausal), or U — (X,Y’), where U is an
unobserved confounder to the prediction task. This is depicted as a dashed line between X and Y,
along with a possible presence of U, in Figure[App.Tb| We can further allow the abstaining classifier
to utilize some internal randomness or bias &, which is independent of the randomness in evaluation
data, for its decision to abstain R. In the resulting graph, shown in Figure none of the
generalizations change the fact that S and R are d-separated given X, i.e., the MAR condition is
satisfied.

Finally, as mentioned in the main text, the MAR condition can be violated when the evaluation data
is not independent of the training data. For example, if the true label Y is used by the abstaining
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(a) Simple DAG representation of our setup, as- (b) A more general graph that allows arbitrary rela-
suming X — Y. tionships between X and Y as well as the classi-
fier’s internal randomness/bias ().

Figure App.1: Two graphical representations of the random variables involved in our evaluation
framework from Section |2} assuming that the true label Y is independent of the abstaining classifier
(f,m). Shaded variables are observed by the evaluator; the score S = s(f(X),Y) is partially
observed by the evaluator (depicted as a diamond node). In plot[App.1al assuming X — Y, the
simple DAG illustrates that S and R are d-separated given X. In plot [App.Ib] we further allow
arbitrary relationships between X and Y, including X - YV,Y — X, and U — (X,Y) for some
unobserved confounder U. The classifier’s decision to abstain, R, is also allowed to additionally
depend on some internal randomness and bias £ that is independent of the evaluation data. Accounting
for these generalizations, S and R are still d-separated given X, irrespective of the causal direction
(if any) between X and Y.

classifier during its training to inform its abstention decision, then this would correspond to a graph in
which there is an additional edge from Y to R, as the abstention function 7 now depends on Y. Then,
S and R are no longer d-separated because there is a now connecting path via Y (common cause).

D Confidence sequences for anytime-valid counterfactual score estimation

The nonparametric efficiency result of Theorem [3.1]yields an optimal inference procedure (either
a hypothesis test or a confidence interval) for evaluating and comparing abstaining classifiers at a
fixed sample size. Here, we go one step further and utilize a confidence sequence (CS) (Darling and
Robbins| [1967; Howard et al.,|2021)), which is a sequence of confidence intervals whose validity holds
uniformly over all sample sizes. This time-uniform property allows the evaluator to continuously
monitor the result as more data is collected over time. The time-uniform property also implies
anytime-validity (Johari et al.}|2022; |Griinwald et al., [2023)), which allows the evaluator to run the
experiment without pre-specifying the size of the evaluation set and compute the CIs as more data
is collected. This implies that anytime-valid methods avoid the issue of inflated miscoverage rates
coming from “data peeking.” See|[Ramdas et al.|(2023) for an introduction.

Formally, for any o € (0,1), a (1 — a)-level (non-asymptotic) CS (Cy);>1 for a parameter 6 € R is
a sequence of confidence intervals (CI) such that

PVt>1:0€Cy) >1—a. (D.1)
Importantly, a CS contrasts with a fixed-time CI, whose guarantee no longer remains valid at stopping
times: a CI only satisfies P (6 € Cy) > 1 — « for a fixed sample size .

Here, we describe how we can perform the proposed counterfactual comparison of abstaining classi-
fiers using a variant of a CS that is asymptotic and readily applicable to causal estimands (Waudby-

Smith et al., 2021). An (two-sided) (1 — a)-asymptotic CS (AsympCS) (Cy)>1 for a parameter § € R
is a sequence of intervals, C;, = (6, + B,), for which there exists a non-asymptotic CS (C});>1 for 0
of the form C; = (0; + B;) that satisfies

B,/B; 1. (D.2)

The AsympCS has an approximation rate of ry if B, — B, = O(r;) almost surely.



