A Details of the proposed method

A.1 Construction of pseudoinverse decoder

We can construct the pseudoinverse decoders for a wide range of neural network architectures. For in-
stance, the pseudoinverse decoder for an multilayer perceptron (MLP) with one hidden layer f(z) =
o2 (Wao1(Wiz + b1) + b2) can be constructed as:

fH(h) = Wity (Wyoy ' (R) — b2) — b, (19)

where W7 is the pseudoinverse matrix of T and ¢ is an invertible activation function whose Dom(c) =
Im(o) = R. We chose LeakyReLU

z (x>0)

ax (z<0), (20)

LeakyReLU(x) = {

where set a = 0.5 because an extreme value of a (e.g., 0.01) could lead to an extreme value of gradient for the
inverse function. In addition, one may choose activation functions whose Im (o) # R, such as tanh. However,
in that case, we must ensure that the input value to the pseudoinverse decoder is in Im (o) (in case of tanh, it is
(—1, 1)); otherwise, the computation would be invalid.

Besides, similar to the Dirichlet encoder and pseudoinverse decoder, we could define the specific encoder and
decoder for the Neumann boundary condition. However, this is not included in the contributions of our work
because it does not improve the performance of our model, which may be because the Neumann boundary
condition is a soft constraint in contrast to the Dirichlet one and expressive power seems more important than
that inductive bias.

A.2 Derivation of NIsoGCN

Matsunaga et al. (2020) derived a gradient model that can treat the Neumann boundary condition with an arbitrary
convergence rate with regard to spatial resolution. Here, we derive our gradient model, i.e., NIsoGCN, in a
different way to simplify the discussion because we only need the first-order approximation for fast computation.

Before deriving NIsoGCN, we review introductory linear algebra using simple normation. Using a unit basis
{e; € R?: |le;|| = 1}¢-,, one can decompose a vector v € R? using:

v = Z('v -ej)e;. (21)
Now, consider replacing the basis {e; € Rd}‘f:l with a set of vectors B = {b; € Rd}?lzl, called a frame,

that spans the space but is not necessarily independent (thus, d’ > d). Using the frame, one can assume v is
decomposed as:

v = Z(’U . bl)Abl, (22)
where A is a matrix that corrects the "overcount” that may occur using the frame (for instance, consider
expanding (1,0) " with the frame {(1,0)", (=1,0)",(0,1) " }). A set { Ab;}¢_, is called a dual frame for B.
We can find the concrete form of A considering:

=A> (bi@b)v. (24)

Requiring that Equationholds for any v € R%, one can conclude A = > ® b;)~!. Finally, we obtain
v=[b:;@b] "> (v-bi)bs (25)

i

For more details on frames, see, e.g.,|Han et al.| (2007).

Then, we can derive NIsoGCN at the ith vertex on the Neumann boundary, by letting

T, —; T, — T; T, — i
B:{ I t 2 R et 2 ,\/w-n-}, (26)
@, — @il g, —] [, —]
where {j1,72,...,Jm} are indices of neighboring vertices to the ith vertex. In addition, we assume the
approximated gradient of a scalar field ¢ at the ith vertex, (V1)),, satisfies the following conditions:
(V) TS Y T (k=1,...,m), @7)
), —zill g, — il
(VY), - n = gi. (28)

13

Equation|2_71$ a natural assumption because we expect the directional derivative in the direction of (xj, —
x;) /|2, — @:|| should correspond to the slope of ¢ in the same direction. Equation 28 is the Neumann
boundary condition, which we want to satisfy. Finally, by substituting Equations[26, [27; and [28, we obtain
NIsoGCN, i.e., Equation|14]

To apply NIsoGCN to ¢, the rank k& tensors (K > 1), one can recursively define the operation as:

NISOGCN}Cfl*}k (tl)
NIsoGCNg_k+1(t) := NIsoGCNg—1-5(t2)) 29)
NISOGCNkflﬁk (t3)

where t; is the ith component of ¢, resulting in the rank (k — 1) tensor. In case of the rank 1 tensor v, it can be
formulated as:

NIsoGCNo—1(v1) Ov1/0x Ovi /Oy Ovi/0z
NIsoGCNi,2(v) = NIsoGCNo_,1(v2) ~ Ova /0 Ova /By Ova/0z = V. (30)
NIsoGCNo—1(v3) Ovs/dx Ovs/dy Ovs/0z

Please note that each component v; has multiple features in the encoded space, e.g., 16 or 64, resulting in
NIsoGCNi_2(v) represents multiple rank 2 tensors for each vertex (see Figure 1 of|Horie et al. (2021)).

As discussed in|Horie et al. (2021), IsoGCNs (NIsoGCNs) correspond to spatial differential operators as:

* NIsoGCNo—;1(¢): Gradient V) (rank O tensor to rank 1 tensor)
* NIsoGCNi_,0(v): Divergence V - v (rank 1 tensor to rank 0 tensor)

e NIsoGCNo—1-0(%) := NIsoGCN10 o NIsoGCNo_,1(%)): Laplacian V - V) (rank 0 tensor to
rank 1 tensor to rank O tensor)

NIsoGCNi_,2(v): Jacobian Vv (rank 1 tensor to rank 2 tensor)

¢ NIsoGCNo—152(¢)) := NIsoGCN;_2 o NIsoGCNo_,1(1)): Hessian V'V (rank O tensor to rank
1 tensor to rank 2 tensor)

Because NIsoGCN contains a learnable weight matrix (see Equation[14), the component learns to predict the
derivative of the corresponding tensor rank in an encoded space. This feature of NIsoGCNs enables us to
construct machine learning models corresponding to PDE in the encoded space.

