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Abstract

Improving the quality of academic writing is
a meaningful but challenging task. Conven-
tional methods of language refinement focus
on narrow, specific linguistic features within
isolated sentences, such as grammatical errors
and improper word use. We propose a more
general task, Academic Writing Formalization
(AWF), to improve the overall quality of formal
academic writing at the paragraph level. We
formulate this language refinement task as a
formal text style transfer task which transfers
informal-academic text to formal-academic and
contribute a large-scale non-parallel dataset,
DOOLITTLE, for this purpose. Concurrently,
we apply a method named metric-oriented rein-
forcement learning (MORL) to two pretrained
language models (PLM) where we incorporate
different levels of automatic feedback into the
training process. Our experiments reveal that
existing text transfer models and grammatical
error correction models address certain aspects
of AWF but still have a significant performance
gap compared to human performance. Mean-
while, language models fine-tuned with our
MORL method exhibit considerably improved
performance, rivaling the latest chatbot Chat-
GPT, but still have a non-negligible gap com-
pared to the ground truth formal-academic texts
in DOOLITTLE.1

1 Introduction

Writing in a second language often leads to char-
acteristic errors. In English, such errors include
subject–verb disagreement, noun–number disagree-
ment, and determiner misuse (Lado, 1957; Rod,
1994). Therefore, a language refinement system
with the ability to suggest or automatically cor-
rect such errors is highly desirable (Yuan and Fe-
lice, 2013; Rozovskaya and Roth, 2016). Towards
this end, research in grammatical error correction

*Equal Contribution.
1The datasets and code are available at https://github.

com/shizhediao/Doolittle

[S]: We propose more sophisticated hierarchical
model to include geographical informations.
[T ]: We propose a more sophisticated hierarchical
model to include geographical information.
[S]: This is because the teaching and learning on
science domain relies much on the ability of rea-
soning and computation, which directly utilizes the
advantage of computer.
[T ]: This is because the teaching and learning on a
scientific domain relies considerably on the ability
of reasoning and computation, which directly uti-
lizes the advantages of computers.
[S]: METEOR is another n-gram overlap measure
initially designed for evaluating machine translation
systems. ROUGE-L is a commonly-adopted metric
for text summarization.
[T ]: Both METEOR and ROUGE-L specialize in
BLEU’s n-gram overlap idea for machine trans-
lation and text summarization evaluation, respec-
tively.

Table 1: Informal-academic paragraphs with formal-
academic rewrites, denoted S and T, respectively. The
refined form is highlighted blue, the original in red.

(GEC) (Ng et al., 2014; Bryant et al., 2019) fo-
cuses on identifying and correcting many of such
grammatical errors. However, even if non-native
speakers can write grammatically correct sentences,
their language use is sometimes less concise and
fluent than those written by native speakers (Lado,
1957; Rod, 1994). For example, the two source
sentences in the third example shown in Table 1 are
grammatically correct but less fluent due to their
structural redundancy. They sound more fluent
when combined into a single sentence by adding
an appropriate conjunction.

In light of this, we propose the novel task of Aca-
demic Writing Formalization (AWF) that aims to
generalize the scope of GEC for language refine-
ment: given an informal-academic paragraph P ,
the objective of AWF is to refine the language of

https://github.com/shizhediao/Doolittle
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P to make it grammatically correct, concise, and
fluent, while preserving its semantics. Different
from GEC, which solely concentrates on grammat-
ical error correction for a single sentence, AWF
works on paragraph-level contexts and aims for
refinements beyond grammar. This requires the
model to comprehend and then rephrase the entire
paragraph.

Specifically, AWF considers three objectives in
academic writing formalization to refine the lan-
guage. 1) grammar correction: correcting gram-
matical errors in the paragraph, the objective of
GEC. 2) word refinement: replacing inaccurate
words and phrases with more accurate and con-
cise ones. Evidence has shown that there are vi-
tal differences in vocabulary usage between native
and non-native writers (Malmasi et al., 2017). For
example, we replace “science” and “much” with
“scientific” and “considerable” in Table 1’s second
example. 3) structure modification: changing the
sentence or paragraph structure to convey the mean-
ing more concisely. For example, the third exam-
ple in Table 1 combines two similar sentences into
a single long sentence to convey the information
more efficiently.

Although there exist several large-scale corpora
for GEC (Yannakoudakis et al., 2011; Tajiri et al.,
2012; Mizumoto et al., 2012; Dahlmeier et al.,
2013; Napoles et al., 2017; Bryant et al., 2019),
they either focus on word/phrase/sentence level
text refinement or do not target scientific texts,
which makes none of them available for AWF. We
thus construct DOOLITTLE2, a large-scale, non-
parallel dataset containing 55.6K formal-academic
paragraphs and 13.0K informal-academic ones.
DOOLITTLE is based on the Semantic Scholar
Open Research Corpus (S2ORC; Lo et al., 2020).
For each paragraph, we ask human annotators to
rate the academic formality of the language via
crowdsourcing. Expert annotators then refine the
language for around 900 paragraphs to obtain a
parallel corpus that serves as the development and
test sets of DOOLITTLE.

To investigate the performance of state-of-the-art
models for AWF, we adopt four baseline models
of text style transfer, two baseline models from
low-resource GEC, the widely-available large lan-
guage model (LLM) ChatGPT, and two pretrained
language models (PLM) fine-tuned with our pro-

2Named after the lower-class protagonist from the English
film My Fair Lady, who undergoes training to transform her
accent and manners into one of a proper lady.

posed method: metric-oriented reinforcement learn-
ing (MORL). We find that style transfer mod-
els are unsuccessful in discriminating the differ-
ences between formal and informal text, resulting
in lower scores for academic formality, perplex-
ity, and meaning preservation, while GEC base-
lines perform relatively better across all metrics
but only marginally modify the inputs. On the
other hand, BARTLarge (Lewis et al., 2020) and
Galactica-1.3B (Taylor et al., 2022) fine-tuned with
our MORL approach provide comparable GEC
results to ChatGPT, despite having significantly
fewer parameters. Nonetheless, none could com-
prehensively outperform the ground truth formal-
academic paragraphs. It is worth noting that metric-
oriented RL has been explored in the context of
text generation, with some early studies (Wu et al.,
2016; Choshen et al., 2020) using RL for neural
machine translation optimized by BLEU, but with
limited success. To the best of our knowledge, we
are the first to demonstrate that applying metric-
oriented RL to PLMs yields promising results, in-
dicating that metric-based RL is well-suited for
powerful backbone models.

