
A Appendix489

A.1 Factorized Contextual Markov Decision Process490

As introduced in Sec. 3, we model our problem as a contextual Markov Decision Process (CMDP)491

and propose a novel factorization of it into two subproblems that can be addressed with two col-492

laborative policies trained separately: an information-seeking (IS) policy, ⇡IS , that searches and493

provides context to a second policy, an information-receiving (IR) policy, ⇡IR, that consumes the494

context and takes reward-seeking (manipulation) actions based on it. In the factorized CMDP495

(fCMDP), we assume that the trajectories generated by the optimal information-receiving policy,496

[a⇤(t = 0), . . . , a⇤(T)], will achieve maximum return in the CMDP, Rc, due to the values in some497

of the dimensions of the action vector, independently of the values in others, and that these actions498

can be inferred from a subspace of the observation space. Similarly, we assume that the trajecto-499

ries generated by an optimal information-seeking policy will reveal the true context because of the500

values in some of the dimensions of the action vector, independently of the values in others, and501

that this true context can be inferred from a subset of the observation space. We factorize the action502

and observation spaces of each agent in the fCMDP based on what action dimensions are necessary503

to control to achieve the task reward vs. to reveal information, such that: ⇡IS : OIS ! AIS and504

⇡
IR : OIR ⇥ C ! AIR, with O = OIS [OIR. Therefore, only IS actions can lead to IS obser-505

vations with information to infer the right context, and IR actions can change the state toward the506

overall task goal. The context can be inferred by the IS agent by mapping its observation(s) into a507

context with a given or learned function, fc : OIS ! C. However, for this function to map to the508

right context (i.e. the one that leads the IR policy to accumulate the highest return), the IS policy509

needs to take the right actions that reveal an information-rich observation. There is no constraint in510

the overlap between action and observation spaces of both policies but our method performs best in511

cases where there is little or no overlap.512

This factorized CMDP (fCMDP) matches a natural factorization into agents with different action and513

observation spaces, e.g., when the IS agent controls the head of a humanoid and the IR agent controls514

the arm and manipulates the environment, or when the IS agent is a navigating agent scouting the515

environment for an IR agent that waits for the contextual information to act in front of a table.516

A.2 IS Policy Training Procedure517

Alg. 1 includes the pseudo-code of the DISaM’s Information Seeking (IS) agent. Specifically,518

DISaM trains the IS agent by iterating between the IS policy optimization loop and the encoder519

optimization loop. The policy optimization uses on-policy data whereas the encoder optimization520

utilizes data sampled from a replay buffer aggregated during IS policy training. The IR agent takes521

action if and only if it can reconstruct the true IR actions based on the information cIS provided by522

the IS agent.523

A.3 DISaM Deployment Procedure524

Alg. 2 includes the pseudo-code of the DISaM’s deployment solution. During deployment, DISaM525

relies only on environmental observations to make decisions (no oracle or ground truth); the uncer-526

tainty of the IR policy is compared against a hyperparameter, �, to determine when to query the IS527

agent or when to execute IR’s actions (see Fig. 5). To compute the uncertainty, DISaM samples n528

contexts {cit}ni=1 from the ensemble of trained encoders (see Sec. 4.3), E�, and conditions the IR529

agent on each of them to generate n action distributions, {⇡IR(o, ciIS)}ni=1. DISaM then computes530

the average KL-divergence between each pair of action distributions as a measure of uncertainty.531

Due to the difference in the scale of the KL-divergence, the threshold � needs to be adapted to532

each action space. However, we found our method relatively robust to this parameter: we simply533

use � = 0.5 for all skill-based tasks (discrete action space), and � = 1e5 for visuomotor tasks534

(continuous action space), working well across different tasks.535

14

Algorithm 1 Iterative Optimization for the Information Seeking Agent

1: Initialize Information-seeking policy ⇡IS
✓ , observation encoder E , Encoder Replay Buffer BE ,

Rollout Buffer B, switch threshold T
2: for i in 1, 2, ...,K do
3: Empty B
4: Recieve initial observations oIS , oIR
5: for i in 1, 2...,K⇡ do
6: oIS , oIR CollectRollout(oIS , oIR)
7: end for
8: Optimize ⇡cam on B with PPO objective
9: for i in 1, 2...,Kenc do