A.3 Derivation of the step size in the Barzilai-Borwein method
We derive Equation [16]by applying the Barzilai-Borwein method to our case. We start with Equation|[8| which
corresponds to a nonlinear problem:
R(v) :=v —u(t,-) — D(v)At, (31)
Solve, R(v)(x;) = 0, Vi, (32)

We consider solving it by applying the linear iterative method using the Taylor expansion, assuming the update
Av® = D — @ is small enough. The iterative method is expressed as:

v = u(t,), 33)
D) — (@) + A'U(i), (34)
R + Av?) ~ R(v?) + Vo R(v™) A0 = 0, (35)

where VvR('v(i)) denotes the Jacobian matrix with the shape of n X n (n roughly corresponds to the number
of vertices of the mesh). To optain update, we may solve Equation|35|as:

Ao = [V R)] " R®), (36)

corresponding to the Newton—Raphson method. However, it may take enormous computation resources because
VvR('u“)) is usually a huge matrix. Instead, we can approximate:

[vvR(v@)] e, 37)
which corresponds to gradient descent:

AvD =~ oD R(v™). (38)
Substituting Equation [37)into Equation [35] we obtain:

R"™) = R(v™) + Wmﬂ”. (39)

14

(a) (b)

A ~ _ 1
V.9 n Y gn | |M
1 ! !
MLP MLP MLP
2,8,16,16 1,8,16,16 1,16
LeakyReLU, LeakyReLU, Identity LeakyReLU, LeakyReLU, Identity Identity
’ ! 1
IsoGCN NIsoGCN
16,16 16,16
Identity Identity
!
Concatenation
!
MLP MLP
17,1 1,16
Identity Identity
1 !

Figure 5: Architecture used for (a) original IsoGCN and (b) NIsoGCN training. In each cell, we put
the number of units in each layer along with the activation functions used.

We want to find a good all satlsfymg Equatlonthe best. Thus, we obtain a through:

ag])g = arg min £(«a), (40)

R 5 £(a) HAv(D , where AR = R(v"T1)) — R(v™). @41)

Because of the convexity of the problem, it is enough to find alpha satisfying:

dL

== <Av("> — o ARV, —ARY) =0, 42)

(4)
BB

where < -, - > denotes the inner product in the corresponding space. Using the linearity of the inner product, we
obtain:

<Av(i) —aLARY, ~AR") =0, 43)

— (a0, ARY) + o} (ARV, ARV =0, (44)
< v ARU >>

(%) (45)

BB T (ARG, AR®) "
Equation [45]is equivalent to Equation [16]

As seen from the derivation, agé is determined to satisfy Equationas much as possible for all vertices and all

feature components. That means a](3])3 has global information because it considers all vertices, making the global

interaction possible. In addition, a(l)
Therefore, ag])g is suitable for realizing efficient PDE solvers with E(n)-equivariance.

is equivariant because it is scalar, which does not depend on coordinate.

B Experiment details: gradient dataset

Figureshows the architectures we used for the gradient dataset. The dataset is uploaded online We followed
the instruction of |Horie et al. (2021) (in particular, Appendix D.1 of their paper) to make the features and models
equivariant. To facilitate a fair comparison, we made input information for both models equivalent, except for
M~ in Equation Equation which is a part of our novelty. For both models, we used Adam (Kingma & Bal
2014) as an optimizer with the default setting. Training for both models took around ten minutes using one GPU
(NVIDIA A100 for NVLink 40GiB HBM?2). Figure[é]shows model architectures used for the experiment.

Shttps://savanna.ritc.jp/ horiem/penn_neurips2022/data/grad/grad_data.tar.gz

15

https://savanna.ritc.jp/~horiem/penn_neurips2022/data/grad/grad_data.tar.gz

Type A
yp 10 I
ax b2
—>
1.0 I 101
Type B
1.0 I
—
by
01
Type C
1.0 I 101
i — —
z X c1 Co

Figure 6: Three template shapes used to generate the dataset. a1, b1, b2, ¢1, and co are the design
parameters.

C Experiment details: incompressible flow dataset

C.1 Governing equation

The incompressible Navier—Stokes equations, the governing equations of incompressible flow, are expressed as:

ou 1

E:—(U~V)u+ReV~VU—Vp (t,x) € (0,T) x Q, (46)
u=1u (t,z) € aQ](Duir)ichlct’ 47
[VU n (VU)T] n = (t,x) e 0@ . . (48)
We also consider the following incompressible condition:
V-u=0 (t,z)e(0,T)x8Q, (49)

which may be problematic when solving these equations numerically. Therefore, it is common to divide the
equations into two: one to obtain pressure and one to compute velocity. There are many methods to make such a
division; for instance, the fractional step method derives the Poisson equation for pressure as follows:

1

V. Vp(t+ At,x) = E(V -a)(t,x), (50)
where
ﬂ:u—At<u~Vu—iV‘Vu> (51)
Re

is called the intermediate velocity. Once we solve the equation, we can compute the time evolution of velocity as
follows:

u(t+ At,x) = a(t,x) — AtVp(t + At,). (52)

Because the fractional step method requires solving the Poisson equation for pressure, we also need the boundary
conditions for pressure as well:

p=0 (t,x) € ani)richlew (53)
Vp -m=0 (t7 :E) € 8Q§\?e)umann' (54)

Our machine learning task is also based on the same assumption: motivating pressure prediction in addition to
velocity with boundary conditions of both.

16

(0)
Type A 0

u=0
u=0
1
u = 0 1
Type B <O) i[Vqu(Vu)T}n:O
u=0
u=0
1
u(()) 1
Type C 0 E[Vu+(Vu)T}n:0
r u=0

Figure 7: Boundary conditions of u used to generate the dataset. The continuous lines and dotted
lines correspond to Dirichlet and Neumann boundaries.

