489

490

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

513
514
515
516

517

518
519
520
521
522
523

524

525
526
527
528
529
530
531
532
533
534
535

A Appendix

A.1 Factorized Contextual Markov Decision Process

As introduced in Sec. 3, we model our problem as a contextual Markov Decision Process (CMDP)
and propose a novel factorization of it into two subproblems that can be addressed with two col-
laborative policies trained separately: an information-seeking (IS) policy, g, that searches and
provides context to a second policy, an information-receiving (IR) policy, g, that consumes the
context and takes reward-seeking (manipulation) actions based on it. In the factorized CMDP
(fCMDP), we assume that the trajectories generated by the optimal information-receiving policy,
[a*(t = 0),...,a™"(T)], will achieve maximum return in the CMDP, R, due to the values in some
of the dimensions of the action vector, independently of the values in others, and that these actions
can be inferred from a subspace of the observation space. Similarly, we assume that the trajecto-
ries generated by an optimal information-seeking policy will reveal the true context because of the
values in some of the dimensions of the action vector, independently of the values in others, and
that this true context can be inferred from a subset of the observation space. We factorize the action
and observation spaces of each agent in the f{CMDP based on what action dimensions are necessary
to control to achieve the task reward vs. to reveal information, such that: 7% : O;¢ — Ag and
7l . O x C — Ajg, with O = Oj5 U O;p. Therefore, only IS actions can lead to IS obser-
vations with information to infer the right context, and IR actions can change the state toward the
overall task goal. The context can be inferred by the IS agent by mapping its observation(s) into a
context with a given or learned function, f. : O;¢ — C. However, for this function to map to the
right context (i.e. the one that leads the IR policy to accumulate the highest return), the IS policy
needs to take the right actions that reveal an information-rich observation. There is no constraint in
the overlap between action and observation spaces of both policies but our method performs best in
cases where there is little or no overlap.

This factorized CMDP (fCMDP) matches a natural factorization into agents with different action and
observation spaces, e.g., when the IS agent controls the head of a humanoid and the IR agent controls
the arm and manipulates the environment, or when the IS agent is a navigating agent scouting the
environment for an IR agent that waits for the contextual information to act in front of a table.

A.2 IS Policy Training Procedure

Alg. 1 includes the pseudo-code of the DISaM’s Information Seeking (IS) agent. Specifically,
DISaM trains the IS agent by iterating between the IS policy optimization loop and the encoder
optimization loop. The policy optimization uses on-policy data whereas the encoder optimization
utilizes data sampled from a replay buffer aggregated during IS policy training. The IR agent takes
action if and only if it can reconstruct the true IR actions based on the information c;g provided by
the IS agent.

A.3 DISaM Deployment Procedure

Alg. 2 includes the pseudo-code of the DISaM’s deployment solution. During deployment, DISaM
relies only on environmental observations to make decisions (no oracle or ground truth); the uncer-
tainty of the IR policy is compared against a hyperparameter, J, to determine when to query the IS
agent or when to execute IR’s actions (see Fig. 5). To compute the uncertainty, DISaM samples n
contexts {c}}? ; from the ensemble of trained encoders (see Sec. 4.3), F, and conditions the IR
agent on each of them to generate n action distributions, {7/% (0, ¢i5)}?_ ;. DISaM then computes
the average KL-divergence between each pair of action distributions as a measure of uncertainty.
Due to the difference in the scale of the KL-divergence, the threshold § needs to be adapted to
each action space. However, we found our method relatively robust to this parameter: we simply
use 0 = 0.5 for all skill-based tasks (discrete action space), and § = 1e5 for visuomotor tasks
(continuous action space), working well across different tasks.

