Under review as a conference paper at ICLR 2025

A METHOD DETAILS

A.1 LATENT DIFFUSION MODELS

Diffusion Models. Diffusion models (Song et al., [2020; Ho et al., |2020) typically contain a
forward nosing process and a reverse denoising process. During the forward process, we grad-
ually apply noise to real data zo: q(z¢|zo) = N(z¢;v@rwo, (1 — a@;)I) over T timesteps,
where constants @, are hyperparameters. By applying the reparameterization trick, we can sam-
ple x; = /a@sxo + /1 — azes, where ¢, ~ N(0,I). During the reverse process, it starts from
Gaussian noise 7 ~ MN(0,I) and gradually removes noises to recover xo: pg(Ti—1|xs) =
N (po(xt), o (xt)). With reparameterizing pp as a noise prediction network €g, the model can
be trained with L;pmpie(0) = ||eg(z:) — €:]|3. We also learn the covariance 4 following Nichol &
Dhariwal| (2021)); Peebles & Xie| (2023)) with the full KL loss.

Latent Diffusion and Tokenization. Latent diffusion models (Rombach et al., [2022; Ma et al.,
2024) perform diffusion process in a low-dimensional latent space z'¢ rather than the original pixel
space. We leverage the pre-trained VAE in SDXL (Podell et al.l [2023) to compress each frame o;
to latent representations: 2! = Enc(o;), and after the denoising process, the latent representation
can be decoded back to the pixel space with the VAE decoder: o, = Dec(2!?). For each z'4, it is
divided into image patches and tokenized by convolutional networks to P tokens with D dlmensions
(hidden size). Sequencing the image tokens of all 7" frames, we get the video token in the shape of
TxPxD.

Spatial-Temporal Attention Mechanism. We leverage transformers (Vaswani, [2017) to imple-
ment the dynamics module, and use the memory-efficient spatial-temporal attention mechanism (Ma
et al.,|2024; Bruce et al.l [2024; |Zhu et al.| [2024), where each attention block consists of a spatial
attention block and a temporal attention block. The spatial attention operates on the 1 x P tokens
within each frame, and the temporal attention operates on the 7" x 1 tokens across 7' timesteps at the
same location.

A.2 LANGUAGE-VISION REPRESENTATION

The original fine-tuning loss L,rv = L1 (¢¥r)+ L1 (w1, 1) is calculated on sampled sub-trajectory
batch data {0, ..., 0}, 0} ,... ,oi;p,gi}il from each task 7;, where s € [0, T; — 1], s < k < T;.
They have the following forms:

B

B
_Z S(¢hr(0k), 1 oﬂ)Hlog—Zexp (@1(0},), Y1 (0%)) + 1 =4S (1 (0)11), Y1 (o)),

i=1

1=y =8 (v (o) ((57))
Loldndn) = 2; ST [

2

A.3 Low-LEVEL PoLICY

In this work, we use a low-level policy with a similar structure to diffusion policy (Chi et al.| [2023).
We show the architecture of this policy in Flgure@ We employ a spatial- ternporal attention mech-
anism. Specifically, the input contains the agent view observation history of ., € R12*3x128x128
and the eye in hand observation history of_;,,, € R12X3X128x128 a¢ timestep ¢, the proprioception
state history s;_ 1o € R12%123 the language tokens extracted from Meta Llama 3.1 8B (Dubey
et al} 2024) g € RT9*409 the predicted flow for both the agent view pf., 4 € R'¢*%29%Z and
eye in hand view p§,, 5 € R'9*529%2 ‘and the predicted future videos for both the agent view
094416 € RIOX3X128X128 apq eye in hand view 0¢.4 416 € RI6¥3%128%128 The Jow-level policies
are a denoising model that will predict the gradient field of the action chunking VFE(A;), and after
500 denoising steps, we can get the future action sequences a € R16%7 where 7 is the action size.
We use the action in a receding horizon manner where we only execute 8 steps and we replan the
future flow and videos and predict another 16 action steps iteratively.