Vpom=0 .
Type A B 1 p=0

VPm=0
Type B b] p=0

NP =
TypeC = I maam p=0

Figure 8: Boundary conditions of p used to generate the dataset. The continuous lines and dotted
lines correspond to Dirichlet and Neumann boundaries.

C.2 Dataset

We generated numerical analysis results using various shapes of the computational domain, starting from three
template shapes and changing their design parameters as shown in Figure[6] For each design parameter, we
varied from O to 1.0 with a step size of 0.1, yielding 11 shapes for type A and 121 shapes for type B and C.
The boundary conditions were set as shown in Figures[7]and [8] These design and boundary conditions were
chosen to have the characteristic length of 1.0 and flow speed of 1.0. The viscosity was set to 10>, resulting in
Reynolds number Re ~ 103. The linear solvers used were generalized geometric-algebraic multi-grid for p and
the smooth solver with the Gauss—Siedel smoother for w. Numerical analysis to generate each sample took up to
one hour using CPU one core (Intel Xeon CPU E5-2695 v2@2.40GHz). The dataset is uploaded online

17

| u(t =0.0) | | @ | | p(t=0.0) | | D | |e—05d o104 —2.0d

V10 S : MLP 2| | MLP
i BoundaryEncoder »i BoundaryEncoder
1,16 (Weight share with *1) 1,8,16 (Weight share with *2) 1,8,16
Identity leakyReLU, Identity tanh, Identity
‘ ‘ ‘ ‘ T T
4
IsoGCNo-1
(0) 0
hi h;) 16,16
Identity
; l
: hy) P h{d by hgeo Vhgeo
Neural Nonlinear Solver
i+1 i+1
't hG+)
‘ After 8 iterations After 8 iterations
L—— Dirichlet Layer Dirichlet Layer
Pseudoinverse Pseudoinverse
decoder decoder
(Weight share with *1) (Weight share with *2)
u(t =4.0) p(t =4.0)

Figure 9: The overview of the PENN architecture for the incompressible flow dataset. Gray boxes
with continuous (dotted) lines are trainable (untrainable) components. Arrows with dotted lines
correspond to the loop. In each cell, we put the number of units in each layer along with the activation
functions used.

C.3 Model architectures
The input features of the model are:

* u(t = 0.0): The initial velocity field, the solulsion of potential flow
e u: The Dirichlet boundary condition for velocity

* p(t = 0.0): The initial pressure field

* p: The Dirichlet boundary condition for pressure

o 7054 o=1.0d ,=2.0d; Reatures computed from d, the distance from the wall boundary condition

and the output features are:

* u(t = 4.0): The velocity field at t = 4.0
e p(t = 4.0): The pressure field at t = 4.0

The strategy to construct PENN for the incompressible flow dataset is the following:

» Consider the encoded version of the governing equation

¢ Apply the neural nonlinear solver containing the Dirichlet layer and the NIsoGCN to the encoded
equation

* Decode the hidden feature using the pseudoinverse decoder.

7 https://savanna.ritc.jp/ horiem/penn_neurips2022/data/fluid/fluid_data.tar.gz,

partala-e]

18

https://savanna.ritc.jp/~horiem/penn_neurips2022/data/fluid/fluid_data.tar.gz.parta%5Ba-e%5D
https://savanna.ritc.jp/~horiem/penn_neurips2022/data/fluid/fluid_data.tar.gz.parta%5Ba-e%5D

TR I I A I N IS I N

Concatenation

MLP
32,16, 16
tanh, Identity
— DirichletLayer — Concatenation ‘7
!
NIsoGCNi-2 NIsoGCN |21
16,16, 16 16,16, 16
tanh, Identity tanh, Identity
1
—V-Vh{)
Re "
Addition
[
MLP MLP
16,16, 16 32,16, 16
tanh, Identity tanh, Identity
- Addition

l R — At {h“) VR - Lo vn®] = hw
u u v T e u u

NIsoGCNi—o
16,16, 16
tanh, Identity
1 N
— v A (GOl
l Atv ha hy]
GCN R hy
16,16, 16 iv -k Neural Nonlinear Solver for Pressure Poisson Equation
tanh, Identity h(;?”l)
After 5 iterations
; VG NIsoGCNo-1 B+
; it P 14
— Addition 16,16, 16
’ tanh, Identity
GCN
| pt) (i) _ i (i) (i+1) — . (i) p(i+1)
16, 16 h{}) - VA Rov - Vhy) + Vhy At := —Dyeumanntsocen;Ns (hy s by TV At
Identity)
i 0 i 1
%& [hij) - h’(u) - DNeumannIsoGCN;NS (hq(:)., h;)ZJr))AT,]

Figure 10: The neural nonlinear solver for velocity. Gray boxes with continuous (dotted) lines are
trainable (untrainable) components. Arrows with dotted lines correspond to the loop. In each cell, we
put the number of units in each layer along with the activation functions used.

Reflecting the fractional step method, we build PENN using spatial differential operators provided by NIsoGCN.
We use a simple linear encoder for the velocity and the associated Dirichlet boundary conditions. For pressure and
its Dirichlet constraint, we use a simple MLP with one hidden layer. We encode each feature in a 16-dimensional
space. After features are encoded, we apply a neural nonlinear solver containing NeumanlsoGCNs and Dirichlet
layers, reflecting the fractional step method (Equations|51]and|52).

