A Details formulations of the Algorithms

Algorithm 3 Primal-Dual Method
Initialize the particles {6; 0}, and Ao.
for iteration ¢ do

If Langevin, update 6; ;41 = 6;, + h(V1log p§(6ic) — \iVg(0it)) + V2hE; 4.
If SVGD, update

h n
i = O+ - D ((V108 0 (81.0) = NVg(050) e (0. 00.)] + Vi, KO0, 01.0):
j=1

Update \; by A\; 1 = max(\; + % St 1 lg(Bie41)], 0).
end for

Algorithm 4 Constraint Controlled Method

Initialize the particles {6; o }7.
for iteration ¢ do
If Langevin, update

\s — max (Z?_l ag(0;.0) + (Vg p;(05.4)) " Vg(05.) + VI Vg(6;4)] 0)
t S CBE 0]

update 9i,t+1 = ei,t =+ h(V 10gp8(077t) — Afvg(glf)) =+ vV 2h€77t
If SVGD, update

\ — s Soiim1 @g(0i0) + [Vg(05) T (Viogps(8ie) + Ve, , ke (04, 05.0])] 0
' > ori=1lVg(0i0) TV g(0;.0)ki(0ir,05.0)] )

update

h n
Oi 1 =0 + > U(V1ogp™(8.6) = AeVg(05,0)ke(0),1,0:.0) + Vo, ke (0.4, 0i.0)].

j=1

end for

B Proofs

B.1 Proofs for the primal dual method

Lemma B.1. Suppose g = a + (Vlogp})Ty + VT4, for some constant a and i) € F;. Then
Condition (16) holds with c1 = ||¢||%.

Proof. Note that we can assume a = 0 without loss of generality. If g = (V log p} )¢ + VT, by
Stein identity E,: [g] = 0. Meanwhile if we let r = ¢/p}

E,[g] = / a(8)(V log p3.(8) v + VT(6))db
_ / r(0)V7 (p5(6)w(6))d
_ / Vr(6) T (0)p5 (0)dO

= _Rq,pﬁ\ (ﬂ’)
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Therefore
(Eql9])? < (rgp5 )%, <Dr(g,p3) 0% -

Lemma 2.3 We have E(q,\) > 0, and E(q, A) = 0 iff (¢, \) is a saddle point of L(gq, \).

PrOOfO’ Lemma 2.3.
E =L — 2min L + maxmin L
(qa )\) ((L >\) q l'P (Qa A) >0 ¢ 17) (Q7 >\)

_ — mi i — mi > 0.
(L(q, M) gggll(qd))ﬂL(r;lgggggL(q,A) gg};L(q,A))_O

Therefore, E(gq,\) = 0 iff L(g,A\) = mingep L(g,A) and maxy>omingep L(g,\) =
mingep L(g, A), which implies that (g, A) is a saddle point of L(g, A). O

Proof of Theorem 2.4. If Ay > 0 or E,, [g] > 0, we have

d d

aE(Qt, At) = —(rg, N AtSqp.g> Bt) 7 + (Eq, 9] — QEpit [9])&)%

2

= ~[racos, |+ Balel - 285 )07l

2

= 7 [|Yaery, 7 + n(Eq, [9] — Eps [9])2 - W(Epit [9])2
2

1
< = |[Faens, ||, + 1B lo] — Epy [91)? = (5 (Ba.[9))* = (Eq, 9] — Epz[9]))
2 1
< - Ta..p3, . + 2n(Eq, [g] — Ep; [9])2 - 5’7(eq [9})2
2 1
< —(1=2c1m) ||rg, p3, £ 3 1(Eq, [9])
§ 1
< —(1=2c1m)Dyg, (Qt,P,\t)2 - 577(eq [9])2
If \y = 0and E,,[g] <0, we have
d
aE<q“)\t) Her,PoH}' DE(tho)

So we can check that $E(gs, A\r) < —A(ge, ) in both cases. Combing the two cases yield the
result. Therefore,

1
min A(g, A¢) < */ Alge, M)d (E(CIO7>\0) — E(gr, M) < =E(qo, Mo)-
t€[0,T] T

Proof of Theorem 2.6. First note that
L(q,\") = KL(q || p3-) + (7).
So if g* is the solution to problem 13, it is of form p3..
For simplicity, we denote G(q) = E,~4[g(z)]. Recall the dual objective function is:
®(A) = min L(g, A) = — log Eonps [exp(=Ag(2))].

Its derivatives are given by

Beplo(@) exp(=Ag@)] _ oo
Eop; [exp(—Ag(2))] = Eunpy [9(2)] = G(0}),

d(\) =
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o Eoplg(@)? exp(=Ag(2))]
20 = Eypy[exp(—Ag(2))] +(

= —vary; g(z).