14

536

537
538
539
540
541
542
543
544
545
546
547

548
549
550
551

Algorithm 1 Iterative Optimization for the Information Seeking Agent

1: Initialize Information-seeking policy wés , observation encoder E,, Encoder Replay Buffer Bg,
Rollout Buffer B, switch threshold 7

2: foriin1,2,..., K do

3 Empty B

4: Recieve initial observations o;s, 0rr

5: foriin1,2..., K, do

6: 01S,0IR CollectRollout(oIs, OIR)

7 end for

8: Optimize 7.4, on B with PPO objective

9: foriinl,2..., K.,. do

10: ors,cqrT ~ B¢ > Sample a batch from replay buffer
11: UpdateEncoder(o;s, caT)

12: end for

13: end for

14:

15: procedure COLLECTROLLOUT(0;1g, 01R)

16: Take actions arg ~ wés (org) and obtain o'g, cor from the environment

17: Cis < EIZ)(O/]S)

18: r =max(1— LossFunc(osg, cis, car), —1)

19: add (oss,arg,r, 0g) to B

20: add (0g, car) to Be

21: while LossFunc(org, cis,car) < T do

22: Take actions a;r ~m!f(orr, car)) and obtain org from the environment
23: end while

24: return o%g, OrR

25: end procedure

26:

27: procedure UPDATEENCODER(0;g, cGT)

28: CcIs Ew(O]S)

29: 1 =argmin,, EncoderLoss(crs, car) > Optimize £, using gradient descent
30: end procedure

32: procedure LOSSFUNC(o;R, 15, caT)
33: return Distance[r % (org, c15), 7 (0rr, car))]
34: end procedure

A4 Using Language as Context

In several of our tasks in simulation, the context is specified using a language instruction that speci-
fies the goal for the task. Each task stage is specified with a different instruction; the set of possible
language instructions for an entire task results from the Cartesian product of possible instruction
for each stage. Thus, the language instructions used in the Cooking (sim) task include {“Lift
up the bread”, “Grasp the meat”}x{“Cook for a short amount of time”, “Cook until it is well-
done”} x{ “Place the pot on the red region”, “Put the pot on the green area”}. The instructions
used in the Walls (sim) task include { “Pick up the blue cube”, “Lift the wooden cube”} x { “Place
the cube on the red region”, “Put the cube on the green area”}. When the environment is initialized
we select the sentences that correspond to the correct instructions, concatenate them to form a single
sentence, and process them with CLIP [72] to generate a language feature that acts as contextual
information about the goal of the task.

Since language embeddings are continuous vectors, we model them as Gaussian mixture models
using Mixture Density Networks (MDNs) [73] as the prediction head for £, and use the negative
log-likelihood loss to train Ey. This is different from how we model and train the encoder when
contexts are one-hot vectors. In that case, while using the same backbone network of £y as language

15

552
553

554

555
556
557
558
559
560
561
562
563
564

Algorithm 2 DISaM Deployment

1: procedure DEPLOYAGENT(7}%, 1%, E,)

2 Recieve initial observations oyg, 0rr

3 repeat

4 {citici < Eylors)

5: Adie < {7 (o1r, chg) } iy

6: Uncertainty u <— PairwiseKL(Agig)

7 if u < § then

8 Take action ajp ~ Adist

9: Receive observations o;g, 07r
10: else
11: Take action azs ~ 7} (0rs)
12: Receive observations o;g, 0rr
13: end if
14: until episode done
15: end procedure

» |S Policy
t
Os Predicted
Contexts
t
Or
in
{laplic,
Environment Uncertainty over {aig}
T below threshold?
a Q@ ®
ai=app 4= ag ag

Figure 5: Deployment of DISaM. During deployment, DISaM takes actions based only on environ-
mental observations. When the uncertainty of IR’s next action is low, DISaM follows the IR’s policy
actions to accomplish the overall manipulation task goal; when the uncertainty is high, DISaM fol-
lows IS’s policy to reveal and obtain useful contextual information from the environment that helps
to reduce IR’s uncertainty.

contexts, we replace the MDN head with a categorical distribution and train E using the cross-
entropy loss.

A.5 Stage Wise Success Rates and Analysis

In our experiments, three tasks consist of multiple stages leading to several phases of rising un-
certainty, exploration with IS, and decreasing uncertainty, which are dynamically handled by our
deployment procedure (Appendix A.3). Specifically, a stage may arise when the entire context can-
not be reconstructed using a single information-seeking observation, oyg, triggering a phase in the
dual policy execution where the IS policy searches and provides the IR agent with the partial context
necessary to complete the current stage before moving to the next one. For example, in the Cooking
(sim) task, the side dish to prepare, the cooking time, and the serving location are determined by
the IS policy looking over to different locations: the dinner, the clock, and the serving region respec-
tively; each of these parts is denoted a “stage” of the task. In Walls (sim), the stages are picking
and placing, with the block to pick determined by an identical block placed behind the wall on the