The encoded equations are expressed as:

N
At

- 1

hy : = hy — At |hy - NIsoGCN152 (hy) — QNISOGCNgﬁl o NIsoGCN12 (hy) | ,

(56)
ho(t + At, @) = hy(t,) — At NIsoGCNo_1 (hy) (t + At, x), (57)

[NIsoGCNi 0 0 NIsoGCNo1 (hy)](t + At, z) = [NISOGCNHO (ﬁu)} (t,), (55)

where h., is the encoded w and h;, is the encoded p. Note that these equations correspond to Equations[50] [51]
and[5_2, by regarding IsoGCNss as spatial derivative operators. The corresponding neural nonlinear solvers are

19

(i35) | | 7 | | RS
h’p hp A,'V hyy

Dirichlet Layer

NIsoGCNo-1-0

16, 16, 16

tanh, Identity

V- VA

Addition

Calculate Eq (9)

ij (4;9) ij
h;) app DNeumannIsoGCN;pressure(hé]))

| R+ |

Figure 11: The neural nonlinear solver for pressure. Gray boxes with continuous (dotted) lines are
trainable (untrainable) components. In each cell, we put the number of units in each layer along with
the activation functions used.

expressed as:

RUTD = R — o) [h&? — b9 — Dyroconins (hi}'), h}j*”) At] : (58)

DN1soGCN;NS (h&i), hgﬂ))

= {hﬁf) NIsoGCNi2 (hY))) L NIsoGON,1 0 NIsoGON (n) + NIsoGCN (h;i“))} ,
Re
(59)
for h,, and

h;’i%j‘f’l) — h;’h]) — agg)DNIsoGCN;prcssurc(héi;j)% (60)

DNISOGCN;pressure (hl(;ZJ)) L= <NISOGCN1~>O o NISOGCNO%I (hgd>) - iNISOGCNlﬁo (ili?)) s
(61)
for hp, where Y = h.(t,-), héo) = hyp(t,-), and héi;o) = hg). For notation regarding NIsoGCNs, please

see Appendix|A.2| Figures|9}|10] and|L1]|present the PENN model architecture used for the incompressible flow
dataset.

As seen in Figure|10| we have a subloop that solves the Poisson equation for pressure in the nonlinear solver’s
loop for velocity. We looped the solver for pressure five times and eight times for velocity. After these loops
stopped, we decoded the hidden features to obtain predictions for velocity and pressure, using the corresponding
pseudoinverse decoders.

C.4 Implementation details

As discussed in|Horie et al.| (2021), nonlinearity can be applied to the scalar but cannot be applied to the tensors
with a rank equal to or greater than one. For such a tensor, nonlinearity can be applied to its norm as:

MLP:ensor (v) := MLP(||v||)v. (62)

20

This strategy to apply nonlinearity is used not only in the MLP blocks but also NIsoGCN blocks. To facilitate
the smoothness of pressure and velocity fields, we apply GCN layers corresponding to numerical viscosity in the
standard numerical analysis method. Here, please note that the PENN model consists of components that accept
arbitrary input lengths, e.g., pointwise MLPs, deep sets, and NIsoGCNs. Thanks to the model’s flexibility, we
can apply the same model to arbitrary meshes similar to other GNNs.

C.5 Training details

Because the neural nonlinear solver applies the same layers many times during the loop, the model behaved
somehow similar to recurrent neural networks during training, which could cause instability. To avoid such
unwanted behavior, we simply retried training by reducing the learning rate of the Adam optimizer by a factor of
0.5. We found our way of training useful compared to using the learning rate schedule because sometimes the
loss value of PENN can be extremely high, resulting in difficulty to reach convergence with a lower learning
rate after such an explosion. Therefore, we applied early stopping and restarted training using a lower learning
rate from the epoch with the best validation loss. Our initial learning rate was 5.0 x 10™*, and we restarted
the training twice, which was done automatically, within the 24-hour training period of PENN. For the ablation
study, we used the same setting for all models. For PENN and ablation models, we used Adam (Kingma & Ba,
2014) as an optimizer. For MP-PDE solvers, we used the default setting written in the paper and the code.

C.6 Result details

Table 4| presents the detailed results of the comparison between MP-PDE and PENN. Interestingly, the perfor-
mance of MP-PDE gets better as the time window size increases. Therefore, our future direction may be to
incorporate MP-PDE’s temporal bundling and pushforward trick into PENN to enable us to predict the state
after a far longer time than we do in the present work.

Tables|5|and|6|show the speed and accuracy of the machine learning models tested. PENN models show excellent
performance with a lot smaller number of parameters compared to MP-PDE models. It is achieved due to
efficient parameter sharing in the proposed model, e.g., the same weights are used repeatedly in the neural
nonlinear encoder. Also, as pointed out in |Ravanbakhsh et al.|(2017), there is a strong connection between
parameter sharing and equivariance. PENN has equivariance in, e.g., permutation, time translation, and E(n)
through parameter sharing, which is in line with them.

Table[Z]presents the speed and accuracy with various settings of OpenFOAM to seek a speed-accuracy tradeoff.
We tested three configurations of linear solvers:

* Generalized geometric-algebraic multi-grid (GAMG) for p and the smooth solver for v

* Generalized geometric-algebraic multi-grid (GAMG) for both p and ©

¢ The smooth solver for p and
In addition, we tested different resolutions for space and time by changing:

* The number of divisions per unit length: 22.5, 45.0, 90.0
* Time step size: 0.001, 0.005, 0.010, 0.050
Ground truth is computed using the number of divisions per unit length of 90.0 and time step size of 0.001; thus,

this combination is eliminated from the comparison because the MSE error is underestimated (in particular,
Z€er10).