We summarize our contributions as follows: 1)
We propose a novel setting for paragraph-level lan-
guage refinement, formulating it as a text style
transfer problem. 2) We construct DOOLITTLE,
the first large-scale dataset for academic writing
formalization. Considering that AWF is a com-
mon use case of LLMs such as ChatGPT, we be-
lieve DOOLITTLE can serve as a good testbed for
benchmarking LLMs. 3) We propose a method,
metric-oriented reinforcement learning (MORL),
and show its effectiveness and cost-efficiency in
tuning PLMs. 4) We conduct a comprehensive
evaluation of neural approaches on our task and
show that their performance still suffers from a siz-
able gap compared to formal-academic rewrites by
humans. This highlights the need for the dataset
and the AWF task.

2 Related Work

Language Refinement. There are two tasks typ-
ical of language refinement, both focusing on en-
hancing the quality of sentences. Post-editing (No-
vak et al., 2016; Xia et al., 2017; Guu et al., 2018;
Freitag et al., 2019) is designed to rectify typical
errors in machine translation, thereby augment-
ing the generation quality, as measured by BLEU.
The other task, Grammatical Error Correction



(GEC), is formulated as a parallel translation task
with phrase-based machine translation (PBMT)
models (Rozovskaya and Roth, 2016; Junczys-
Dowmunt and Grundkiewicz, 2016), neural ma-
chine translation (NMT) models (Chollampatt and
Ng, 2018; Junczys-Dowmunt et al., 2018), and
hybrid PBMT–NMT models (Grundkiewicz and
Junczys-Dowmunt, 2018). However, these meth-
ods require large amounts of parallel data which
are expensive to annotate. To address this, low-
resource GEC (Bryant et al., 2019) builds models
that do not rely on large parallel data. Choe et al.
(2019), Grundkiewicz et al. (2019), and Zhou et al.
(2020) initially pretrain a transformer model with
large synthetic parallel corpora which are generated
from a realistic noising function and then fine-tune
this model on a small in-domain parallel dataset.

Reinforcement Learning from Human Feedback
(RLHF). As a notable advancement within the
realm of reinforcement learning (RL), reinforce-
ment learning from human feedback (RLHF) in-
tegrates human feedback into the training process.
This approach trains a model to align more closely
with user intentions, thereby equipping the model
with the ability to generate more reliable, authen-
tic, and useful results (Ziegler et al., 2019; Ouyang
et al., 2022; Dong et al., 2023). RLHF manifests
its advancement and convincing capability in the
recent state-of-the-art chatbot ChatGPT (OpenAI,
2022). The fundamental workflow of RLHF can be
succinctly summarized in three steps below: Step
1: Train a policy model with supervised training
on collected demonstration data. Step 2: Train a
reward model on collected comparison data. Step
3: Optimize the policy against the reward model
using reinforcement learning with proximal pol-
icy optimization (PPO) algorithm (Schulman et al.,
2017).

3 Dataset Construction

We present DOOLITTLE, a corpus of academic
formality non-parallel texts from scientific paper
sources (§ 3.1), where we manually annotate aca-
demic formality by crowdsourcing to obtain a large
set of non-parallel training paragraphs in two styles
(§ 3.2). We then conduct a second annotation task
called formal-academic rewrite in order to create a
small parallel dataset for evaluation (§ 3.3).

3.1 Data Source
Our focus lies on scientific texts, encompassing
both published articles and preprints as our pri-
mary sources. These scientific articles are typi-
cally of high quality, usually having been proof-
read, allowing models to focus on improvements in
terms of lexical choice and sentence structure. We
use the Semantic Scholar Open Research Corpus
(S2ORC) (Lo et al., 2020), a large corpus of 81.1
million English scientific papers spanning many
academic disciplines including medicine, biology,
computer science, and so on. There are four rea-
sons for choosing S2ORC: 1) It is a clean dataset
of scientific papers, which are of good quality with-
out trivial mistakes; 2) It exposes rich metadata,
inclusive of paper titles, authors, published venue,
and year of publication; 3) It provides full text
for 81.1 million open access papers without copy-
right issues, so that both the distribution of the data
and replication of our work are possible without
infringement; 4) The full text preserves meaning-
ful structures such as paragraph breaks and section
headers, so that the text is easily extracted.

3.2 Academic Formality Annotation
We now describe how we set up the annotation
crowdsourcing tasks to mark the academic formal-
ity of each paragraph. We first randomly sample a
subset of 90,000 short paragraphs which composed
of more than 2 sentences with lengths between 20
to 100 words. Then we classify them into formal-
academic and informal-academic paragraphs. We
adopt an unbiased means that ignores the paper au-
thors and instead asks human annotators to rate the
academic formality of each paragraph via crowd-
sourcing.

Annotation Task Overview. Each annotation
task contains 100 paragraphs. Annotators are asked
to score each paragraph from 1 (sounds informal-
academic) to 5 (sounds formal-academic). For any
paragraph that contains incomplete sentences, an
assignment of 0 is acceptable. We provide a de-
tailed annotation guideline to illustrate the stan-
dards for different scores. For example, a part of
the standard for rating a score of 2 is as follows:
“The language expression is unclear that you cannot
fully understand the meaning... ” We had four ex-
perts to construct a quality control test consisting of
500 examples, which we randomly inject into each
task. The detailed descriptions for each score with
corresponding examples and gold set construction



P# S# V# Avg. Words Avg. Sent. ACC-cola ACC-aesw PPL SIM ED BARTS

Train
FA 55.6K 172.8K 84.3K 51.42 3.11 97.56 79.64 24.44 - -
IFA 13.0K 41.3K 38.9K 52.17 3.17 95.81 68.51 32.56 - -

Dev
FA 465 1359 5.2K 47.33 2.92 98.49 78.27 31.19

98.75 11.03 -1.19
IFA 465 1362 5.3K 47.79 2.92 95.69 72.04 33.07

Test
FA 415 927 4.4K 42.52 2.23 98.31 77.83 33.18

98.09 10.87 -1.24
IFA 415 910 4.5K 43.08 2.19 95.66 69.64 35.97

Table 2: The statistics of the DOOLITTLE dataset, where P#, S#, V#, Avg. Words, and Avg. Sents. refer to the
number of paragraphs, number of sentences, vocabulary size, average words per paragraph, and average sentences
per paragraph, respectively. We also report the transfer accuracy (ACC), perplexity (PPL), Semantic Similarity
(SIM), char-level edit distance (ED), and BARTScore (BARTS). FA and IFA denote formal-academic and informal-
academic, respectively.

are shown in the Appendix A.