10: oIS , cGT ⇠ BE . Sample a batch from replay buffer
11: UpdateEncoder(oIS , cGT)
12: end for
13: end for
14:
15: procedure COLLECTROLLOUT(oIS , oIR)
16: Take actions aIS ⇠ ⇡IS

✓ (oIS) and obtain o
0
IS , cGT from the environment

17: cIS E (o0IS)
18: r =max(1� LossFunc(oIR, cIS , cGT),�1)
19: add (oIS , aIS , r, o0IS) to B
20: add (o0IS , cGT) to BE
21: while LossFunc(oIR, cIS , cGT) < T do
22: Take actions aIR ⇠⇡IR(oIR, cGT)) and obtain oIR from the environment
23: end while
24: return o

0
IS , oIR

25: end procedure
26:
27: procedure UPDATEENCODER(oIS , cGT)
28: cIS E (oIS)
29: =argmin EncoderLoss(cIS , cGT) . Optimize E using gradient descent
30: end procedure
31:
32: procedure LOSSFUNC(oIR, cIS , cGT)
33: return Distance[⇡IR(oIR, cIS),⇡IR(oIR, cGT)]
34: end procedure

A.4 Using Language as Context536

In several of our tasks in simulation, the context is specified using a language instruction that speci-537

fies the goal for the task. Each task stage is specified with a different instruction; the set of possible538

language instructions for an entire task results from the Cartesian product of possible instruction539

for each stage. Thus, the language instructions used in the Cooking (sim) task include {“Lift540

up the bread”, “Grasp the meat”}⇥{“Cook for a short amount of time”, “Cook until it is well-541

done”}⇥{“Place the pot on the red region”, “Put the pot on the green area”}. The instructions542

used in the Walls (sim) task include {“Pick up the blue cube”, “Lift the wooden cube”}⇥{“Place543

the cube on the red region”, “Put the cube on the green area”}. When the environment is initialized544

we select the sentences that correspond to the correct instructions, concatenate them to form a single545

sentence, and process them with CLIP [72] to generate a language feature that acts as contextual546

information about the goal of the task.547

Since language embeddings are continuous vectors, we model them as Gaussian mixture models548

using Mixture Density Networks (MDNs) [73] as the prediction head for E� and use the negative549

log-likelihood loss to train E�. This is different from how we model and train the encoder when550

contexts are one-hot vectors. In that case, while using the same backbone network of E� as language551

15

Algorithm 2 DISaM Deployment

1: procedure DEPLOYAGENT(⇡IS
✓ , ⇡IR, E)

2: Recieve initial observations oIS , oIR
3: repeat
4: {cit}ni=1 E (oIS)
5: Adist {⇡IR(oIR, ciIS)}ni=1
6: Uncertainty u PairwiseKL(Adist)
7: if u < � then
8: Take action aIR ⇠ Adist
9: Receive observations oIS , oIR

10: else
11: Take action aIS ⇠ ⇡IS

✓ (oIS)
12: Receive observations oIS , oIR
13: end if
14: until episode done
15: end procedure

Environment

IR Policy

{ai
IR}n

i=1

at
aIS

ot
IR

IS Policy

ot
IS

ut = Uncertainty over {aiIR}

at := aIR

else:

at := aIS

If ut exceeds threshold

Predicted
Contexts

Encoder �c

Environment

IR Policy

{ai
IR}n

i=1

at aIS

ot
IR

IS Policy

ot
IS Predicted

Contexts

Encoder �c

at := aIR at := aIS

Uncertainty over {aiIR}
below threshold?

Figure 5: Deployment of DISaM. During deployment, DISaM takes actions based only on environ-
mental observations. When the uncertainty of IR’s next action is low, DISaM follows the IR’s policy
actions to accomplish the overall manipulation task goal; when the uncertainty is high, DISaM fol-
lows IS’s policy to reveal and obtain useful contextual information from the environment that helps
to reduce IR’s uncertainty.

contexts, we replace the MDN head with a categorical distribution and train E� using the cross-552

entropy loss.553

A.5 Stage Wise Success Rates and Analysis554

In our experiments, three tasks consist of multiple stages leading to several phases of rising un-555

certainty, exploration with IS, and decreasing uncertainty, which are dynamically handled by our556

deployment procedure (Appendix A.3). Specifically, a stage may arise when the entire context can-557

not be reconstructed using a single information-seeking observation, oIS , triggering a phase in the558

dual policy execution where the IS policy searches and provides the IR agent with the partial context559

necessary to complete the current stage before moving to the next one. For example, in the Cooking560