C.7 Ablation study details
To validate the effectiveness of our model through an ablation study on the following settings:
(A) Without encoded boundary: In the nonlinear loop, we decode features to apply boundary conditions to

fulfill Dirichlet conditions in the original physical space

(B) Without boundary condition in the neural nonlinear solver: We removed the Dirichlet layer in the
nonlinear loop. Instead, we added the Dirichlet layer after the (non-pseudoinverse) decoder.

(C) Without neural nonlinear solver: We removed the nonlinear solver from the model and used the explicit
time-stepping instead

(D) Without boundary condition input: We removed the boundary condition from input features

(E) Without Dirichlet layer: We removed the Dirichlet layer. Instead, we let the model learn to satisfy
boundary conditions during training.

21

u magnitude p
0.0e+00 02 04 06 08 1 12 1.5e+00 <1.0e+00 08 06 04 02 0 02 04 06 08 10e+00
1

L e — ——— !

Figure 12: Visual comparison of the ablation study of (i) ground truth, (ii) the model without the
neural nonlinear solver (Model (C)), (iii) the model without pseudoinverse decoder with Dirichlet
layer after decoding (Model (G)), and (iv) PENN. It can be observed that PENN improves the
prediction smoothness, especially for the velocity field.

(F) Without pseudoinverse decoder: We removed the pseudoinverse decoder and used simple MLPs for
decoders.

(G) Without pseudoinverse decoder with Dirichlet boundary layer after decoding: Same as above, but with
Dirichlet layer after decoding.

We again put the results of the ablation study in Table[8] which is already presented in Table[3] for the convenience
of the readers.

Comparison with Model (A) shows that the nonlinear loop in the encoded space is inevitable for machine
learning. This result is quite convincing because if the loop is made in the original space, the advantage of the
expressive power of the neural networks cannot be leveraged. Comparison with Model (C) confirms that the
concept of the solver is effective compared to simply stacking GNNSs, corresponding to the explicit method.

If the boundary condition input is excluded (Model (D)), the performance degrades in line with|Brandstetter et al.
(2022). That model also has an error on the Dirichlet boundaries. Model (E) shows a similar result, improving
performance using the information of the boundary conditions. If the pseudoinverse decoder is excluded (Model
(F)), the output may not satisfy the Dirichlet boundary conditions as well. Besides, the decoder has more effect
than expected because PENN is better than Model (G). Both models satisfy the Dirichlet boundary condition,
while PENN has significant improvement. This may be because the pseudoinverse decoder facilitates the spatial
continuity of the outputs in addition to the fulfillment of the Dirichlet boundary condition. In other words, using
a simple decoder and the Dirichlet layer after that may cause spatial discontinuity of outputs. Visual comparison
of part of the ablation study is shown in Figure|[12]

22

Table 4: MSE loss (£ the standard error of the mean) on test dataset of incompressible flow. If
"Trans." is "Yes", it means evaluation on randomly rotated and transformed test dataset. n denotes
the number of hidden features, » denotes the number of iterations in the neural nonlinear solver used
in PENN models, and TW denotes the time window size used in MP-PDE models.

Method Trans. (x 116,4) (x 178,3) 1(‘510‘:14; 1(7 5101“33

PENN No 4.36 £+ 0.03 1.17+£0.01 0.00 + 0.00 0.00 £ 0.00
n=16,7 =8 Yes 4.36 £+ 0.03 1.17 £0.01 0.00 % 0.00 0.00 % 0.00
PENN No 20.09+0.17 11.35+0.04 0.00 + 0.00 0.00 + 0.00
n=16,r =4 Yes 29.09+0.17 11.3540.04 0.00 % 0.00 0.00 % 0.00
PENN No 177424093 35.70 +0.12 0.00 + 0.00 0.00 + 0.00
n=38r=38 Yes 177.4240.93 35.70 £0.12 0.00 + 0.00 0.00 + 0.00
PENN No 26.82 + 0.16 7.86 4+ 0.03 0.00 + 0.00 0.00 + 0.00
n=_8r=4 Yes 26.82 + 0.16 7.86 + 0.03 0.00 + 0.00 0.00 £ 0.00
PENN No 92.80+0.52 31.47+0.13 0.00 + 0.00 0.00 + 0.00
n=4,r=38 Yes 92.80 +£0.52 31.47+0.13 0.00 =+ 0.00 0.00 £ 0.00
PENN No 120.354+0.65 35.53 +0.12 0.00 + 0.00 0.00 + 0.00
n=4,r=4 Yes 120.35+0.65 35.53+0.12 0.00 £ 0.00 0.00 £ 0.00
MP-PDE No 1.30 £ 0.01 1.32+0.01 0.45 £ 0.01 0.28 £ 0.02
n =128, TW =20 ves 1953.62 + 7.62 281.86 +0.78 924.73 +£6.14 202.97 + 3.81
MP-PDE No 12.08 +0.11 6.49 £ 0.03 1.36 4+ 0.01 2.57 + 0.05
n =128, TW =10 vyes 1468.12 +£5.75 192.97 + 0.57 767.17 + 4.36 51.87 + 1.07
MP-PDE No 32.07 +0.33 6.22 + 0.05 0.85 + 0.01 0.92 +0.03
n=128,TW =4 yes 2068.99 +8.30 180.54 + 0.57 284.72 +1.69 59.21 + 1.32
MP-PDE No 58.88 £ 0.60 9.62 + 0.07 1.02 +0.02 2.83 £ 0.10
n=128,TW =2 ves 1853.27 +£7.89 219.59 +0.53 965.90 = 28.61 358.53 £ 2.13
MP-PDE No 6.09 + 0.05 5.39 + 0.03 1.65 + 0.02 2.16 + 0.08
n=064,TW =20 Yes 1969.34 + 7.50 388.54 +1.12 720.35 +5.15 218.06 + 8.01
MP-PDE No 38.54+0.32 31.33+0.09 2.04 +0.02 5.87 + 0.09
n=064,TW =10 Yes 2738.84 £9.37 171.32+0.60 417.57 4+ 2.49 28.34 + (.92
MP-PDE No 125.09+£1.11 21.93+0.09 2.27 +0.03 5.92 +0.16
n =064, TW =2 Yes 1402.01 £ 6.03 435.75 + 2.41 384.30 +4.13 57.26 + 1.90
MP-PDE No 32.46 £0.24 17.40 £0.07 5.92 £ 0.05 5.94+0.17
n=32,TW =20 vyes 2201.16 + 7.59 351.66 + 0.82 429.30 +£3.27 562.16 + 11.62
MP-PDE No 11530 £1.01 34.97+0.15 10.26 & 0.09 6.84 4+ 0.14
n=32TW =10 Yes 2824.76 + 8.60 496.33+1.33 2276.11 £ 10.57 488.50 & 5.01
MP-PDE No 272.73+2.07 94.27 +0.45 11.50 & 0.12 35.76 + 0.29
n=32TW =4 Yes 1973.35 +8.29 554.69 + 4.26 647.31 £7.40 157.85+ 8.41
MP-PDE No 794.90 + 4.68 82.61 + 0.40 50.23 + 0.91 31.41 +1.88
n=32,TW =2 Yes 3240.69 +21.91 443.10£2.56 2885.30 +41.17 562.08 + 19.28