Publishing Annotation Tasks. We conduct an-
notation on the Amazon Mechanical Turk (AMT)
platform. For each annotation task, we randomly
sample a paragraph from each of the five scores in
the gold set for a total of 5 paragraphs with their
corresponding gold scores. These are used as test
cases for quality control and are amalgamated with
95 unannotated paragraphs. Each task is assigned
to two annotators independently. Annotators are
given 7 hours to complete the task. To refine the
cohort of workers that are eligible to complete our
task, we impose restrictions to include only annota-
tors who are located in primarily English speaking
countries, and who have finished at least 100 tasks
before on the AMT platform with an approval rate
above 90%.

Quality Control. We have the following stan-
dards to control the annotation quality:
• Time spent on each task should be greater than
500 seconds.
• Variance should be greater than a threshold ϵ1 to
ensure not all scores are the same.

V AR =
1

n

n∑
i=1

(xi − µ)2 > ϵ1 (1)

• The allowed discrepancy with gold set annota-
tions (defined below) must be smaller than a thresh-
old ϵ2.

GAP =
5∑

i=1

|annotationi − goldi| < ϵ2 (2)

where goldi denotes the score of i-th test case
and annotationi is its corresponding annotation.
Annotations that can not meet all of the above stan-
dards are rejected, and we provide the workers with
detailed reasons of rejection to help them improve

the quality of annotations. Any worker who re-
peatedly performs poorly (i.e., the rejection rate is
above 50% and he/she has done over 6 tasks) will
be eventually blocked from our tasks.

Constructing DOOLITTLE. We post-process the
annotations into binary scores — 0 (informal-
academic) or 1 (formal-academic) — using the
following rules. Here, we define S1 and S2 as the
scores given by Annotators 1 and 2, respectively.

• Incomplete: S1 = 0 or S2 = 0

• Informal-academic: 0 < S1 ≤ α and 0 <
S2 ≤ α

• Formal-academic: S1 > α and S2 > α

• Others: the remaining data whose scores do
not hold the above standards.

Paragraphs categorized under Incomplete and Oth-
ers would be filtered out because we want a cleaner
dataset with a high mutual agreement. α is set
to 2 according to our definition of the scores, as
indicated in the Appendix A.2. We thus obtain a
large set of non-parallel paragraphs in two styles
(Table 2): formal-academic and informal-academic.
We randomly select 500 informal-academic para-
graphs for development and another 500 for testing.
The remainder is used as training set.

Annotation Results. We evaluate the disagree-
ment between two annotators to check the quality
of annotation by Disagreement = |S1−S2|. We
observed that 43.30% annotations have the same
scores (disagreement is 0) and the disagreement of
about half (56.70%) annotations is 1, which indi-
cates there is a high rate of agreement. In addition,
the Cohen’s Kappa coefficient between two annota-
tors is 0.657, showing a strong agreement between
the two annotators’ scoring.



3.3 Test Set Construction

Our methodology produces a large, non-parallel,
binary-annotated corpus. To obtain a small parallel
development and test set for evaluation, we then
conduct formal-academic rewrites to produce a set
of paragraph pairs. To ensure the quality of the
development and test set, the two native speakers
involved in the construction of the gold set, who
are quite familiar with the standards of academic
formality and possess a thorough understanding of
our task, are asked to rewrite informal-academic
paragraphs into formal-academic paragraphs. Sub-
sequently, two authors of this paper reviewed the
rewrites and rejected those that do not meet the
required standards. The average time consumed
for a rewriting task containing 100 paragraphs is
220 minutes. During this process, incomplete para-
graphs were identified by annotators and removed
from the final development and test set. The final
statistics are shown in Table 2.

4 Dataset Analysis

4.1 Automatic Evaluation

• Transfer Accuracy (ACC) To capture the
transfer success of academic formality in para-
graph level, following Krishna et al. (2020), two
RoBERTa-Large (Liu et al., 2019) models are fine-
tuned on the CoLA corpus (Warstadt et al., 2019)
and the automated evaluation of scientific writing
shared task 2016 dataset (AESW) (Daudaravicius,
2015), serving as two academic formality classi-
fiers respectively. The transfer accuracy on gen-
erated paragraphs is reported as ACC-cola and
ACC-aesw separately, measuring the acceptability
of paragraphs. In addition, to capture the word-
gram level transfer accuracy, we adopted GLEU
(Napoles et al., 2015) and SARI (Xu et al., 2016)
which are commonly used in GEC and text revision
tasks.
• Fluency (FL) To measure the fluency of the gen-
erated paragraphs, we use perplexity (PPL), fol-
lowing the fluency evaluation in Dai et al. (2019)
and Cao et al. (2020). We fine-tune a pre-trained
GPT-2-Large language model (Radford et al., 2019)
on the formal-academic training set and use it to
calculate the perplexity in generated examples.
• Semantic Similarity (SIM) Following previous
benchmark (Krishna et al., 2020), we replace n-
gram metrics like BLEU (Papineni et al., 2002)
with the subword embedding-based SIM model

(Wieting et al., 2019) to capture the semantic simi-
larity. The similarities between a transferred para-
graph and its input are reported as SIM-input, while
the similarities between the transferred paragraph
and its human rewrite reference are denoted as SIM-
gold.
• BARTScore (BARTS) BARTScore (Yuan et al.,
2021) is a metric that formulates the evaluation of
generated text as a text generation task from the pre-
trained language model BART (Lewis et al., 2019).
BARTS can outperform other existing metrics in
the evaluation of text from different perspectives,
such as fluency, accuracy and integrity. A higher
BARTScore indicates that the reference paragraph
is more likely generated from the input paragraph
using a pre-trained BART model.