(sim) task, the side dish to prepare, the cooking time, and the serving location are determined by561

the IS policy looking over to different locations: the dinner, the clock, and the serving region respec-562

tively; each of these parts is denoted a “stage” of the task. In Walls (sim), the stages are picking563

and placing, with the block to pick determined by an identical block placed behind the wall on the564

16

Figure 6: Stage-wise success rates. Success rates for each method are plotted for each stage of the
multi-stage tasks: Cooking (sim), Walls (sim), and Teatime (real).

left and the placing region determined by the color of the block on the right. Finally, in the Teatime565

(real) task, the agent must look at the time to determine the appropriate drink, then the person566

to determine the serving location. Note that knowledge of these stages is not required by DISaM,567

which automatically infers the necessary information to collect at each stage through the intrinsic568

reward of minimizing the IR policy loss.569

We evaluated DISaM, ablations, and baselines on each stage in isolation in addition to the overall570

task performance reported in the main text. Fig. 6 shows the success rates for each method for each571

stage of the multi-stage task as well as the overall success rate. In the simulation tasks, we performed572

50 policy rollouts per seed and calculated the success rate of each stage as (# of stage successes)/(#573

times stage reached) to avoid accumulating in the results the effect of the previous stages. In the real574

environment, 10 rollouts were performed by resetting the environment to the initial state for each575

stage and evaluating the agent. The methods that receive task reward information (DISaM (task576

reward) and Full RL) use a reward provided at the end of each stage rather than the sparse task577

reward.578

DISaM (language) and DISaM (task reward) are generally competitive in the individual stages579

for Cooking (sim), but the stage-wise failure rates compound resulting in lower overall success.580

On the more challenging Walls (sim) and Teatime (real), the variants are less competitive in581

each stage. Across all tasks, the baselines Full RL, Random Cam, and Sampled Context generally582

perform poorly in all stages, with the exception of Random Cam succeeding in some of the simpler583

stages (e.g., Cooking (sim) stage A, Walls (sim) stage B). Full RL achieves consistent success584

only in the first stage of Cooking (sim) and Walls (sim), perhaps due to experiencing these early585

stages more frequently during training.586

A.6 Real World Training leveraging Synced Simulation587

Performing reinforcement learning training procedures in the real world is challenging. Among the588

known challenges [74], two are significantly problematic: safety of the agent and the environment,589

and the need for constant resets (usually by a human). In our real-world training procedure we590

propose solutions for these two challenges, leading to an autonomous and safe training process: we591

developed a mixed sim-real training setup for training the IS policy and observation encoder using592

DISaM in real-world tasks.593

Firstly, we create a sim version of the real-world task and collect data in both environments to train594

a corresponding IR policy. For IS policy training (see Fig. 2 and Alg. 1), we train the IS policy and595

encoder in the real world and generate the real-world context vectors but we exploit the simulator596

to interpret the context vector with the IR policy and provide rewards to the real IS policy. This597

eliminates the need to roll out the real IR policy, minimizing the resets and human supervision598

required during training. Once the IS policy is trained, we can then deploy it with the real IR policy599

following the system depicted in Fig. 5 and described in Alg. 2.600

When the domains of the training and testing IR policy are different, we cannot use the IR observa-601

tions to inform the IS policy decisions. One limitation arising from this is that we cannot do tasks602

17

requiring multiple stages: the IS policy cannot utilize the IR observations to learn which information603

is being queried. Hence, in the Teatime (real) task, we separately train and evaluate the IS and604

IR policy in the two separate stages of the task, but consider them as a single task with two stages in605

our evaluations as they execute consecutively. Another issue that results from training the IS policy606

in the real world is the constant need to update the information in the environment that represents607

context, e.g., the time on the clock or the person sitting next to the table. Since in this work, we608

focus on the visual cues to represent the context, we choose to portray this information on screens,609

which allows us to programmatically update the context altering easily the environment whenever610

the visual cue needs to be updated (as described in Appendix A.9).611

While in the simulation we use separate cameras for the IR and IS agents, in the real-world tasks612

both agents share the same camera, mounted on the head of a PAL Tiago++ [69]. We enable this by613

choosing a resting head position for the IR agent and resetting back to it whenever we switch to the614