16

565
566

568
569

570
571
572
573
574
575

577
578

579
580
581
582
583
584
585
586

587

588
589
590
591
592
593

594
595
596
597
598
599
600

601
602

Cooking (sim) Walls (sim) Teatime (real)

1.04
0.8
0.6
0.4
0.2
A B C Overall A B Overall A B Overall
Task Stage Task Stage Task Stage

Figure 6: Stage-wise success rates. Success rates for each method are plotted for each stage of the
multi-stage tasks: Cooking (sim),Walls (sim), and Teatime (real).

left and the placing region determined by the color of the block on the right. Finally, in the Teatime
(real) task, the agent must look at the time to determine the appropriate drink, then the person
to determine the serving location. Note that knowledge of these stages is not required by DISaM,
which automatically infers the necessary information to collect at each stage through the intrinsic
reward of minimizing the IR policy loss.

We evaluated DISaM, ablations, and baselines on each stage in isolation in addition to the overall
task performance reported in the main text. Fig. 6 shows the success rates for each method for each
stage of the multi-stage task as well as the overall success rate. In the simulation tasks, we performed
50 policy rollouts per seed and calculated the success rate of each stage as (# of stage successes)/(#
times stage reached) to avoid accumulating in the results the effect of the previous stages. In the real
environment, 10 rollouts were performed by resetting the environment to the initial state for each
stage and evaluating the agent. The methods that receive task reward information (DISaM (task
reward) and Full RL) use a reward provided at the end of each stage rather than the sparse task
reward.

DISaM (language) andDISaM (task reward) are generally competitive in the individual stages
for Cooking (sim), but the stage-wise failure rates compound resulting in lower overall success.
On the more challenging Walls (sim) and Teatime (real), the variants are less competitive in
each stage. Across all tasks, the baselines Full RL,Random Cam, and Sampled Context generally
perform poorly in all stages, with the exception of Random Cam succeeding in some of the simpler
stages (e.g., Cooking (sim) stage A, Walls (sim) stage B). Full RL achieves consistent success
only in the first stage of Cooking (sim) and Walls (sim), perhaps due to experiencing these early
stages more frequently during training.

A.6 Real World Training leveraging Synced Simulation

Performing reinforcement learning training procedures in the real world is challenging. Among the
known challenges [74], two are significantly problematic: safety of the agent and the environment,
and the need for constant resets (usually by a human). In our real-world training procedure we
propose solutions for these two challenges, leading to an autonomous and safe training process: we
developed a mixed sim-real training setup for training the IS policy and observation encoder using
DISaM in real-world tasks.

Firstly, we create a sim version of the real-world task and collect data in both environments to train
a corresponding IR policy. For IS policy training (see Fig. 2 and Alg. 1), we train the IS policy and
encoder in the real world and generate the real-world context vectors but we exploit the simulator
to interpret the context vector with the IR policy and provide rewards to the real IS policy. This
eliminates the need to roll out the real IR policy, minimizing the resets and human supervision
required during training. Once the IS policy is trained, we can then deploy it with the real IR policy
following the system depicted in Fig. 5 and described in Alg. 2.

When the domains of the training and testing IR policy are different, we cannot use the IR observa-
tions to inform the IS policy decisions. One limitation arising from this is that we cannot do tasks

17

603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618

619

620

621
622
623
624
625
626
627
628

629
630
631
632
633

634
635
636

638
639
640

641
642
643

644

645
646
647
648
649
650

requiring multiple stages: the IS policy cannot utilize the IR observations to learn which information
is being queried. Hence, in the Teatime (real) task, we separately train and evaluate the IS and
IR policy in the two separate stages of the task, but consider them as a single task with two stages in
our evaluations as they execute consecutively. Another issue that results from training the IS policy
in the real world is the constant need to update the information in the environment that represents
context, e.g., the time on the clock or the person sitting next to the table. Since in this work, we
focus on the visual cues to represent the context, we choose to portray this information on screens,
which allows us to programmatically update the context altering easily the environment whenever
the visual cue needs to be updated (as described in Appendix A.9).