Intuitively, an AsympCS is an arbitrarily precise approximation of a non-asymptotic CS. Because no
known non-asymptotic CS exists for counterfactual quantities such as the ATE, AsympCS has been
derived as an (only) viable alternative. Waudby-Smith et al.| (2021) further leverage the (previously
described) nonparametric efficiency theory and doubly robust estimation to derive an AsympCS for
the ATE in randomized experiments and observational studies; we apply their theory to estimating the
counterfactual scores and their differences. The resulting AsympCS is asymptotically time-uniform
and anytime-valid, and its width scales similarly, up to logarithmic factors, to a fixed-time CI derived
directly from Theorem 3.1}

Now we describe our main theorem for anytime-valid and counterfactual evaluation of an abstaining
classifier. We consider evaluating the classifier on an i.i.d. test set that is continuously collected
over time; let n be the (data-dependent) sample size with which inference is performed. As before,
the comparison problem reduces to evaluating each abstaining classifier and taking their difference.
We suppose that the nuisance functions 7 and /iy are learned via cross-fitting, and these are used to
compute the EIF estimate (3.I). Now we can formally state an asymptotic CS for ) = E[S] (2.1)) that
is anytime-valid and doubly robust. In the below, the o(-) notation refers to almost sure convergence.

Theorem D.1 (Anytime-valid DR estimation of the counterfactual score). Suppose that jio and
consistently estimates 1o and 7 in Lo(P), respectively, at a product rate of o(y/loglogn/n):

0 = roll 1,y 17 = 7l 1y ) = o(v/1oglogn/n). (D.3)

Also, suppose that ||IF — IF||z, ) = o(1) and that |F has at least four finite moments.
Then, under Assumption[2.1]and 2.3} for any choice of p > 0,

R . . 2np2 + 1 /np?+1
bar &+ [Var, (1F) - | 22 (V2L (D.4)
n2p2 a

Sorms a (1 — «)-AsympCS for 1) with an approximation rate of \/loglogn/n.

This result is an adaptation of Theorems 2.2 and 3.2 in|Waudby-Smith et al.[|(2021)) to our setup. The
assumptions on 7 and [ig are analogous to the double robustness assumptions (3.2) in Theorem [3.1]
as they require the same product rate up to logarithmic factors. Here, p is a free parameter that can be
chosen to optimize the CS width (see Appendix C.3 of [Waudby-Smith et al.|(2021) for details).

Compared to the fixed-size CI of (3.1), whose width shrinks at a O(1/1/n) rate, the width of the

AsympCS in (D.4) shrinks at a O(+/logn/n) rate. This means that, in terms of the CI width, the
extra cost of ensuring anytime-validity is logarithmic in n. In practice, the AsympCS may be wider
than the CI from Theorem 3.1} nevertheless, the AsympCS may be preferred in scenarios where the
evaluation/comparison is performed on continuously collected data. Another potential benefit of
the AsympCS is the extension to settings with sequential and time-varying evaluation tasks (e.g.,
involving time-series forecasters that abstain). We leave the formalization of the time-varying setup
as future work.

Finally, to apply Theorem D.1]to a comparison setting, we can construct two (1 — c/2)-AsympCSs,
CA = (LA, UM) and CB = (LB, UB) for y* and B respectively, and then combine them into one
(1 — a)-AsympCS for A*B = A — B via OB = (LA — UB U” — LB).

E Additional experiments and details

E.1 Details on the simulated data and abstaining classifiers

The evaluation set is generated as follows: (Xo;, X1;) ~ Unif[0,1], E; ~ Ber(0.15), and Y; =
1(Xopi+ X, >21)if E; = 0and Y; = 1(Xo; + X1; < 1) otherwise (label noise). Classifier
A uses a logistic regression model with the optimal linear decision boundary, i.e., fA(z,71) =
o(zg+x1 —1), where o(u) = 1/(1+exp(—u)), achieving an accuracy of 0.85 by design. Classifier
B, on the other hand, has a (suboptimal) curved boundary: f&(zo,z1) =0V (3(23 + #1) + {5) A L.
Classifier A is thus “oracle” logistic regression model with the same decision boundary, achieving an
empirical score of 0.86 before abstentions; classifier B is a biased model that achieves an empirical
score of (.74 before abstentions.