4.2 Quality of Formal-academic Rewrite
The quality of the parallel dataset consisting of
informal-academic paragraphs and corresponding
formal-academic rewrites is critically important for
evaluation, so we examine this subset from four
aspects: 1) academic formality improvement, 2)
fluency improvement, 3) semantic similarity and
edit distance, and 4) BARTScore. As illustrated
in Table 2, the ACC-cola scores on the develop-
ment and test sets have shown improvements of
2.8 and 2.65, respectively. In the case of ACC-
aesw scores, similar upward trends are observed,
with boosts to 6.23 and 8.19, respectively. Mean-
while, the PPL of the formal-academic rewrites
decreases by 1.88 and 2.79 when compared with
the informal-academic paragraphs. The increased
academic formality and reduced PPL show that
the formal-academic rewrites indeed improve aca-
demic formality and fluency. Lastly, DOOLITTLE

has a high semantic similarity and low edit distance,
implying that the original paragraphs are of good
quality and minimal modifications are performed.
This shows that academic writing formalization is
a challenging task that requires more fine-grained
lexical and structural modifications.

4.3 Common Mistakes and Types
To understand what types of mistakes are common
in informal-academic paragraphs and what edits
have been made in the formal-academic rewrite
process, we analyze all of the native rewrites in the
test set (Figure 1 gives examples with their corre-
sponding native human rewrites). The major error
types parallel our objectives of academic formality,
as introduced in § 1. And we observe a high per-



Grammar [S]: When apply Naturalistic Driving Film into the design process [...]
Grammar [T]: When applying Naturalistic Driving Film into the design process [...]
Spelling [S]: In this article we have tried to sumarize advantages that zebrafish can offer for immunological research.
Spelling [T]: In this article we have tried to summarize advantages that zebrafish can offer for immunological research.
Word Choice [S]: In a first analysis, speed behaviour was found to be non-linear according to Figure 2
Word Choice [T]: In an initial analysis, speed behaviour was found to be non-linear according to Figure 2
Redundancy [S]: The final flight was again a heading control test to verify once more the performance of that channel.
Redundancy [T]: The final flight was a heading control test to verify once more the performance of that channel.
Sentence Structure [S]: We want to show that some solutions of this equation do not exist in the future.
Sentence Structure [T]: In the future, we want to show that some solutions of this equation do not exist.

Figure 1: Examples of common types of mistakes in the negative ground truth data. ‘S’ denotes a source paragraph
which is written by a non-native speaker and ‘T’ denotes the target paragraph written by a native speaker. We
highlight the refined part in blue and its original expression in red.

centage of grammar and spelling errors (46.48%),
word choice issues (39.31%), as well as sentence
structure changes (14.00%).
• Grammar and spelling. This is the most com-
mon type of error and is also the easiest to iden-
tify. Many sentences contain grammatical errors
in subject-verb agreement, verb tense, and capital-
ization. Additionally, some sentences also contain
misspellings or typographical errors.
• Word choice. Many sentences are awkwardly
phrased. Although the usage of a word may make
sense in the original sentence, a more appropriate
word may be substituted to make the sentence more
fluent. Redundancy is also a problem, as some sen-
tences are overly discursive when describing ideas
that can be concisely explained.
• Sentence structure. In certain cases, a modifier
may be misplaced or in an incorrect order. There
are also a number of instances where the sentences
are too short or too long. In these cases, it would
be better to combine the short sentences and split
the long sentences.

5 Method

It could be speculated from our dataset analysis
results (§ 4) that our DOOLITTLE task is advanced
in terms of both quality and difficulty. To address
our task with reduced cost and better performance,
we proposed a method called metric-oriented re-
inforcement learning (MORL). This methodology,
inspired by reinforcement learning from human
feedback (RLHF) (Ziegler et al., 2019; Ouyang
et al., 2022), follows a similar three-step training
process to RLHF but with crucial modifications:
Step 1: Train a policy model (usually a PLM) that
can meet the requirements of a task. Step 2: Select
some metrics that can accurately evaluate the qual-
ity of how the task has been performed. Build a

reward model that can score a given policy model’s
output with a scalar. Step 3: Optimize the policy
against the reward model using reinforcement learn-
ing with the proximal policy optimization (PPO)
algorithm (Schulman et al., 2017).
The key distinction between RLHF and MORL lies
in Step 2 where RLHF trained a reward model with
collected comparison data while MORL utilizes
any existing, machine learning-based or not, tuned
or plug-and-play evaluation metrics to generate a
reward model. Through incorporating a variety of
evaluation metrics into the reward model, the cost
of implementing MORL becomes flexible and the
potential misalignment between human preference
and a single metric can be alleviated.

5.1 Policy Models
• Galactica-1.3B (Taylor et al., 2022) is a decoder-
only policy model. We train a Galactica-1.3B
model on the paragraph pairs of the format
[[paragraph A]]=[[paragraph B]] twice. For
the first time, paragraph A is sampled from the
formal-academic training set of DOOLITTLE, and
paragraph B is exactly a duplication of paragraph
A. For the second time, paragraph A and paragraph
B are a paragraph pair from the development set
of DOOLITTLE, where paragraph A is informal-
academic and paragraph B is its refined version.
After these two stages, the Galactica-1.3B model
learns to improve the left paragraph and put the
refined result on the right while preserving most of
the original content. In the end, after a final prompt
of [[paragraph A]]=, we sample from the model
with beam search (number of beams=4) and extract
the content within the second double-bracket-brace
as the refined version of paragraph A.
• BART-Large (Lewis et al., 2019) is a born strong
baseline for GEC task (Katsumata and Komachi,
2020). We selected the BART-Large model with



Academic Formality Fluency Similarity BARTS

Metric ACC-cola ACC-aesw SARI GLEU GPT-4 PPL GPT-4 SIM-input SIM-gold GPT-4 BARTS