Eompg [g(x)exp(—Ag(x))})Q
Egnrexp(—Ag(x))]

Therefore Assumption 2.2 indicates P is vg-strongly-concave and v;-smooth. As a consequence,

1 2. 2

Svo(A =X <B(N) — 2(N) < —B(N)? = —G(py,)* (22)

2 Vo Vo

Next, we check the evolution of E(g;, A¢). If A, > 0 or Eg, [g] > 0,

d

2
&E(qtv )‘75) Hrqt,pa - Ats‘ltu‘]”]—} + n(EQt [g] - Ep;f/ [g])z - 77<]Ep’;, [QDQ

—(1—e1m) Hrqt NS /\tSQtaQH.QFt - U(Epit [9])2

(Using (18).22)) < —min{(1 — ern) /s, S7uo} (KL(gi, p3,) + (X) ~ B(A,))
— —min{(1 - cxn)/k, %nvo}E(qt, ).

If \; = 0and E,, [g] < 0, recall that G(pg) > 0, so

d
—E(qt, \t) = ||r¢h»pg - AtsunH;

dt
< —(1 =) |[rqepy — Mgl = 1(GW3,) — Glar)?
< —(L—an) Hr‘h py Tt )‘tsqmgHi- —n(G(pa t)
(Using (18),(22)) < —min{(1 — c1n)/k, 3nv0o }(KL(q, pX,) + P(A*) — ®(Ay))
= —min{(1l — e1n)/x, §nvo}E(qt, At).

In conclusion, we find the following always hold

d .
aE(qt, At) < —min{(1 — ¢1n)/x, %nvo}E(qt, At).

This leads to linear convergence of E(g;, \¢).

Finally we note that
E(qe; M) = KL(ge|[p3-) + (P(A") = 2(X)).
So by the Young’s inequality and that
(A=A (G(@3) — Gp3-)) = (A = X)(@(p3) — B(p3.)) <0,

we have

KL(g:|lp-) = KL(gt||p}) +
= KL(q[p3) + (A" = A\)(G
_|_

1
< KL(g||p3) B

1 *
<(1+ §CS)KL(%HP,\) +

(A" = N)G(q) + @A) — 2(X7)
(g

(14 v1) (A = N)?

N | =

< (14 ges)KL(glIp}) + %(1 + o) (N = X2 (B(N) — B(AY))

1 v 1
563, —= + 7}E(Qt7 At)

< 1
< max{l 4 ge, 5t 5
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B.2 Proofs for the constraint controlled method

For simplicity, we denote
Ol]eq [g] + <r(h7p87 SQt79>-7:t

!
)\t: )

2
[Er H]:t
and G(q) = Eg.4[g(6)]. We also note that the following hold

Tgp; — ASq,g = Tgpy
because Ry px — ASg g = Ry ps.

Lemma B.2. Let F be a Hilbert space and assume the linear operator R(¢) := E,[(V1ogp —
Vlog q)¢] and S(¢) :=E,[Vag ' ¢ yield a Riesz representation v, and s, that is, R(¢) = (r,, ¢) r
and S(¢) = (s, &) F, then the optimal solution of

. 1 2
min—(ry, 6)r + 3 105 st (s 6)7 <~k lg)

is
* I P .
¢ =rp —A's=rp:

where py x p(x) exp(—Ag) and

- (aEq[g] + {1y, 8 O)

2
HS”]:

Proof. Introducing a Lagrange multiplier A > 0. Since the problem is convex in ¢, we can try to
solve the dual of the problem, which is

: L2
maxmin —(rp, @) + 5 [|6] 7 + As, 8)7 + AaE,[g]

/1
- 1@3( gé1£<§¢ + As — 1y, )5 + AaE,[g].

Given ), the optimal ¢ is obtained by
¢" =1, — As.
Note that

(0%, )7 = Eq[(Viogp — Vlog g — AVg)y] = Eq[(Vlog px — Vg q)y],
S0 ¢* = rp,, . Plug this solution back to the dual problem, we find the dual problem is given by

1
max — v, — sl + AaEqlg].
Since this problem is quadratic in A, we find can A\* as claimed. O

Proof of Theorem 2.7. Note that if \} > 0
<rqt,p§t’sqt7g>}} = <rqt7p375qmg>}} - )‘t”Sqt,gH%‘t

= <r(1t7PS’SQt7g>]‘—t —aG(q) — <er7PS7SQtag>Ft = —aG(q). (23)

If A, <0,\ =0and
<rqt7p§tvsqt,g>]:t = <erap;;’S‘Ihg>]:t + )‘7/5||Sqn,g||.27-‘t
= —aG(q) + )‘;&”SQuQH?ﬂ' (24)

Therefore
d
—G(qt) = (84,9, 1) F, = <Sqt,gvrqt7p§t>}}

dt
B {—aG(q), AL >0
B _aG(Q) + )‘QE”sth,gngv )‘2 S 0
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Note that in either case p
—G < —aG(q).
3 C(@) < —aGla)
This leads to the first claim using the Gronwall’s inequality.