While in the simulation we use separate cameras for the IR and IS agents, in the real-world tasks
both agents share the same camera, mounted on the head of a PAL Tiago++ [69]. We enable this by
choosing a resting head position for the IR agent and resetting back to it whenever we switch to the
IR policy deployment phase from the IS policy deployment phase. This is analogous to installing a
second camera stationary pointing at the manipulation area. Additionally, during the IS deployment
phase, we store the latest observation from the IR deployment phase and use it to calculate the
uncertainty of the IR policy.

A.7 Baselines

Below we provide more information and implementation details of the baselines,

DISaM (reward): An ablation of our method which uses task rewards to train the IS agent instead
of our proposed intrinsic reward. This baseline is used to test if a high-performance IS policy can be
learned just by using task rewards. Instead of using sparse task rewards, which are difficult to learn
from, we use hand-designed rewards at the end of key stages. While this stage-wise reward requires
some domain knowledge to design, we found it to be important for the learning of the IS policy.
Specifically, after completing a stage the reward obtained is +10 in simulation environments and
+5 in real-world settings. For all other timesteps, the reward is —0.1. Across all our experiments
we use the same hyperparameters and network architectures as we used for DISaM.

Full RL: A reinforcement learning baseline that jointly optimizes the IR and IS agents. The policy
architecture is a shallow convolutional neural network to process image inputs followed by an MLP,
that takes observations of both IR and IS agents as inputs and outputs an action over the combined
action space of the two agents. The policy is trained using PPO [71] with the same stage-wise
rewards as described above in the DISaM (reward) section.

Random Cam: A baseline that replaces the trained IS agent in DISaM with an agent that performs
random movements but utilizes the trained encoder E to encode the context and hands control back
to the IR policy when it’s uncertainty is lower than the prefixed threshold § (similar to our test time
protocol). Instead of sampling actions uniformly and randomly at every step, we perform weighted
sampling by putting more weight on the last action performed, enabling the policy to explore a larger
proportion of the state space. Specifically, with probability 0.5 4 m, the action of the policy
stays the same as in the previous timestep. 7

Sampled Context: We sample the context vector from a prior probability distribution over contexts
and use it to produce IR actions using an IR policy trained with behavior cloning. In all our settings,
the prior distribution consists of a uniform probability distribution over all possible contexts.

A.8 Comparing Visuomotor and Skill-based IR policies

The training procedure between visuomotor and skill-based IR policies is similar except for some
minor differences that we note here. Primarily the distance metric £ in Equation 1 varies between the
the two IR policies. When the IR policy is skill-based, L is the cross-entropy loss between the action
distribution induced by the true and the predicted contexts. When the IR policy is visuomotor, we
measure the negative log-likelihood of sampled predicted actions under the distribution of true ac-
tions. To demonstrate that the performance of DISaM is not affected by the type of IR policy used,

18

651
652
653

655

656

657
658

659
660
661
662
663
664
665
666

668
669
670
671
672
673
674

675
676
677
678
679
680

681
682
683
684
685
686

687
688
689
690
691
692
693
694
695

we compare DISaM’s performance trained with a skill-based (DISaM (skill)) and a visuomo-
tor (DISaM (motor)) IR policy on the Walls (sim) task. (DISaM (skill)) achieves an overall
success rate of 47.67 &= 0.58 and (DISaM (motor)) achieves and overall success of 47.33 £ 0.58,
measured over 50 rollouts across 3 seeds. As we can see, the overall performance of the system
stays consistent across both forms of the IR policy.

A.9 Tasks

In Fig.7 we visualize rollouts in all tasks and in the following we describe the details of IR and IS,
observation and action spaces in each task.

Walls (sim): Shown in Fig.7a, the IR agent is required to pick a block and place it on one of the
serving regions. The color of the block to pick is determined by an identical block placed behind a
wall on the table on the left and the color of the block on the table on the right corresponds to the cor-
rect serving region. Here the IR agent is the robot hand that uses the images from the eye-in-hand
camera along with it’s proprioceptives as observations and outputs a skill ID to chooses between
pick, place and go-near actions. The IS policy observes the scene from a floating camera with dis-
crete actions that allow the camera to pan left/right, tilt up/down, move forward/backward/left/right
by some fixed amount.