16

Under review as a conference paper at ICLR 2025

Eye in Hand Flows MLP — T T [Gradient Field VE(4,)]
*
Agent View Flows MLP —]
Eye In Hand ResNet — Transformer Transformer
History+Future Encoder Decoder

Agent View ResNet —

History+Future l l l l T

State History MLP

@B Positional
T Embedding

Instruction Llama [Action Chunking A4,

Figure 11: Low-level policy architecture. This is Ours-FV. Ours-F and Ours-V are in the same
architecture without corresponding input conditions.

B EXPERIMENT DETAILS

B.1 TRAINING DETAILS

We report the hyperparameters of the models we trained in Table [5] and Table[6] We train all data
with observation history equals to 16 and future flow horizon equals to 16.

CVAE-S CVAE-B CVAE-L

Encoder Layer 4 6 8
Decoder Layer 6 8 12
Hideen Size 384 768 1024
Learning Rate le-4 Se-5 le-5
Image Patch Size 8 8 8
Head Number 4 8 12

Table 5: Hyperparameters of CVAE.

D-S D-B D-L

Layers 8 12 16
Hideen Size 384 768 1024
Learning Rate le-4 le-4 le4

Head Number 6 12 16

Table 6: Hyperparameters of the dynamics module.

B.2 MORE POLICIES RESULTS

Besides the low-level experiments in Section [5.3] we also perform experiments in the LIBERO-
LONG task suite with two other models:

1. OpenVLA [Kim et al.| (2024): this is a large-scale retained that is designed for general-
purpose vision-language-action prediction. We use the pretrained checkpoint from the of-
ficial paper and test with both zero-shot and fine-tuned models. We use 50 demonstrations
for each task in LIBERO-LONG to fine-tune the OpenVLA model. For consistency, we use
a resolution of 128 x 128 for fine-tuning. For fair comparisons, we only use the agent view
images as input because the original OpenVLA is only trained with third-view images.

2. Pretrained FLIP on LIBERO-90 and fine-tuned on LIBERO-10 as the high-level planner.
In this setting, we train FLIP on 50x90 action-less demonstrations with a resolution of
64 x 64 from LIBERO-90, and finetune it with 50x 10 from LIBERO-LONG, and use this
FLIP model as the planner to train the same low-level policy as in the main paper. Here we
only test the flow-conditioned policy version, and call it Ours-90.

17

Under review as a conference paper at ICLR 2025

Results. We show the results together with the main paper results in Figure [I2} We can see that
OpenVLA cannot handle the long-horizon tasks of LIBERO-LONG either with zero-shot or fine-
tuned models, showing there is still a long way to go for general-purpose vision-language-action
models. Ours-90 performs similarly to Ours-F and Ours-FV, showing that pretraining in other tasks
may not bring significant improvement for low-level policy learning. This comforts with the life-

long learning results in the original LIBERO paper (Liu et al., |2024a), where they also show that
pretraining cannot help (sometimes even hurt) the policy training results.

It is worth noting that, in the original OpenVLA paper, they also fine-tuned the pretrained model
on LIBERO-LONG tasks and archived a 53.7 £ 1.3% success rate. We think the success of their
results comes from two aspects, which cannot be true in our setting: 1) we are using a resolution
of 128 x 128, which may not be large enough to represent the details in the scene. In comparison,
OpenVLA uses a resolution of 256 x256. 2) We are using the official demonstrations provided by
the LIBERO paper, which may not be as good as the re-collected demonstrations in their demon-
strations.

LIBERO-LONG

| i

Success Rate (%)

OpenVLA OpenVLA-FT BC-Fullset DP ATM-DP Qurs-F Ours-vV Ours-FV Ours-90

Figure 12: Low-level policy results in LIBERO-LONG.