Input 95.66 69.64 - - 4.32 35.97 4.55 - 98.09 - -

Style Transfer Models

ControlledGen 92.77 48.19 48.59 54.54 3.87 60.87 4.13 95.21 93.62 4.20 -1.64
DeepLatentSequence 84.81 50.36 37.46 50.40 3.55 68.45 4.15 90.45 88.97 3.78 -2.06
StyleTransformer 85.30 56.63 38.46 50.87 3.96 66.87 4.38 90.27 88.79 3.64 -2.19
DeleteAndRetrieve 66.50 66.02 7.98 1.07 2.91 34.11 3.36 21.12 20.27 2.22 -5.90

GEC Models

SequentialTransfer 94.70 70.36 49.17 71.30 4.32 41.19 4.45 96.80 95.55 4.26 -2.30
BART-GEC 95.90 70.12 69.10 74.72 4.40 35.83 4.66 99.01 97.24 4.94 -2.14

Instruction Tuned Models

ChatGPT 99.20 82.56 48.84 70.21 4.58 28.84 4.81 94.58 94.87 4.73 -1.62
MORL-BARTLarge 97.83 78.80 55.74 75.75 4.57 35.65 4.78 98.49 97.45 4.35 -1.32
MORL-Galactica1.3B 97.83 80.24 63.79 78.37 4.60 34.50 4.86 98.72 98.30 4.70 -1.34

Native Rewrite 98.31 77.83 - - 4.59 33.18 4.89 98.09 - 4.95 -1.24

Table 3: Results of models on DOOLITTLE test paragraphs. Automatic evaluation and GPT-4 judgments of academic
formality, fluency, and meaning preservation are reported. The highest scores of each metric among three instruction-
tuned models are bolded. Some metrics are not applicable for Input and Native Rewrite as they are derived from
comparison against these two sets, which are marked by ‘-’.

406M parameters, fine-tuned it on paragraph pairs
in the development set of academic writing formal-
ization, and used the tuned model as the second
policy model.

5.2 Reward Model
To make a more comprehensive reward model, we
amalgamate all four metrics mentioned in § 4.1.
For Transfer Accuracy (ACC), instead of using the
binary classification result, we utilize the classifica-
tion logits as the ACC score, and only ACC-aesw
is used. For other metrics (PPL, SIM-input, and
BARTScore), we directly take the unchanged evalu-
ation results. Each time our policy model generates
an output (usually a single paragraph), the reward
model first evaluates it utilizing all four metrics.
Following this, a weighted sum of all evaluation
scores is calculated as the final reward. The weights
assigned to each metric are manually determined
and optimized through a series of experiments.

6 Experiment

6.1 Experimental Settings
We apply nine models – four from non-parallel text
style transfer (ControlledGen (Hu et al., 2017),
DeepLatentSequence (He et al., 2020), Style-
Transformer (Dai et al., 2019), and DeleteAn-
dRetrieve (Li et al., 2018)), two from low-resource
GEC tasks (SequentialTransfer (Choe et al., 2019)
and BART-GEC (Katsumata and Komachi, 2020)),
one from ChatGPT, and two MORL-based models

– on DOOLITTLE to establish baseline performance.
We use the official code released by the authors
of our baseline (except ChatGPT), and follow the
recommended configuration settings from their cor-
responding papers. We report implementation de-
tails and hyper-parameter settings of the different
models with their size and running speed in the
Appendix.

6.2 GPT-4 Annotation

GPT-4-based annotation has been proven to be ef-
fective in multiple text annotation tasks (Gilardi
et al., 2023; Zheng et al., 2023). Considering
the advantages of GPT-4 in performance and cost-
effectiveness compared to human annotation on
MTurk, we apply GPT-4 to evaluate the refinement
results of all models on the DOOLITTLE test set.
Corresponding to the automatic evaluation metrics,
three annotation tasks are assigned to GPT-4 where
each focuses on one of the three aspects: Academic
Formality, Fluency, and Similarity versus input.
For each annotation task, we first feed GPT-4 a
comprehensive task description including the task
introduction, grading rubrics, the expected input
format, and the asked output format. Then, the texts
are given as formatted batches of paragraphs, and
the evaluation scores are fetched via scripts from
GPT-4’s response. For each model, we sampled the
first 100 paragraphs from its generation results on
the informal-academic DOOLITTLE test set. Addi-
tionally, we also sampled the first 100 paragraphs



from both formal-academic and informal-academic
academic writing formalization test sets, aiding
nuanced analyses of each model’s performance.
These GPT-4 annotation scores are reported with
a 5-scale value in Table 3. Appendix E gives the
detailed task description.

6.3 Overall Performance

Table 3 reports the evaluation results. First, we ob-
serve that all models targeted for generic style trans-
fer task — ControlledGen, DeepLatentSequence,
StyleTransformer and DeleteAndRetrieve — per-
form much worse than the inputs across all metrics.
Second, the results demonstrate that GEC-based
models — namely SequentialTransfer and BART-
GEC — outperform style-transfer-based models
and yield results that are slightly inferior or com-
parable to the inputs. This is consistent with our
expectation, as simply improving grammar by edit-
ing will make only incremental changes to a given
sentence. Therefore, style-transfer-based models
lack the ability to preserve the paragraphs’ orig-
inal meaning and may make redundant changes
which result in poor “refinement”. Third, the eval-
uation outcomes of DeleteAndRetrieve and Se-
quentialTransfer reveal the misalignment between
automatic evaluation metrics and GPT-4 annota-
tion scores, which can be attributed to the inherent
limitations of these automated metrics. No single
metric is able to perfectly capture the essence of
the academic writing formalization task, as each
metric is limited in what it measures and therefore
lacks the flexibility that humans or GPT-4 possess
to holistically evaluate the formality of a given text.
Fourth, all reinforcement-learning-based models
— ChatGPT, MORL-BARTLarge and MORL-
Galactica1.3B demonstrate superior performance
in our academic writing formalization (AWF) task,
outperforming all other models on almost all met-
rics. Specifically, when comparing to the DOOLIT-
TLE formal-academic test paragraphs, both Chat-
GPT and MORL-Galactica1.3B generate compet-
itively good refined paragraphs, comparable with
ground truth formal-academic rewrites in terms of
academic formality and fluency, but achieve lower
scores for similarity versus input and BARTScore.
MORL-BARTLarge performs slightly inferior to
the other two reinforcement-learning-based mod-
els, but still largely outperforms all other non-
reinforcement-learning-based models as well as
the inputs. Considering the substantial size differ-

ence between ChatGPT and MORL-Galactica1.3B
(1.3B) or MORL-BARTLarge (406M), our MORL
method exhibits remarkable advantages in both per-
formance and cost-efficiency.