Data (25% shown) Classifier = A [Optimal] Classifier = B [Biased]
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Figure App.2: A simulated example where we compare two hypothetical abstaining classifiers. The
left plot shows a binary classification dataset (25% shown) in which the true decision boundary is
linear. The two plots on the right show both the predictions (blue circles for 0; green triangles for 1)
and the abstentions (orange x’s) of two classifiers: A, which has the optimal linear boundary, and B,
which has the biased nonlinear boundary. Both classifiers abstain w.p. 1 — € in the shaded (orange)
region near the decision boundary and w.p. e outside the region. For both classifiers, € is set to 0.2
(positivity is satisfied). Because the abstention mechanism of either classifier is determined by the
input, it is not uniformly spread out across the input domain (MAR). As a result, the difference in
selective scores, i.e., E[S* | RA = 0] — E[S® | RB = 0] ~ 0.044, is substantially smaller than the
difference in the counterfactual scores, i.e., AAB — E[SA — SB] ~ 0.116. Our 95% DR CI for A”B
the yields (0.077,0.145), using n = 2, 000.

For both classifiers, € = 0.2 determines the coefficient for positivity, and they are designed to abstain
more frequently near their decision boundaries. For classifier A, 7 (x) = 1 — e if the distance from x
to its boundary is less than §, and 7rA(x) = ¢ otherwise; for classifier B, we use 0.8 as the threshold,
resulting in less abstentions than A. In some sense, this is a setting where e-positivity is “minimally”
satisfied because the abstention rate is always either € or 1 — ¢, and not in between, in all regions of
the input space. If, say, the abstention rate was 0.5 in most parts but € in a small region, the positivity
level would still be € but the estimation would in general be easier. Thus, this example can be viewed
as a more challenging case than a standard causal inference setup with small regions of e-positivity.

Figure [App.2] shows both the predictions (blue circles: 0, green triangles: 1) and the abstention
decisions (orange x’s: predictions) for each classifier. Each classifier has a high chance of abstaining
near its boundary (shaded orange region) and a low chance otherwise, meaning that abstentions
are not spread out uniformly (MAR but not MCAR). In particular, classifier B hides many of its
misclassifications as abstentions, leading to its high selective score (Sel® = 0.81) relative to its
counterfactual score (B = 0.74).

The nuisance functions 7 and /iy for each classifier A and B are learned via 2-fold cross-fitting. In
each case, we cap extreme propensity predictions by 74 and 72 are capped at 1 — e.

On a 128-core CPU machine, using parallel processing, the entire compute time it took to produce
Table 2] was approximately 5 minutes.

E.2 Power analysis

To examine the efficiency of the DR estimator, we now analyze the power of the statistical test
for Hy : A”B = 0vs. H; : A”B +£ 0 by inverting the DR CI. For different values of the sample
size and the underlying performance gap, we compute the rejection rate of the statistical test across
1,000 runs. As before, the classifier A represents the oracle classifier that has the optimal decision
boundary, which is linear, but the classifier B now uses a linear decision boundary that is shifted
from the optimal one by a fixed amount, thereby shifting AAB away from zero. As such, B performs
increasingly worse as A”B increases.

To increasingly vary the counterfactual score difference between two classifiers, we set A as the
same classifier as in Section[E.T]and set B to use the (optimal) linear decision boundary of A shifted
diagonally by a fixed amount . Specifically, fB(xg,21) = o(xg + 21 — (1 + p)). An example with
1 = 0.2 is shown in Figure While A”B is not strictly a linear function of y, it is gradually
increasing as /1 increases, as shown in Table[App.1] Aside from this difference, both classifiers use
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Figure App.3: A simulated example for the power experiment in which AAB = 0.123. The evaluation
data is the same as the one in Figure [App.2] For B, the decision boundary of A is shifted diagonally
upwards by p = 0.2; in the power experiment, we experiment with various values of x (and thus
AAB).