B.3 ABLATION STUDIES OF ACTION MODULE

To verify if diffusion models can generate better results for image flow prediction (the action module
of FLIP) than a CVAE model, here we design a diffusion model for the flow generation task. We use
the same architecture as the CVAE decoder for the diffusion model (as illustrated in Figure[2] where
a transformer encoder takes as input the query points tokens, the image history tokens, the language
embedding tokens, and noisy inputs, and outputs the scale and direction gradient fields for each
query point. The network structure is shown in Figure [I3] We perform comparison experiments in
both LIBERO-LONG and Bridge-V?2 data.

Results. Table [7] shows the results. We can see that CVAE performs better on LIBERO-LONG
tasks and the diffusion model performs better on Bridge-V?2 tasks, but their performance difference
is minor. We can see the main improvement of the action module comes from: 1) predicting the
delta action (scale and direction) rather than predicting the absolute coordinates of the image flows;
2) auxiliary losses as stated in our main paper.

Although using the diffusion model may perform better in some tasks, the inference speed is slower
than CVAE models. Given that their performance is not too different, we still use CVAE as our
default action module.

B.4 REAL WORLD EXPERIMENTS

In order to show the application of FLIP on real-world tasks, here we design two long-horizon
real-world manipulation tasks for testing. We use a 6-DOF X-arm as the robot arm, and use two

18

Under review as a conference paper at ICLR 2025

N — | s " .
= S Diffusion Model as the Action Module
[<] o — 1
o — 3l —] 1

— 1
: ol =
& —1

: | & B 5
s 23 o T o VE =05
© s 2 1] o [5)
§#gz — -1 [3 —W| O 23
(m] —>] 1 c g o o)

|| 2 a
. s Bl _sge 28
‘g -Z" ! Q — _I 3 g D_’ © <
a— = — B 0
: $H| O~ E 7 |gsO g
(] © — | | ! Ao
0l O 8 -4 |8
- [0 | [7)]

1 .

: o &4
o ‘put both the < | -
*3 cream cheese c | D")
3 box andthe™ @ | 1 = g
£ putterinthe = =1 XKD—- <3 Reconstructed
£ basket” L I = Flows

Figure 13: Using diffusion model for the action module. The model also generates the scale and
directions for each query point and the full flow trajectory can be reconstructed by them.

LIBERO-LONG Bridge-V2
ADE| LTDR{ ADE| LTDR?

ATM 2023) 19.6 53.8% 18.4 66.1%
Ours-ABS

20.5 57.3% 17.9 59.3%

Ours-NoAUX 14.5 73.2% 12.7 75.6%
Ours(CVAE) 12.7 76.5% 11.9 80.2%
Diffusion 13.4 75.9% 10.2 82.7%

Table 7: Comparison results of CVAE and Diffusion models as the action module for FLIP.

RealSense D435i cameras to get the visual inputs. We put one camera on the other robot arm as the
third-view camera and another camera on the wrist of the robot arm as the eye-in-hand camera. The
control frequency of both tasks is set to I0Hz. We also train a diffusion policy and an ATM
[2023) policy as the baseline for each task. We perform experiments in a table-top setting, as
shown in Figure[T4] We test both tasks with 20 random initialized episodes. The two tasks are:

>

!

1 Third View
Camera

Eye-in-hand ~
Camera =—===p1 "

Figure 14: Our real-world experiment setting. We use the right X-arm as the manipulator, and use
two RealSense D435i cameras as visual inputs.

19

Under review as a conference paper at ICLR 2025

Random Initial State Grasp and Drag - Grasp and Drag _Finish

Figure 15: Two tasks in our real-world experiments.