In summary, only the three reinforcement-
learning-based models demonstrate a clear com-
petency in enhancing the original inputs in terms of
both academic formality and fluency metrics. Nev-
ertheless, none of the models consistently surpass
the ground truth formal-academic rewrites across
all four metrics. This supports the idea that aca-
demic writing formalization (AWF) is indeed a
difficult task that goes beyond simply correcting
grammatical mistakes.

6.4 Case Study
To further analyze the generation quality, we ex-
amined all input paragraphs together with every
baseline’s corresponding output. Table 8 shows
some representative sample. We observe that while
all models can generate complete and fluent text,
they also possess specific limitations: DeleteAn-
dRetrieve generates the text in a formal-academic
way with appropriate sentence structure but strug-
gles with preserving meaning; ControlledGen,
DeepLatentSequence, and StyleTransformer can
not provide any actual improvements to the input,
they either prefer to stay the same as the original in-
put or may modify the original semantics; Sequen-
tialTransfer and BART-GEC can sometimes suc-
cessfully make necessary changes to make the in-
put more formal-academic — however, most of the
time, they are incapable of modifying more gram-
matical errors; ChatGPT, MORL-BARTLarge,
MORL-Galactica1.3B provides a convincing re-
fined paragraph with necessary refinements. How-
ever, either some errors are ignored or the sen-
tence’s original meaning is changed which results
in non-perfect rewrite. It can be clearly observed
that all the above models still perform worse than
formal-academic human rewrites, thus indicating
the difficulty of our academic writing formaliza-
tion task. Additional cases are included in the Ap-
pendix F.

6.5 Ablation Study
In this section, we perform several ablations on
MORL-BARTLarge to study how each metric
used in MORL as well as the whole MORL module
affects the performance of MORL-BARTLarge.
In these ablation experiments, we manually set the
weight of one metric to zero, and then perform



Method ACC-aesw PPL SIM-input SIM-gold BARTS

BARTLarge w/o MORL 74.70 38.39 99.19 96.74 -1.34
MORL-BARTLarge 78.80 35.65 98.49 97.45 -1.32
MORL-BARTLarge w/o ACC 75.18 36.10 98.49 97.25 -1.29
MORL-BARTLarge w/o BARTS 78.55 37.90 97.97 96.86 -1.46
MORL-BARTLarge w/o PPL 77.83 41.15 98.68 97.53 -1.32
MORL-BARTLarge w/o SIM 78.80 35.61 97.74 96.67 -1.44

Table 4: Ablation studies of MORL-BARTLarge models. BARTLarge w/o MORL denotes the BART-Large policy
model without MORL tuning. MORL-BARTLarge w/o denotes that the corresponding metric’s weight is set to zero
during MORL-tuning.

MORL tuning on the BART-Large policy model
described in § 5.2 with all other parameters the
same as our optimized best setting. Thus, we can
study the contribution of each individual metric to
the MORL-BARTLarge model. These results are
shown in Table 4.

Comparing the results of the BART-Large pol-
icy model with and without MORL-tuning, we can
tell a noticeable performance gain across most of
the automatic metrics except SIM-input, which in-
dicates that MORL effectively boosts the perfor-
mance of the given policy model. Those variants
of MORL-BARTLarge models, namely MORL-
BARTLarge w/o, produced the worst evaluation
score of a specific metric among all MORL-tuned
models without exception. This phenomenon re-
veals that removing a certain metric from the
MORL-tuning process will prevent MORL from
optimizing the policy model’s properties which can
be measured by that metric. Each metric incorpo-
rated into MORL is practical in helping MORL
improve the policy model against the metric itself.

7 Conclusion and Future Work

We propose a new setting for language refinement
called Academic Writing Formalization (AWF),
which bridges the gap between formal-academic
and informal-academic writing. We contribute
a new dataset, DOOLITTLE, and evaluate nine
baseline models for AWF using both automatic
metrics and GPT-4 annotation, demonstrating that
paragraph-level refinement is a promising task with
significant room for improvement.

To address AWF, we propose a method called
metric-oriented reinforcement learning (MORL).
Leveraging MORL, we successfully elevate the
performance of BART-Large and Galactica-1.3B,
yielding results comparable to those of GPT-3.5
turbo-based ChatGPT, which possesses signifi-
cantly more parameters than our MORL-based

models. Even though such models do not outper-
form the formal-academic paragraphs due to the
difficulty of academic writing formalization, this
promising result has substantiated the advantages in
terms of competence and cost-efficiency of MORL.

In the future, we plan to incorporate external
knowledge and weakly supervised information into
the text rewriting process. We also assert that the
full potential of MORL as applied to large language
models remains to be tapped. It is foreseeable that
through the inclusion of more relevant metrics and
advanced modeling, MORL can enhance its capa-
bility further and be adapted to a broader spectrum
of NLP tasks.

8 Limitations

First, as a dataset constructed based on Semantic
Scholar Open Research Corpus (S2ORC) (Lo et al.,
2020), DOOLITTLE inevitably inherits most limita-
tions that have been discovered or potentially exist
from its parent. This is especially true for the non-
parallel training set where we do not collect any
new data. For those who want to adopt our dataset
in the future, a comprehensive study of S2ORC is
needed. Second, for the evaluation of model per-
formance, we observed the differences in some re-
sults between well-performing models — ChatGPT,
MORL-BARTLarge, and MORL-Galactica1.3B —
are indeed subtle. Considering the randomness
in language model generation, our current evalu-
ation metrics lack discriminability on our AWF
task. Hence, we only draw indicative conclusions
about the models’ performance, such as “They are
competitively good...”, lacking more concrete de-
tails. Third, prompt tuning has been applied several
times in this paper. However, it is not possible to
determine the most suitable prompt from the infi-
nite space of prompt choices. Thus, despite all the
prompts we mentioned being properly tuned from a
series of experiments, we do not guarantee that our



methods fully exploit the potential of each model
and the capability of GPT-4 annotation.