Next, we note the followings either A} > 0 or A} < 0,
>‘t<sqt79arqt7p§t>}} = -MG(q).

This leads to

d *
7KL(q7f || pO) = 7<r(It»P(’§a¢)t>]:f,

dt
= _”r‘h,Pit ||.27:t - )‘t<rth,p§t ) SQt79>]:t
= _”rqmpjt ”.27-',5 + AaG(q).
This leads to our second claim, since Ay > 0 and [|rg, pz %, > 0. O

Proof of Theorem 2.9. Following on our derivation in Theorem 2.7, we find that
* 2
D}-t (qtv p)\t)Q = ||rqf,-,p<’§ - )‘ts%y!JH}‘t
d *
= — KL || ) + Moy [g]

Therefore,

T T
/ Dr, (g, p,)* + (= eaEq, [g])+dt = KL(qo || pg) — KL(qr || p5) + 04/ (AEqg, [g])+dt.
0 0

Note that by Theorem 2.7

T T
a / (Mg, [9]) +df < hmmaes / exp(—at) (B [91) + 4 = Mena - (Eqo [4])
The result then follows. O

Proof of Theorem 2.6. First note that
L(g, A*) = KL(q [ p3-) + ®(A").
So if g* is the solution to problem 13, it is of form p3..

To show linear convergence, we investigate the KL divergence. When X, > 0,

d .
%KL(% || PA=) = _<er;p§\t’ervp;*>]:t

= _”rqt,p;t |.27-‘t + (A — At)<erap;t’SQtvg>]:t
= —Dr(a,93,)% + oM — \)G(g).
When A} < 0, using A\; = 0 and (24)

LKL 1 93) = s, I3, + O = A)Ea 03, 500007

= *Hrqt,p’;t ||§~‘, + (At — M) (aGl(q) — A;HSqt,gH%‘t)
— g, I3, — aAGla) + ANy,
< _Hrqt,pit ”3—} + a(A — A)G(g).

In other words, in both cases, we have

d x
= KL(qt || p3-) < =llrg, 3, 17, + oA — M) G(a)-

dt
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Next we use condition (18),

Hrfhapf\t ||2ff - D]:t (qtap;t)
1 *
> —KL(qlp},)
C2
aKL(g:(lp3,)

=q z)lo 6:() iy
B /qt( )1 gpit(x)d

. o qt(x) gc

=« z) [ lo au(x) — T T
— [ alo) (1o 2+ (= Adgto) + 1w 2, ) d
= a(KL(g(lpx-) + (A = M) G(gr) +log Zy,)

> a(KL{gIp}-) + (h ~ )G (a0),

where we have used that log Z) = —®(\) > —®(\*) = 0. Plug this inequality into our derivation
of KL divergence,

v

d * *

7 KL(@ [ p3-) < —aKL(g: || p3-) = a(de = A)Glar) + alh — A)Glgr)
= —aKL(q: [| p3-)-

By Gronwall’s inequality, we find that

KL(q: || p3-) < e*'KL(qo || p3-)-

C More Details on the Experiments: Settings and Results
C.1 Results on Gaussian Mixtures
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Figure 4: Results on Gaussian mixture models. Averaged over 10 runs

In this experiment, We set pj to be randomly generated RY-Gaussian mixtures: pj() =
LS N(0; i, 07) where m is fixed to 5 in all the experiments. f; and o; are d-dimensional

vectors, which are randomly sampled from A/ (0, I) and Uniform(0, I), respectively. We set the
constraint to be g(d) = ||8]|* — €, which constrains the second order moment of the samples.

We run 300 iteration for all the four methods. In all the experiments, we perform grid search on the
hyper-parameters for each method, and choose the result with smallest absolute constraint error. We
50 particles unless mentioned otherwise.
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Figure 4 shows the result as we vary the dimension d of the domain (Figure 4(a)), the number of
particles n (Figure 4(b)), the threshold value e (Figure 4(c)), and iteration step (Figure 4(d)). The
violation of constraint is measured by (E,[g])+; the optimization result is measured by the maximum
mean discrepancy, MMD(q, pg), between ¢ and pf, because the KL divergence KL(q || pg) is not
computable when ¢ is an empirical measure of particles. We can see that all the methods achieve
similar MMD(q, p{), but Control+SVGD tends to satisfy the constraint best on (a) and (b).

