
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A METHOD DETAILS

A.1 LATENT DIFFUSION MODELS

Diffusion Models. Diffusion models (Song et al., 2020; Ho et al., 2020) typically contain a
forward nosing process and a reverse denoising process. During the forward process, we grad-
ually apply noise to real data x0: q(xt|x0) = N (xt;

√
atx0, (1 − at)I) over T timesteps,

where constants at are hyperparameters. By applying the reparameterization trick, we can sam-
ple xt =

√
atx0 +

√
1− atϵt, where ϵt ∼ N (0, I). During the reverse process, it starts from

Gaussian noise xT ∼ N (0, I) and gradually removes noises to recover x0: pθ(xt−1|xt) =
N (µθ(xt),Σθ(xt)). With reparameterizing µθ as a noise prediction network ϵθ, the model can
be trained with Lsimple(θ) = ||ϵθ(xt)− ϵt||22. We also learn the covariance Σθ following Nichol &
Dhariwal (2021); Peebles & Xie (2023) with the full KL loss.

Latent Diffusion and Tokenization. Latent diffusion models (Rombach et al., 2022; Ma et al.,
2024) perform diffusion process in a low-dimensional latent space zld rather than the original pixel
space. We leverage the pre-trained VAE in SDXL (Podell et al., 2023) to compress each frame ot
to latent representations: zldt = Enc(ot), and after the denoising process, the latent representation
can be decoded back to the pixel space with the VAE decoder: ot = Dec(zldt). For each zld, it is
divided into image patches and tokenized by convolutional networks to P tokens withD dimensions
(hidden size). Sequencing the image tokens of all T frames, we get the video token in the shape of
T × P ×D.

Spatial-Temporal Attention Mechanism. We leverage transformers (Vaswani, 2017) to imple-
ment the dynamics module, and use the memory-efficient spatial-temporal attention mechanism (Ma
et al., 2024; Bruce et al., 2024; Zhu et al., 2024), where each attention block consists of a spatial
attention block and a temporal attention block. The spatial attention operates on the 1 × P tokens
within each frame, and the temporal attention operates on the T ×1 tokens across T timesteps at the
same location.

A.2 LANGUAGE-VISION REPRESENTATION

The original fine-tuning loss LLIV = LI(ψI)+LL(ψI , ψL) is calculated on sampled sub-trajectory
batch data

{
ois, . . . , o

i
k, o

i
k+1, . . . , o

i
T , g

i
}B
i=1

from each task Ti, where s ∈ [0, Ti − 1] , s ≤ k < Ti.
They have the following forms:

LI(ψI) =
1− γ
B

B∑
i=1

[−S(ψI(ois), ψI(oiT))]+ log
1

B

B∑
i=1

exp[S(ψI(oik), ψI(oiT)) + 1− γS(ψI(oik+1), ψI(o
i
T))],

LL(ψI , ψL) =
1− γ
B

B∑
i=1

− log
e(1−γ)S(ψI(oiT),ψL((gi))

1
B

∑B
j=1

[
e (1−γ)S(ψI(ojT),ψL(gi))]

]
 ,

(2)

A.3 LOW-LEVEL POLICY

In this work, we use a low-level policy with a similar structure to diffusion policy (Chi et al., 2023).
We show the architecture of this policy in Figure 11. We employ a spatial-temporal attention mech-
anism. Specifically, the input contains the agent view observation history oat−12:t ∈ R12×3×128×128

and the eye in hand observation history oet−12:t ∈ R12×3×128×128 at timestep t, the proprioception
state history st−12:t ∈ R12×123, the language tokens extracted from Meta Llama 3.1 8B (Dubey
et al., 2024) g ∈ RTg×4096, the predicted flow for both the agent view pat:t+16 ∈ R16×529×2 and
eye in hand view pet:t+16 ∈ R16×529×2, and the predicted future videos for both the agent view
ôat:t+16 ∈ R16×3×128×128 and eye in hand view ôet:t+16 ∈ R16×3×128×128. The low-level policies
are a denoising model that will predict the gradient field of the action chunking ∇E(At), and after
500 denoising steps, we can get the future action sequences a ∈ R16×7 where 7 is the action size.
We use the action in a receding horizon manner where we only execute 8 steps and we replan the
future flow and videos and predict another 16 action steps iteratively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 11: Low-level policy architecture. This is Ours-FV. Ours-F and Ours-V are in the same
architecture without corresponding input conditions.

B EXPERIMENT DETAILS

B.1 TRAINING DETAILS

We report the hyperparameters of the models we trained in Table 5 and Table 6. We train all data
with observation history equals to 16 and future flow horizon equals to 16.