9 Ethical Considerations

The data and task presented in this paper are of a
sensitive nature, as there is the concern of judging
the English writing of scientific researchers. We ac-
knowledge this and highlight some of the measures
we have taken below.
• Anonymity. We are aware that it is possi-
ble to use a search engine to de-anonymize para-
graphs. Our preliminary investigations yield that
over 40% of our data do not yield any results on
Google. We also deliberately exclude metadata of
the paragraphs to further protect the authors’ iden-
tity. While acknowledging the potential of the dual
use of DOOLITTLE, we believe that our dataset,
when not actively abused and extensively searched
on Google, can be useful for style transfer tasks. It
would be a misuse of DOOLITTLEto identify au-
thors and use their traits to correlate with mastery
of academic writing.
• Potential Error. Given the nature of our dataset
construction with human annotators, there will be
errors and disagreements in the annotation: cer-
tain academic formality scores are inaccurate. We
emphasize that these scores are not to be taken as
any form of absolute judgment on any scholars’
English writing ability.
• Academic Formality Classification. We present
this dataset not only with the purpose of explor-
ing academic formality classification, but also as
an extension to the task of writing style transfer.
As such, this task can be broadened to other types
of text style transfer. To further focus on the aca-
demic formality task, it is also possible for one to
construct a dataset of papers to emulate and use as
positive examples.
• Copyright. The S2ORC dataset is constructed
from open-access academic papers without any
copyright issues. Note that there is no licensing
information that accompanies the original S2ORC
dataset3. We thus infer that third-parties are al-
lowed to use the data in view of the open-access
status of the papers.

In light of these issues, we plan to follow a data
release plan where DOOLITTLE will only be re-
leased to researchers who explicitly consent to not
de-anonymize any of the paragraphs.

3https://github.com/allenai/s2orc/
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Appendix

A Annotation Details

A.1 How to Determine Academic Formality

One potential avenue is to distinguish aca-
demic formality by the country of the first au-
thor’s affiliation. However, we eschew this
method for three reasons: 1) The first author
does not necessarily contribute to all of the
paper writing. 2) Even in primarily English-
speaking countries, there are many who do
not speak English as their first language. 3)
Determining academic formality by country
involves the ethical issue of regional discrimi-
nation. Instead, we adopt an unbiased means
that ignores the paper authors and instead asks
human annotators to rate the academic formal-
ity of each paragraph via crowdsourcing.

A.2 Annotator’s Instruction

The detailed descriptions are shown below to il-
lustrate the meaning of different scores, which
are presented with examples to annotators as
well.
• Score 0 [incomplete]. For any incomplete
sentences, which is only a sentence fragment,
you may give it 0 score.
• Score 1 [informal-academic]. You are
100% sure that the paragraph was written by
a non-native writer. The language expression
is very unclear or weird that you have no idea
what meaning he is trying to express even by
guessing. Usually, there are serious grammat-
ical errors, spelling problems. Redundancy
problems.
• Score 2 [somewhat informal-academic].
You are not 100% sure that the paragraph was
written by a non-native writer. The language
expression is unclear that you cannot fully un-
derstand the meaning. However, you can guess
what meaning he/she is trying to express. Usu-
ally, the paragraph is fine with slight errors.
For example, there are some spelling, punc-
tuation, capitalization problems. Redundancy
problem, which means there could be a better
expression, for example, split a long sentence
into two short sentences.
• Score 3 [between formal-academic and
informal-academic]. You are not confident

whether the paragraph was written by a non-
native writer or not. You can fully understand
the meaning he/she is trying to express without
guessing. However, the language expression is
rigid and unnatural (for example, Chinglish).
A native writer usually won’t express the same
meaning in this way.
• Score 4 [somewhat formal-academic]. You
are not 100% sure that the paragraph was writ-
ten by a native writer. You can fully understand
the meaning the paragraph is trying to express
and the language is natural and fluent. The lan-
guage expression is very consistent with the
style of native writers. However, there are mi-
nor parts in the paragraph that can be further
improved to make it closer to formal-academic
English. For example, replace a certain word
with another word to express the meaning more
precisely.
• Score 5 [formal-academic]. You are 100%
sure that the paragraph was written by a na-
tive writer, which means you cannot rewrite it
better than it. The language is very clear and
fluent, completely in the style of native writers.
You cannot rewrite a better one.

A.3 Gold Set Construction

Prior to large-scale annotation, four experts —
two of whom are native English speakers and
the other two are authors of this paper (one is
a native English speaker) — worked together
to produce a gold set for quality control. The
task is the same as the one introduced before,
and the annotation guidelines are presented to
the annotators. We provide sufficient training
for these two external annotators, inclusive of
discussion, to ensure consistency and quality.
Conflicting annotations were discussed by all
four annotators to produce a final rating. In the
end, we construct a gold set consisting of 500
paragraphs as the probing set, which is injected
into the large-scale annotation tasks for quality
assurance in the crowdsourced annotation.

A.4 Analysis of Annotation

Our data source, S2ORC, contains a diverse
set of academic disciplines, whose resultant
discipline distribution is shown in Figures 2
and 3. We draw two observations, both quite
consistent with the overall distribution of the



Figure 2: Disciplines on informal-academic dataset

original dataset, S2ORC: 1) There are 19 dis-
ciplines in total and the distribution is similar
between the formal-academic and informal-
academic datasets. 2) Medicine, Computer
Science, Mathematics, Physics, and Biology
are the five top fields of study.

We also analyze the difference between
preprints without peer review and published
papers after peer review. Using the metadata
provided by S2ORC, we can infer that a pa-
per was published if it possesses an ACL ID
(the unique ID for papers on the ACL An-
thology), a DOI (Digital Object Identifier), or
venue/journal information. Our results indi-
cate that 83.5% of published paragraphs are
identified as formal-academic by annotators
while this ratio is 81.1% for preprints. We
also evaluate the academic formality score and
PPL for these two splits and observe that pub-
lished paragraphs have a higher academic for-
mality score (82.80 versus 78.31) and lower
PPL (24.22 versus 26.47), demonstrating that
published paragraphs sound more native and
fluent. This is reasonable as authors make ex-
tensive revisions after the review process and
address many writing issues following the feed-
back from reviewers. Therefore, peer review
is a key process for improving writing quality.