We provide in Figure 5 the optimization curve with different step size € for Primal-Dual methods.

log MMD
log MMD

1 150 300 1 150 300 Y - 150 300 1 150
Iterations Iterations Iterations Iterations
(a) Primal-Dual+ Langevin (b) Primal-Dual+ SVGD

Figure 5: The change of MMD(q,, p;) and E,, [g] vs. iteration ¢ on the Gaussian mixture model. The
colors represent different different step size e.

C.2 Settings of Experiments in the Main Paper

Bayesian Logistic Regression with Logic Rules In this experiment, we consider Bayesian
logistic regression for binary classification. The problem of interest is to predict whether or not to
lend loans to a specific applicant. The dataset, lending club loan data 2, contains complete loan data
for all loans issued through 2007-2015 of several banks. Each data point is a 28-dimensional feature
including the current loan status, latest payment information, and other additional features. We use
50 particles. Here, we define the logic loss as the binary cross-entropy loss.

Monotonic Bayesian Neural Networks In this experiment, we use the COMPAS
dataset (J. Angwin & Kirchner, 2016). COMPAS is a dataset containing the criminal records
of 6,172 individuals arrested in Florida. The task is to predict whether the individual will commit
a crime again in 2 years. The probability predicted by the system will be used as a risk score. We
use 13 attributes for prediction. The risk score should be monotonically increasing w.r.t. four at-
tributes, number of prior adult convictions, number of juvenile felony, number
of juvenile misdemeanor, and number of other convictions. The bayesian neural net-
work is built up upon a two-layer ReLU neural network with 100 hidden neurons. We use 10 particles
to sample from the posterior.

Fair Bayesian Neural Networks In this experiment, we adopt the setting in (Martinez et al.,
2020; Liu & Vicente, 2020). The experiment is performed on the Adult Income dataset (Kohavi,
1996), which contains 30,162 training samples and 15,060 test samples. It is a binary classification
problem, whose prediction target is whether the income of a person is higher than 50,000 dollars
per year. Following (Martinez et al., 2020; Liu & Vicente, 2020), we randomly sample a subset of
20,000 data points from the training set as our training set. Each data point has a 86-dimensional
feature. We also follow (Liu & Wang, 2016) to use two-layer neural network with ReLLU activation.
The network has 50 hidden neurons, containing 4401 parameters in total. We use 50 particles to
sample from the posterior.

C.3 Additional Results

Additional Training Plots We provide more plots on training fair Bayesian neural networks here,
including the training LL, constraint loss and the change of A; vs. iterations. See Fig. 6 and Fig. 7.

Unconstrained Baselines We provide the results of unconstrained baselines in this section for
comparison with the constrained methods in the main text. These points are too far away from the
constrained ones so we did not put them in the figures. See Tab. 1 for the results. Unconstrained

“https://www.kaggle.com/wendykan/lending-club-loan-data
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Bayesian Logistic Regression with Logic Rules

Methods Training LL Logic Loss Test Accuracy Test Violation
SVGD -11.83 £ 0.6 1.42 £ 0.55 0.649 £ 0.005 0.996 £+ 0.099
Langevin | -12.53 £0.3 1.43 £0.49 0.648 £ 0.003 0.998 £+ 0.087

Training Monotonic Bayesian Neural Networks

Methods Training LL Mono Loss Test LL Test Mono Loss
SVGD -0.842 £0.022  0.156 +£0.21  -0.665 £ 0.017  0.013 £ 0.006

Langevin | -0.864 £0.105 0.213 £0.23  -0.666 £ 0.031 0.016 £ 0.008

Training Fair Bayesian Neural Networks

Methods Training LL Fairness Loss ~ Test Accuracy  Disparate Impact
SVGD -0.512+0.015 0.214 £0.009  0.849 £ 0.013 0.185 £+ 0.021
Langevin | -0.525 £0.024 0.148 = 0.015  0.847 £ 0.005 0.184 £ 0.011

Table 1: Experiment results on unconstrained baselines.
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Figure 6: Experiment results on learning fair Bayesian neural networks. ‘LL’: log-likelihood.

baselines typically has higher training LL and much higher loss on the constraints, compared with
our proposed constrained sampling methods.
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Figure 7: Plot of )\ vs. iterations on learning fair Bayesian neural networks.
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Figure 8: Intermediate results of Control+Langevin with NCSN
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