CVAE-S CVAE-B CVAE-L

Encoder Layer 4 6 8
Decoder Layer 6 8 12

Hideen Size 384 768 1024
Learning Rate 1e-4 5e-5 1e-5

Image Patch Size 8 8 8
Head Number 4 8 12

Table 5: Hyperparameters of CVAE.

D-S D-B D-L

Layers 8 12 16
Hideen Size 384 768 1024

Learning Rate 1e-4 1e-4 1e-4
Head Number 6 12 16

Table 6: Hyperparameters of the dynamics module.

B.2 MORE POLICIES RESULTS

Besides the low-level experiments in Section 5.3, we also perform experiments in the LIBERO-
LONG task suite with two other models:

1. OpenVLA Kim et al. (2024): this is a large-scale retained that is designed for general-
purpose vision-language-action prediction. We use the pretrained checkpoint from the of-
ficial paper and test with both zero-shot and fine-tuned models. We use 50 demonstrations
for each task in LIBERO-LONG to fine-tune the OpenVLA model. For consistency, we use
a resolution of 128×128 for fine-tuning. For fair comparisons, we only use the agent view
images as input because the original OpenVLA is only trained with third-view images.

2. Pretrained FLIP on LIBERO-90 and fine-tuned on LIBERO-10 as the high-level planner.
In this setting, we train FLIP on 50×90 action-less demonstrations with a resolution of
64×64 from LIBERO-90, and finetune it with 50×10 from LIBERO-LONG, and use this
FLIP model as the planner to train the same low-level policy as in the main paper. Here we
only test the flow-conditioned policy version, and call it Ours-90.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Results. We show the results together with the main paper results in Figure 12. We can see that
OpenVLA cannot handle the long-horizon tasks of LIBERO-LONG either with zero-shot or fine-
tuned models, showing there is still a long way to go for general-purpose vision-language-action
models. Ours-90 performs similarly to Ours-F and Ours-FV, showing that pretraining in other tasks
may not bring significant improvement for low-level policy learning. This comforts with the life-
long learning results in the original LIBERO paper (Liu et al., 2024a), where they also show that
pretraining cannot help (sometimes even hurt) the policy training results.

It is worth noting that, in the original OpenVLA paper, they also fine-tuned the pretrained model
on LIBERO-LONG tasks and archived a 53.7 ± 1.3% success rate. We think the success of their
results comes from two aspects, which cannot be true in our setting: 1) we are using a resolution
of 128×128, which may not be large enough to represent the details in the scene. In comparison,
OpenVLA uses a resolution of 256×256. 2) We are using the official demonstrations provided by
the LIBERO paper, which may not be as good as the re-collected demonstrations in their demon-
strations.

Figure 12: Low-level policy results in LIBERO-LONG.

B.3 ABLATION STUDIES OF ACTION MODULE

To verify if diffusion models can generate better results for image flow prediction (the action module
of FLIP) than a CVAE model, here we design a diffusion model for the flow generation task. We use
the same architecture as the CVAE decoder for the diffusion model (as illustrated in Figure 2, where
a transformer encoder takes as input the query points tokens, the image history tokens, the language
embedding tokens, and noisy inputs, and outputs the scale and direction gradient fields for each
query point. The network structure is shown in Figure 13. We perform comparison experiments in
both LIBERO-LONG and Bridge-V2 data.

Results. Table 7 shows the results. We can see that CVAE performs better on LIBERO-LONG
tasks and the diffusion model performs better on Bridge-V2 tasks, but their performance difference
is minor. We can see the main improvement of the action module comes from: 1) predicting the
delta action (scale and direction) rather than predicting the absolute coordinates of the image flows;
2) auxiliary losses as stated in our main paper.

Although using the diffusion model may perform better in some tasks, the inference speed is slower
than CVAE models. Given that their performance is not too different, we still use CVAE as our
default action module.

B.4 REAL WORLD EXPERIMENTS

In order to show the application of FLIP on real-world tasks, here we design two long-horizon
real-world manipulation tasks for testing. We use a 6-DOF X-arm as the robot arm, and use two

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 13: Using diffusion model for the action module. The model also generates the scale and
directions for each query point and the full flow trajectory can be reconstructed by them.

LIBERO-LONG Bridge-V2

ADE ↓ LTDR ↑ ADE ↓ LTDR ↑
ATM (Wen et al., 2023) 19.6 53.8% 18.4 66.1%

Ours-ABS 20.5 57.3% 17.9 59.3%
Ours-NoAUX 14.5 73.2% 12.7 75.6%

Ours(CVAE) 12.7 76.5% 11.9 80.2%
Diffusion 13.4 75.9% 10.2 82.7%

Table 7: Comparison results of CVAE and Diffusion models as the action module for FLIP.