Table App.1: The relationship between AB and i, the distance between the linear decision bound-
aries of A and B, in the power experiment of Section

AAB ‘ 0.0 0.045 0.069 0.088 0.123 0.152 0.180 0.181 0.219 0.248 0.271
po| 0 005 010 015 020 025 030 035 040 045 050

the same abstention mechanism as classifier A from the previous experiment, and the data generating
process is also identical to the previous experiment.

Figurem plots the rejection rates of the level-« statistical test, for o = 0.05, against different
values of A" (0 to 0.27) for various sample sizes (n = 400, 800, 1600, 3200). Here, we plot the
miscoverage rate as a function of the resulting values of AAB dlrectly. We use the super learner to
learn the nuisance functions. Overall, we see that as n or A”B increases, the power of the statistical
test quickly approaches 1, implying that the test can consistently detect a gap in counterfactual scores
if either the sample size or the difference gets large.

On a 128-core CPU machine, using parallel processing, the entire compute time it took to produce
Figure[App.4 was approximately 88 minutes.
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Figure App.4: Power of the statistical test for Hy : AAB = ( derived by our 95% DR Cls, plotted for
different values of n (sample size) and A*B, which varies based on the distance between the (linear)
decision boundaries of A and B. Mean rejection rates of Hy over 1,000 simulations are shown, with 1
standard error as shaded error bars. As either n or AAB grows large, the power approaches 1.
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Figure App.5: Miscoverage rates of 95% doubly robust Cls by varying the level of e (positivity), plot-
ted for different nuisance function learners. Each point is the mean over 1,000 repeated simulations;
shaded error bars represent 1 standard error.

E.3 Details on the CIFAR-100 experiment

The abstaining classifiers compared in the experiments are variants of the VGG-16 CNN model with
batch normalization (Simonyan and Zissermanl 2015). Specifically, the feature representation layers
are obtained from a rnode trained on the training set of the CIFAR-100 dataset and are fixed during
evaluation. Using half (n = 5, 000) of the validation set, we train a L2-regularized softmax output
layer and its softmax response (SR) for the abstention mechanism. The comparison is done on the
other half (n = 5, 000) of the validation set. This version of the VGG-16 features and the softmax
layer is used for all scenarios, with different abstention mechanisms described in the main text, except
for the last comparison, where we compare this softmax layer with VGG-16’s original 3-layer output
model (2 hidden layers of size 512).

The nuisance functions, 7 and jig for each classifier in each scenario, also utilize the pre-trained
representations of the VGG-16 layer, but their output layers (both L2-regularized linear models) are
trained separately via cross-fitting.

The pre-trained VGG-16 features on the CIFAR-100 validation set were first obtained using a single
NVIDIA A100 GPU, taking approximately 20 seconds. On a 128-core CPU machine, using parallel
processing, the rest of the computation to produce Table [3|took less than 10 seconds (note that there
are no repeated runs in this experiment).

E.4 Sensitivity to different positivity levels

Here, we examine how the DR estimator is affected by the level of positivity, i.e., € in @ As
discussed in the main paper, positivity violations make it infeasible to properly identify and estimate
causal estimands. In practice, we expect the DR estimator to remain valid up until € becomes smaller
than a certain (small) number. To validate this, we use the same setting from our first experiment
(Section @.1} Appendix [E.T)) but vary the level of positivity from ¢ = 0.5 (MCAR) to e = 0.1
(positivity near-violation).

Figure[App.5|plots the miscoverage rate of the DR estimator, averaged over 1,000 repeated simula-
tions, using the three nuisance learner choices we used in Section@ The result confirms that the
DR estimator, when using either the random forest or the super learner, retains validity as long as
€ > 0.2, in this particular case; as e shrinks to below 0.2, the miscoverage rates start to go above
the significance level. This confirms that there is a (problem-dependent) level of positivity we must
expect for the DR estimator to work; otherwise, we do not expect the counterfactual target to be a
meaningfully identifiable quantity in the first place.

On a 128-core CPU machine, using parallel processing, the entire compute time it took to produce
Figure [App.5| was approximately 12 minutes.

https://github.com/chenyaofo/pytorch-cifar-models
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