23

Table 5: MSE loss (+ the standard error of the mean) of PENN models on test dataset of incompress-

ible flow.
hidden # iterati(?n in 4 Total MSE Total time [s
feature the neural nonlinear solver " Parameter (x1073) (5]
16 8 8,432 1.61 +£0.01 5.33 £0.13
16 4 8,432 14.26 +£0.03 2.52 £0.06
8 8 2,100 53.44+0.11 3.54 £0.08
8 4 2,100 10.54 +0.03 2.16 = 0.04
4 8 596 40.75+0.10 2.86 = 0.06
4 4 596 47.57+0.10 1.35£0.04

Table 6: MSE loss (£ the standard error of the mean) of MP-PDE models on test dataset of
incompressible flow.

#f:;‘tilfri:n Time window size # parameter T(o)t(allol\iIBS)E Total (h:?lg_(?:l“)rans.) Total time [s]
128 20 709,316 1.454+0.01 477.23 £0.77 51.61£1.41
128 10 673,484 7.70 £ 0.02 339.78 £ 0.57 94.01 & 2.66
128 4 651,972 9.43 £0.04 387.44+0.71 137.32+£3.91
128 2 644,548 15.51 £0.07 404.92+0.67 57.28+1.91
64 20 204,004 6.00 &= 0.02 585.48 +0.95 13.6240.38
64 10 185,356 35.19 £0.07 44520+ 0.79 23.73+0.67
64 2 174,740 34.44 £0.10 575.95£1.76 32.61+£1.02
32 20 63,964 20.64 4= 0.05 571.77+£0.79 7.64 &+ 0.24
32 10 55,348 46.50 £0.13 778.80 £1.12 12.93+0.39
32 4 49,948 121.55+0.35 752.03 £3.07 13.994+0.41
32 2 47,924 162.10 £ 0.44 767.17 £ 2.38 4.55£0.13

24

Table 7: MSE loss (£ the standard error of the mean) of OpenFOAM computations on test dataset of
incompressible flow.

division

Solver for u Solver for p per unit length At Total MSE (x10~3) Total time [s]
GAMG Smooth 22.5 0.050 Divergent Divergent
GAMG Smooth 22.5 0.010 6.09 + 0.02 6.08 £ 0.17
GAMG Smooth 22.5 0.005 6.04 +0.02 11.57 £ 0.32
GAMG Smooth 22.5 0.001 4.80 + 0.02 51.43 £1.39
GAMG Smooth 45.0 0.050 Divergent Divergent
GAMG Smooth 45.0 0.010 0.46 4+ 0.00 25.12+0.81
GAMG Smooth 45.0 0.005 0.78 £ 0.00 46.71 £1.53
GAMG Smooth 45.0 0.001 1.04 +£0.00 201.11 £6.29
GAMG Smooth 90.0 0.050 Divergent Divergent
GAMG Smooth 90.0 0.010 Divergent Divergent
GAMG Smooth 90.0 0.005 0.15 4+ 0.00 231.18 £10.38
GAMG GAMG 22.5 0.050 Divergent Divergent
GAMG GAMG 22.5 0.010 6.05 + 0.02 6.41 +£0.18
GAMG GAMG 22.5 0.005 6.00 + 0.02 12.21+£0.34
GAMG GAMG 22.5 0.001 4.80 + 0.02 55.51 £ 1.52
GAMG GAMG 45.0 0.050 Divergent Divergent
GAMG GAMG 45.0 0.010 0.46 4+ 0.00 26.00 £ 0.85
GAMG GAMG 45.0 0.005 0.77 +£0.00 48.78 £ 1.57
GAMG GAMG 45.0 0.001 1.03 £ 0.00 214.29 £ 6.62
GAMG GAMG 90.0 0.050 Divergent Divergent
GAMG GAMG 90.0 0.010 Divergent Divergent
GAMG GAMG 90.0 0.005 0.14 +0.00 238.94 £10.70
Smooth Smooth 22.5 0.050 Divergent Divergent
Smooth Smooth 22.5 0.010 5.59 £ 0.02 85.50 + 3.05
Smooth Smooth 22.5 0.005 5.41 +0.02 164.36 + 7.57
Smooth Smooth 22.5 0.001 4.19 +0.02 765.50 £ 29.65
Smooth Smooth 45.0 0.050 Divergent Divergent
Smooth Smooth 45.0 0.010 51.10 £ 0.05 426.07 £ 22.51
Smooth Smooth 45.0 0.005 2.09 £ 0.00 824.71 £ 39.90
Smooth Smooth 45.0 0.001 1.124+0.00 3960.88 £ 151.93
Smooth Smooth 90.0 0.050 Divergent Divergent
Smooth Smooth 90.0 0.010 Divergent Divergent
Smooth Smooth 90.0 0.005 4493.78 = 1.88 3566.05 £ 183.75