IR policy deployment phase from the IS policy deployment phase. This is analogous to installing a615

second camera stationary pointing at the manipulation area. Additionally, during the IS deployment616

phase, we store the latest observation from the IR deployment phase and use it to calculate the617

uncertainty of the IR policy.618

A.7 Baselines619

Below we provide more information and implementation details of the baselines,620

DISaM (reward): An ablation of our method which uses task rewards to train the IS agent instead621

of our proposed intrinsic reward. This baseline is used to test if a high-performance IS policy can be622

learned just by using task rewards. Instead of using sparse task rewards, which are difficult to learn623

from, we use hand-designed rewards at the end of key stages. While this stage-wise reward requires624

some domain knowledge to design, we found it to be important for the learning of the IS policy.625

Specifically, after completing a stage the reward obtained is +10 in simulation environments and626

+5 in real-world settings. For all other timesteps, the reward is �0.1. Across all our experiments627

we use the same hyperparameters and network architectures as we used for DISaM.628

Full RL: A reinforcement learning baseline that jointly optimizes the IR and IS agents. The policy629

architecture is a shallow convolutional neural network to process image inputs followed by an MLP,630

that takes observations of both IR and IS agents as inputs and outputs an action over the combined631

action space of the two agents. The policy is trained using PPO [71] with the same stage-wise632

rewards as described above in the DISaM (reward) section.633

Random Cam: A baseline that replaces the trained IS agent in DISaM with an agent that performs634

random movements but utilizes the trained encoder E� to encode the context and hands control back635

to the IR policy when it’s uncertainty is lower than the prefixed threshold � (similar to our test time636

protocol). Instead of sampling actions uniformly and randomly at every step, we perform weighted637

sampling by putting more weight on the last action performed, enabling the policy to explore a larger638

proportion of the state space. Specifically, with probability 0.5 + 1
n actions , the action of the policy639

stays the same as in the previous timestep.640

Sampled Context: We sample the context vector from a prior probability distribution over contexts641

and use it to produce IR actions using an IR policy trained with behavior cloning. In all our settings,642

the prior distribution consists of a uniform probability distribution over all possible contexts.643

A.8 Comparing Visuomotor and Skill-based IR policies644

The training procedure between visuomotor and skill-based IR policies is similar except for some645

minor differences that we note here. Primarily the distance metric L in Equation 1 varies between the646

the two IR policies. When the IR policy is skill-based, L is the cross-entropy loss between the action647

distribution induced by the true and the predicted contexts. When the IR policy is visuomotor, we648

measure the negative log-likelihood of sampled predicted actions under the distribution of true ac-649

tions. To demonstrate that the performance of DISaM is not affected by the type of IR policy used,650

18

we compare DISaM’s performance trained with a skill-based (DISaM (skill)) and a visuomo-651

tor (DISaM (motor)) IR policy on the Walls (sim) task. (DISaM (skill)) achieves an overall652

success rate of 47.67 ± 0.58 and (DISaM (motor)) achieves and overall success of 47.33 ± 0.58,653

measured over 50 rollouts across 3 seeds. As we can see, the overall performance of the system654

stays consistent across both forms of the IR policy.655

A.9 Tasks656

In Fig.7 we visualize rollouts in all tasks and in the following we describe the details of IR and IS,657

observation and action spaces in each task.658

Walls (sim): Shown in Fig.7a, the IR agent is required to pick a block and place it on one of the659

serving regions. The color of the block to pick is determined by an identical block placed behind a660

wall on the table on the left and the color of the block on the table on the right corresponds to the cor-661

rect serving region. Here the IR agent is the robot hand that uses the images from the eye-in-hand662

camera along with it’s proprioceptives as observations and outputs a skill ID to chooses between663

pick, place and go-near actions. The IS policy observes the scene from a floating camera with dis-664

crete actions that allow the camera to pan left/right, tilt up/down, move forward/backward/left/right665

by some fixed amount.666

Assembly (sim): Shown in Fig.7b, the IR agent is required to assemble the screw in the correct667

colored peg. The color of the correct peg is determined by a similarly colored block placed inside668

one of the drawers on the table on the right. Here the IR agent is the robot hand that uses the images669