Assembly (sim): Shown in Fig.7b, the IR agent is required to assemble the screw in the correct
colored peg. The color of the correct peg is determined by a similarly colored block placed inside
one of the drawers on the table on the right. Here the IR agent is the robot hand that uses the images
from the eye-in-hand camera along with it’s proprioceptives as observations and outputs a skill ID
to chooses between pick-place and go-near actions. The IS policy observes the scene from a floating
camera and also can control the second robot arm near the drawers to interact with them. The IS
policy has a discrete action space that allows it to pan and tilt the camera, along with controlling the
second robot arm to open the drawers and pick/place the blocks.

Cooking (sim): Shown in Fig.7c, the IR agent is required to cook a meal. The proper meal
to prepare is determined by the dish being prepared, the cook time depends on the timer and the
serving region is determined by the check mark. Here the IR agent is the robot hand that uses the
images from the eye-in-hand camera along with it’s proprioceptives as observations and outputs a
skill ID to choose between pick-place and go-near actions. The IS policy observes the scene from a
floating camera with discrete actions that allow the camera to pan left/right, and tilt up/down.

Teatime (real): Shown in Fig.7d, the IR agent needs to determine the time of day to decide on the
beverage to serve and look at the person at the table to choose where to place the beverage. Here the
IR agent is a Tiago++ robot that uses the images from it’s head camera along with it’s proprioceptives
as observations and outputs a continuous delta action in the Cartesian space to control it’s hand. The
IS policy observes the scene from Tiago’s head camera as well (see Appendix A.6) with discrete
actions that allow the camera to pan left/right, and tilt up/down.

Button (real): Shown in Fig.7e, the IR agent is required to place the correct fruit in the bowl
depending on the recipe. The IS policy is required to first turn the monitor on by pressing a button
and then look at the screen to determine what fruit to use. Here the IR agent is a Tiago++ robot’s right
hand that uses the images from it’s head camera along with it’s proprioceptives as observations and
outputs a continuous delta action in the Cartesian space to control the hand. The IS policy observes
the scene from Tiago’s head camera as well (see Appendix A.6) and in addition to controlling the
head movement, also controls Tiago’s left arm. The IS policy has a discrete action space that allows
it to pan and tilt the camera, along with controlling the second robot arm to press at various positions
on the table.

19

eyl
Task Task
Visualization Visualization ‘ ' IR uncertain '
IR uncertain m=g® R uncertain over where to
over which over where to place the
block to pick - place the block ST
IR View .ﬁw\ IR View

(a) DISaM rollouts on Walls (sm) (b) DISaM rollouts on
Assembly (sim).

Task a
Visualization® $ i
- ‘ IR uncertain .- | | IR uncertain -- L] IR uncertain
over what to TEEEEERover how long - = over where to
N | cook] to cook serve the food N
IR View . |E = 'Y F
57
Uncertainty

of IR policy

IS View

Task

Task
Visualization ‘

Visualization _2

IR uncertain

X /IR uncertain IR uncertain | about which
IR View about which about where s -l IR View fruit to use in
drink to pick to serve 2 recipe
Uncertainty 195 Uncertainty 1:;”
of IR policy of IR policy 5

IS View

(e) DISaM rollouts on
Button (real).

(d) DISaM rollouts on Teatime (real).
Figure 7: Here we demonstrate the rollouts of DISaM on the 5 tasks that we study. We show the

uncertainty during the rollouts and 1) Highlight IR observations that have high uncertainty, and
2) Sequence of IS observations before finding information that reduce uncertainty.

20

	Introduction
	Related Work
	Problem Formulation: factorized Contextual Markov Decision Processes
	DISaM, Dual Information-Seeking and Manipulation Policies for fCMDP
	Information-Receiving Agent
	Information-Seeking Agent
	Deciding between Information-Seeking and Information-Receiving Actions at Test Time

	Experimental Evaluation
	Can our proposed framework effectively learn to seek, infer, and exploit contextual information?
	How important is it to optimize the behavior cloning loss in DISaM's objective instead of sparse task reward?
	Can DISaM handle different representations of context to define the task?

	Conclusion and Limitations
	Appendix
	Factorized Contextual Markov Decision Process
	IS Policy Training Procedure
	DISaM Deployment Procedure
	Using Language as Context
	Stage Wise Success Rates and Analysis
	Real World Training leveraging Synced Simulation
	Baselines
	Comparing Visuomotor and Skill-based IR policies
	Tasks