25

Table 8: Ablation study on 2D incompressible flow dataset. The value represents MSE loss (£
standard error of the mean) on the test dataset. "Divergent" means the implicit solver does not
converge and the loss gets extreme value (~ 10'4). This presents the same results as Table

Method

(xll(;%)

p
(x1073)

UDirichlet

ﬁDirichl[et

(x10~%) (x10~%)

(A) Without encoded boundary Divergent Divergent Divergent Divergent
(B) Without boundary condition 65.10£0.38 21.70+£0.09 0.0040.00 0.00 = 0.00
in the neural nonlinear solver

(C) Without neural nonlinear solver 31.03 £0.19 9.81+0.04 0.00+0.00 0.004+0.00
(D) Without boundary condition input 20.08 + 0.21 3.61 £0.02 59.60+0.89 1.43+0.05
(E) Without Dirichlet layer 8.22+0.07 1.4140.01 1820+0.28 0.38+0.01
(F) Without pseudoinverse decoder 8.91£0.06 2.36+0.02 1.97£0.06 0.00=£0.00
(G) Without pseudoinverse decoder

with Dirichlet layer after decoding 6.65 + 0.05 1.71+£0.01 0.00+0.00 0.00+0.00
PENN 4.36 £0.03 1.17+0.01 0.00+0.00 0.00+0.00

26

D Experiment details: advection-diffusion dataset

To test the generalization ability of PENNs regarding PDE’s parameters and time series, we run an experiment
with the advection-diffusion dataset. The governing equation regarding the temperature field 7" used for the
experiment is expressed as:

1
%f ——| o) vr+pv.vr (t,@) € (0,1) x O, ©63)
0
Tt=0,2)=0 x € Q, (64)
T = T (t7 15) S aQDirichlet, (65)
VT n=0 (t7 il:) € aQNeumanrn (66)

where ¢ € R is the magnitude of a known velocity field, and D € R is the diffusion coefficient. We set
Q:{m€R3|O<I1 <1IA0< 22 <1A0< 23 <0.01}, ONDirichiet = {& € 9N | z1 = 0} and
aQNeumann = 00 \ 8QDirichlct .

D.1 Dataset

We varied ¢ and D from 0.0 to 1.0, eliminating the condition ¢ = D = 0.0 because nothing drives the
phenomena, and and varied T from 0.1 to 1.0. Like the incompressible flow dataset, we generated fine meshes,
ran computation with OpenFOAM, and interpolated the obtained temperature fields onto coarser meshes. We
split the generated data into training, validation, and test dataset containing 960, 120, and 120 samples. The
dataset is uploaded online[ﬂ

D.2 Model architecture

The strategy to construct PENN for the advection-diffusion dataset is consistent with one for the incompressible
flow dataset (see Appendix |C.3). The input features of the model are:

e T(t = 0.0): The initial temperature field

« T": The Dirichlet boundary condition for the temperature field
* (c,0,0)": The velocity field
¢ ¢: The magnitude of the velocity

e D: The diffusion coefficient

—0.5d _—1.0d
))

s e e e~294; Features computed from d, the distance from the Dirichlet boundary

and the output features are:

o T(t = 0.25): The temperature field at t = 0.25
* T(t = 0.50): The temperature field at t = 0.50
o T(t = 0.75): The temperature field at t = 0.75
o T(t = 1.00): The temperature field at t = 1.00

The encoded governing equation is expressed as:
hr(t 4+ At,z) = hr(t,z) + Dnsocen;a-p (hr) (t + At, @) (67)
DNisoGeN;A-D (A1) : = —he - NIsoGCNo_ 1 (hr) + hp NIsoGCNo—1-0(hT) (68)

The corresponding neural nonlinear solver is:

B = h — o) [= A — Daisocona-n (h)AY] (69)

Because the task is to predict time series data, we adopt autoregressive architecture for the nonlinear neural
solver, i.e., input the output of the solver of the previous step (which is in the encoded space) to predict the
encoded feature of the next step (see Figure E]) FiguresMand[ﬁ]present the detailed architecture of the PENN
model for the advection-diffusion dataset experiment.

To confirm the PENN’s effectiveness, we ran the ablation study similar to that in the incompressible flow dataset.
The training is performed for up to ten hours using the Adam optimizer for each setting.

%https://savanna.ritc.jp/ horiem/penn_neurips2022/data/ad/ad_preprocessed.tar.gz

27

https://savanna.ritc.jp/~horiem/penn_neurips2022/data/ad/ad_preprocessed.tar.gz

T(t = 0.00)

Encoding

hr (£ = 0.00)

Neural
Nonlinear Solver

Neural
Nonlinear Solver

Neural
Nonlinear Solver

Neural
Nonlinear Solver

[hr(t=0.25) [hr(t=050) [hr(t=0.75) [hr(t=100) |
Decoding Decoding Decoding Decoding
[Te=025) | [T@=o050 | [T@=07) | [T@E=100]

Figure 13: The concept of the neural nonlinear solver for time series data with autoregressive
architecture. The solver’s output is fed to the same solver to obtain the state at the next time step
(bold red arrow). Please note that this architecture can be applied to arbitrary time series lengths.