RealSense D435i cameras to get the visual inputs. We put one camera on the other robot arm as the
third-view camera and another camera on the wrist of the robot arm as the eye-in-hand camera. The
control frequency of both tasks is set to 10Hz. We also train a diffusion policy and an ATM (Wen
et al., 2023) policy as the baseline for each task. We perform experiments in a table-top setting, as
shown in Figure 14. We test both tasks with 20 random initialized episodes. The two tasks are:

Figure 14: Our real-world experiment setting. We use the right X-arm as the manipulator, and use
two RealSense D435i cameras as visual inputs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 15: Two tasks in our real-world experiments.

1. Tea Scooping Task. In this task, there is a white bowl of dry tea leaf (Tieguanyin), a yellow
bowl with an iron spoon, and an empty cup on the table, as shown in Figure 15. The robot is
trained to first pick up the spoon from the yellow bowl, then use the spoon to scoop the tea
leaf from the white bowl pour the tea leaf into the cup, and finally put back the spoon into
the yellow bowl. The positions of both the bowls and the cup are randomized in the space
that the robot arm can reach. The task is successful if all three stages are accomplished. The
action space of the robot is 7-dim, including the 6-DOF pose and the gripper action. We
collect 40 demonstrations with a scripted policy to train FLIP and a flow-guided low-level
policy. We choose this task because it is both long-horizon and requires precise grasping
and manipulation. It also requires tool use and interaction between rigid body and granular
objects.

2. Cloth Unfolding Task. In this task, a pair of denim shorts was randomly thrown on the
table, and the robot is trained to unfold it to make it flat, as shown in Figure 15. The
task is successful if the projection area of the jeans on the table is greater than 85% of its
maximum area. The action space of the robot is 6-dim, which consists of a 2-dim end-
effector coordinate in the x-y plane, a 1-dim grasping orientation angle, a 2-dim dragging
coordinate in the x-y plane, and the gripper aperture. We fix the grasping height to 22 mm
for this task. We collect 50 demonstrations for this task with a scripted policy. We choose
this task because it is both long-horizon and difficult because of the deformation of the
jeans, which requires a long-horizon task planning ability for the policy. The robot has to
finish the task in 15 grasps and drags.

Results. Table 8 shows the results of both tasks. We can see that our policy is significantly better
than the baselines. These two tasks are very difficult in out setting since we only use no more than
50 demonstrations for each of them, while modern image-based imitation learning algorithms (such
as Diffusion Policy (Chi et al., 2023)) usually require more than 500 demonstrations for such kinds
of long-horizon tasks. In contrast, our method benefits from the high-level model-based planning
advantages and can correct back to the good trajectory when it deviates from it, thus the success
rates are improved.

Diffusion Policy (Chi et al., 2023) ATM (Wen et al., 2023) Ours

Tea Scooping 15.0% 25% 55%
Cloth Unfolding 0.0% 0.0% 50.0%

Table 8: Success rates of real robot experiments over 20 evaluations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.5 DATA SCALABILITY

To show the performance change of FLIP along with different amounts of training data, here we
perform an experiment on LIBERO-LONG to show the planning success rates change with different
amount of demonstrations. Results are shown in Table 9. From the results, we can see that with
more data for each task, the planning success rates become better.

LIBERO-LONG (Liu et al., 2024a)

FLIP-10 0%
FLIP-20 5%
FLIP-30 40%
FLIP-40 90%
FLIP-50 100%

Table 9: Planning results change along with data amounts for LIBERO-LONG. The number shown
in the left column is the demonstration number for each task during training.

B.6 GENERATIVE PLANNING WITH VISUAL DISTRACTION

In this section, we perform a qualitative experiment to see how will our FLIP be affected in the
presence of noise or visual obstructions. To this end, we manually add an image of an apple in the
initial image of the LIBERO-LONG tasks, as shown in Figure 16 and Figure 17, and see how FLIP
performs generative planning in this setting.

Results. We add the visual distraction image in different areas of the initial image, and we can see
that, the video generation model will first fail after several planning steps and generative distorted
cups and make the whole image grey. However, before the model fails, the flow generation model
still performs very well, which shows that the flow generation model can resist visual distractions,
while the video generation model is susceptible to visual distractions.

Figure 16: The apple is put on the target cup, and the generative planning fails in 7 steps (the cup
is distorted, by which we call the planning fails). Note, the flow model performs well before the
image is distorted and turns to grey, which shows that the flow model can capture the geometry of
the objects and understand the physical movement requirements of the task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 17: The apple is put away from the target object, and the generative planning can exist more
steps.

22