1. Tea Scooping Task. In this task, there is a white bowl of dry tea leaf (Tieguanyin), a yellow
bowl with an iron spoon, and an empty cup on the table, as shown in Figure[I3] The robot is
trained to first pick up the spoon from the yellow bowl, then use the spoon to scoop the tea
leaf from the white bowl pour the tea leaf into the cup, and finally put back the spoon into
the yellow bowl. The positions of both the bowls and the cup are randomized in the space
that the robot arm can reach. The task is successful if all three stages are accomplished. The
action space of the robot is 7-dim, including the 6-DOF pose and the gripper action. We
collect 40 demonstrations with a scripted policy to train FLIP and a flow-guided low-level
policy. We choose this task because it is both long-horizon and requires precise grasping
and manipulation. It also requires tool use and interaction between rigid body and granular
objects.

2. Cloth Unfolding Task. In this task, a pair of denim shorts was randomly thrown on the
table, and the robot is trained to unfold it to make it flat, as shown in Figure @ The
task is successful if the projection area of the jeans on the table is greater than 85% of its
maximum area. The action space of the robot is 6-dim, which consists of a 2-dim end-
effector coordinate in the x-y plane, a 1-dim grasping orientation angle, a 2-dim dragging
coordinate in the x-y plane, and the gripper aperture. We fix the grasping height to 22 mm
for this task. We collect 50 demonstrations for this task with a scripted policy. We choose
this task because it is both long-horizon and difficult because of the deformation of the
jeans, which requires a long-horizon task planning ability for the policy. The robot has to
finish the task in 15 grasps and drags.

Results. Table] shows the results of both tasks. We can see that our policy is significantly better
than the baselines. These two tasks are very difficult in out setting since we only use no more than
50 demonstrations for each of them, while modern image-based imitation learning algorithms (such
as Diffusion Policy 2023))) usually require more than 500 demonstrations for such kinds
of long-horizon tasks. In contrast, our method benefits from the high-level model-based planning
advantages and can correct back to the good trajectory when it deviates from it, thus the success
rates are improved.

Diffusion Policy (Chi et al.l, 2023) ATM (Wen et al.l, 2023) Ours

Tea Scooping 15.0% 25% 55%
Cloth Unfolding 0.0% 0.0% 50.0%

Table 8: Success rates of real robot experiments over 20 evaluations.

20

Under review as a conference paper at ICLR 2025

B.5 DATA SCALABILITY

To show the performance change of FLIP along with different amounts of training data, here we
perform an experiment on LIBERO-LONG to show the planning success rates change with different
amount of demonstrations. Results are shown in Table From the results, we can see that with
more data for each task, the planning success rates become better.

LIBERO-LONG (Liu et al.l, 20245])

FLIP-10 0%
FLIP-20 5%
FLIP-30 40%
FLIP-40 90%
FLIP-50 100 %

Table 9: Planning results change along with data amounts for LIBERO-LONG. The number shown
in the left column is the demonstration number for each task during training.

B.6 GENERATIVE PLANNING WITH VISUAL DISTRACTION

In this section, we perform a qualitative experiment to see how will our FLIP be affected in the
presence of noise or visual obstructions. To this end, we manually add an image of an apple in the
initial image of the LIBERO-LONG tasks, as shown in Figure [[6|and Figure[T7] and see how FLIP
performs generative planning in this setting.

Results. We add the visual distraction image in different areas of the initial image, and we can see
that, the video generation model will first fail after several planning steps and generative distorted
cups and make the whole image grey. However, before the model fails, the flow generation model
still performs very well, which shows that the flow generation model can resist visual distractions,
while the video generation model is susceptible to visual distractions.

Step 5 Step 7, fail

Figure 16: The apple is put on the target cup, and the generative planning fails in 7 steps (the cup
is distorted, by which we call the planning fails). Note, the flow model performs well before the
image is distorted and turns to grey, which shows that the flow model can capture the geometry of
the objects and understand the physical movement requirements of the task.

21

Under review as a conference paper at ICLR 2025

sss s e

- Bt e e
Rt ST PR EY
srsstauBalicssses s s
T R LT i

Step 9 Step 11, fail

Figure 17: The apple is put away from the target object, and the generative planning can exist more
steps.

22