Table 9: MSE loss (£ the standard error of the mean) on test dataset of the advection-diffusion
dataset.

Method T (x107%) Toisichlet (Xx10™4)

(A) Without encoded boundary 54.191 + 6.36 0.0000 =+ 0.0000
(B) Without boundary condition

in the neural nonlinear solver 390.828 + 24.58 0.0000 =+ 0.0000
(C) Without neural nonlinear solver 6.630 £ 1.21 0.0000 =+ 0.0000
(D) Without boundary condition input 465.492 4+ 26.47 868.7009 £ 15.5447
(E) Without Dirichlet layer 2.860 + 2.46 1.1703 £ 0.0328
(F) Without pseudoinverse decoder 44.947 + 6.00 9.7130 + 0.1201
with Dirichleslayer aer qecodmg H90TE4ST 0.0000:+0.0000
PENN 1.795 + 1.33 0.0000 +£ 0.0000

D.3 Results

Table[9]presents the results of the ablation study. As well as the incompressible flow dataset, we found that the
PENN model with all the proposed components achieved the best performance. Because the boundary condition
applied is relatively simple compared to the incompressible flow dataset, the configuration without the Dirichlet
layer (Model (E)) showed the second best performance; however, the fulfillment of the Dirichlet condition of
that model is not rigorous.

Figures [1_6, L7, and@show the visual comparison of the prediction with the PENN model against the ground
truth. As seen in the figures, one can see that our model is capable of predicting time series under various
boundary conditions and PDE parameters, e.g., pure advection (Figure [&), pure diffusion (Figure [ﬁ), and
mixed advection and diffusion (Figure[18).

28

| 7T@E=o000 | | T | 1 (c,0,0)7 | [c D e 05 -10@ 204
MLP *1 d) MLP MLP
1,16, 64]?;?“htafhyE“i: o 1,64, 64 5,64,64
‘eight share with * 1 c .
LeakyReLU, Identity £ : tanh, Identity tanh, Identity
AP (¢ = 0.00
KO 1) 7 ()
;lT hc

hp
Neural Nonlinear Solver

o

i | After 8 iterations

Pseudoinverse

decoder
(Weight share with *1)

[T(t = 0.25)

T(t=050) T(t=0.75 T(t=100)

Figure 14: The overview of the PENN architecture for the advection-diffusion dataset. Gray boxes
with continuous (dotted) lines are trainable (untrainable) components. Arrows with dotted lines

correspond to the loop. In each cell, we put the number of units in each layer along with the activation
functions used. The bold red arrow corresponds to the one in FigureEl

29

3 | | hr

64, 64, 64
tanh, Identity

Dirichlet Layer
NIsoGCNo—1 NIsoGCNo—1-0
64, 64, 64 64,64, 64
tanh, Identity tanh, Identity
~NIsoGCNo_,1 (h$) NIsoGCNo_10(h)
MLP
64,64, 64

tanh, Identity

—he - NIsoGCNg_, (b))

hpNIsoGCNo_,10(hY))

Addition

—he - NIsoGCNo_,1(hr) + hp NIsoGCNo_s150(hr) =: DNisocon:a-D (A1)

B — oy 1) — Y — Darnocoman (b))

Figure 15: The overview of the PENN architecture for the advection-diffusion dataset. Gray boxes
with continuous (dotted) lines are trainable (untrainable) components. In each cell, we put the number

of units in each layer along with the activation functions used.

30

t=0.25

t =0.50
t=0.75
t =1.00

Temperature
0.0 0.5

—
Figure 16: Visual comparison on a test sample between (left) ground truth obtained from OpenFOAM
computation with fine spatial-temporal resolution and (right) prediction by PENN. Here, ¢ = 0.9,
D =0.0,and T = 0.4.

t=0.25

t =0.50
t=0.75
t =1.00

Temperature
0.5

0.0 .

| SR

Figure 17: Visual comparison on a test sample between (left) ground truth obtained from OpenFOAM

computation with fine spatial-temporal resolution and (right) prediction by PENN. Here, ¢ = 0.0,
D =0.4,and T = 0.3.

t=0.25

t =0.50
t=0.75
t =1.00

Temperature
0.0 0.5

— -
Figure 18: Visual comparison on a test sample between (left) ground truth obtained from OpenFOAM
computation with fine spatial-temporal resolution and (right) prediction by PENN. Here, ¢ = 0.6,
D =0.3,and T = 0.8.

	Introduction
	Background and related work
	Partial differential equations (PDEs) with boundary conditions
	Discretization

	Neural PDE solvers
	Physics-informed neural networks (PINNs)
	Graph neural network based PDE solvers
	Equivariant models

	Proposed method
	Dirichlet boundary model
	Neumann boundary model
	Neural nonlinear solver

	Experiments
	Gradient dataset
	Incompressible flow dataset
	Data
	Machine learning models
	Results

	Conclusion
	Potential negative societal impacts
	Details of the proposed method
	Construction of pseudoinverse decoder
	Derivation of NIsoGCN
	Derivation of the step size in the Barzilai–Borwein method

	Experiment details: gradient dataset
	Experiment details: incompressible flow dataset
	Governing equation
	Dataset
	Model architectures
	Implementation details
	Training details
	Result details
	Ablation study details

	Experiment details: advection-diffusion dataset
	Dataset
	Model architecture
	Results