from the eye-in-hand camera along with it’s proprioceptives as observations and outputs a skill ID670

to chooses between pick-place and go-near actions. The IS policy observes the scene from a floating671

camera and also can control the second robot arm near the drawers to interact with them. The IS672

policy has a discrete action space that allows it to pan and tilt the camera, along with controlling the673

second robot arm to open the drawers and pick/place the blocks.674

Cooking (sim): Shown in Fig.7c, the IR agent is required to cook a meal. The proper meal675

to prepare is determined by the dish being prepared, the cook time depends on the timer and the676

serving region is determined by the check mark. Here the IR agent is the robot hand that uses the677

images from the eye-in-hand camera along with it’s proprioceptives as observations and outputs a678

skill ID to choose between pick-place and go-near actions. The IS policy observes the scene from a679

floating camera with discrete actions that allow the camera to pan left/right, and tilt up/down.680

Teatime (real): Shown in Fig.7d, the IR agent needs to determine the time of day to decide on the681

beverage to serve and look at the person at the table to choose where to place the beverage. Here the682

IR agent is a Tiago++ robot that uses the images from it’s head camera along with it’s proprioceptives683

as observations and outputs a continuous delta action in the Cartesian space to control it’s hand. The684

IS policy observes the scene from Tiago’s head camera as well (see Appendix A.6) with discrete685

actions that allow the camera to pan left/right, and tilt up/down.686

Button (real): Shown in Fig.7e, the IR agent is required to place the correct fruit in the bowl687

depending on the recipe. The IS policy is required to first turn the monitor on by pressing a button688

and then look at the screen to determine what fruit to use. Here the IR agent is a Tiago++ robot’s right689

hand that uses the images from it’s head camera along with it’s proprioceptives as observations and690

outputs a continuous delta action in the Cartesian space to control the hand. The IS policy observes691

the scene from Tiago’s head camera as well (see Appendix A.6) and in addition to controlling the692

head movement, also controls Tiago’s left arm. The IS policy has a discrete action space that allows693

it to pan and tilt the camera, along with controlling the second robot arm to press at various positions694

on the table.695

19

Task
Visualization

IS View

Uncertainty
of IR policy

IR uncertain
over which

block to pick

IR uncertain
over where to

place the block

�
t

IR View

(a) DISaM rollouts on Walls (sim).

Task
Visualization

IS View

Uncertainty
of IR policy

IR uncertain
over where to

place the
screw

� t

IR View

(b) DISaM rollouts on
Assembly (sim).

Task
Visualization

IS View

Uncertainty
of IR policy

IR uncertain
over what to

cook

IR uncertain
over where to
serve the food

� t

IR View

IR uncertain
over how long

to cook

(c) DISaM rollouts on Cooking (sim).

Task
Visualization

IS View

Uncertainty
of IR policy

IR uncertain
about which
drink to pick

� t

IR View
IR uncertain
about where

to serve

(d) DISaM rollouts on Teatime (real).

Task
Visualization

IS View

Uncertainty
of IR policy

IR uncertain
about which
fruit to use in

recipe

� t

IR View

(e) DISaM rollouts on
Button (real).

Figure 7: Here we demonstrate the rollouts of DISaM on the 5 tasks that we study. We show the
uncertainty during the rollouts and 1) Highlight IR observations that have high uncertainty, and
2) Sequence of IS observations before finding information that reduce uncertainty.

20

	Introduction
	Related Work
	Problem Formulation: factorized Contextual Markov Decision Processes
	DISaM, Dual Information-Seeking and Manipulation Policies for fCMDP
	Information-Receiving Agent
	Information-Seeking Agent
	Deciding between Information-Seeking and Information-Receiving Actions at Test Time

	Experimental Evaluation
	Can our proposed framework effectively learn to seek, infer, and exploit contextual information?
	How important is it to optimize the behavior cloning loss in DISaM's objective instead of sparse task reward?
	Can DISaM handle different representations of context to define the task?

	Conclusion and Limitations
	Appendix
	Factorized Contextual Markov Decision Process
	IS Policy Training Procedure
	DISaM Deployment Procedure
	Using Language as Context
	Stage Wise Success Rates and Analysis
	Real World Training leveraging Synced Simulation
	Baselines
	Comparing Visuomotor and Skill-based IR policies
	Tasks