B Experimental Settings

We apply nine models – four from non-parallel
text style transfer, two from low-resource GEC
tasks, ChatGPT, and two MORL-based models
– on DOOLITTLE to establish a baseline perfor-
mance. Other than our proposed method, these
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approaches are chosen as 1) they are highly
related to our proposed academic formality
transfer task; 2) they require non-parallel data
or only limited parallel data. 3) ChatGPT is
the current SOTA Chatbot whose performance
in generic NLP tasks has been proven. Hence,
they provide a good starting point for approach-
ing our proposed task. By analyzing our exper-
imental results, we highlight the challenges in-
herent in this task and provide insights into fu-
ture research directions. In this section, we pro-
vide the details of baseline models and training
settings.

B.1 Baseline Models

• ControlledGen (Hu et al., 2017): a model
combining variational auto-encoders (VAEs)
and attribute discriminators to learn disentan-
gled latent representations with designated se-
mantics.
• DeepLatentSequence (He et al., 2020): a
generative probabilistic model with few inde-
pendence assumptions based on a standard at-
tentional sequence-to-sequence approach and
an encoder-decoder architecture.
• StyleTransformer (Dai et al., 2019): a
Transformer-based model for learning con-
tent and style vectors without parallel data by
cyclic reconstruction.
• DeleteAndRetrieve (Li et al., 2018): an
RNN-based model which firstly extracts
content words by removing style-dependent
phrases and then retrieves and integrates new
phrases related to the target attribute into a
fluent sentence.



• SequentialTransfer (Choe et al., 2019): a
low-resource GEC method using a realistic
noising function to generate synthetic parallel
corpora which are applied to pre-train a Trans-
former model. Then the pre-trained model is
adapted to the targeted dataset by fine-tuning.
• BART-GEC (Katsumata and Komachi,
2020): a baseline model from GEC which uti-
lizes BART (Lewis et al., 2020) as a pretrained
model and fine-tunes the model on the target
dataset.
• ChatGPT (OpenAI, 2022): a chatbot devel-
oped by OpenAI based on their large language
model GPT-3.5-Turbo (Brown et al., 2020)
which can handle a variety of text generation
tasks in a question-Answering fashion with
properly adjusted prompts.

To adapt ControlledGen, DeepLatentSe-
quence, StyleTransformer, and DeleteAn-
dRetrieve to our task, we simply treat formal-
academic and informal-academic as two dif-
ferent styles and train the models by following
the text style transfer pipeline with our non-
parallel training data. For SequentialTrans-
fer, we follow Choe et al. (2019) to use a nois-
ing function on several high-quality corpora
as well as our formal-academic training data
to generate synthetic parallel data in order to
pre-train the transformer-based model. Then
we use parallel data from the development set
to fine-tune the model. For BART-GEC, we
follow Katsumata and Komachi (2020) to use
BART as a pre-trained model and fine-tune
the model using parallel data from the devel-
opment set. For ChatGPT, we tested a vari-
ety of question templates and manually select
the one that can make ChatGPT perform the
best in our AWF task, which is mentioned in
Appendix D. For MORL-BARTLarge and
MORL-Galactica1.3B, we first fine-tune two
policy models following instructions in § 5.1
from the pretrained models. Then, we optimize
those tuned policy models using our reward
model mentioned in § 5.2 with the PPO algo-
rithm implemented through Transformer Rein-
forcement Learning (TRL) library (von Werra
et al., 2020). For MORL-BARTLarge, we
input raw paragraphs of DOOLITTLE formal-
academic development set to the policy model
and feed the raw sampled output to the re-

ward model to get its scalar reward. For
MORL-Galactica1.3B, we also use DOOLIT-
TLE formal-academic development set as the
input data source. However, instead of di-
rectly feeding raw paragraphs to the policy
model, we first pre-process the input paragraph
to the format described in § 5.1— [[ raw
paragraph ]] =. In the end, we extracted the
paragraph within the second double-bracket-
brace from the raw generated output as the
input to the reward model. One more thing to
mention is that, during the training process of
MORL, we also calculate the KL-divergence
between outputs from policy models before
and after reinforcement-learning-optimization
to ensure the optimized model does not deviate
too much from the original one.

B.2 Hyper-parameter Settings

Table 5 reports the hyper-parameters we used
for tuning our baselines and our models tuned
with MORL. For each model, we try combi-
nations of the hyper-parameters and report the
one with the highest academic formality score
in our paper. Each model is trained on a Tesla
V100S-PCIE GPU with 32GB memory. Table
6 reports the hyperparameter configurations for
best-performing models of the baseline mod-
els.

Types Values

Learning Rate 10−6, 10−5, 3× 10−5, 10−4

Dropout Rate 0.1, 0.2, 0.3, 0.4, 0.5
Batch Size 1, 4, 8, 16, 32
Embedding Dimensions 128, 256, 300, 512, 768
Max Input Length 100, 130
Metric Weight 2× 10−4, 5× 10−3, 0.1, 1

Table 5: The hyper-parameters for tuning our baselines
where Metric Weight is only applicable for MORL tun-
ing.

C Model Size and Running Speed

Table 7 reports the number of trainable parame-
ters and the inference speed (sentences/second)
of all models except ChatGPT on the bench-
mark. The test is performed on Tesla V100S-
PCIE GPU with 32GB memory.

D Description of ChatGPT AWF Task



CG DLS ST DAR SQ BA MB MG

Max epochs 30 5 5000 500 30 1000 5 5
Best epochs 10 4 2500 300 15 500 2 5
Learning Rate 3× 10−4 10−3 10−4 3× 10−4 3× 10−4 3× 10−5 10−6 10−6

Dropout Rate 0.5 0.3 0.1 0.3 0.3 0.3 0.1 0.1
Batch Size 16 32 16 16 32 32 4 1
Embedding Dimensions 300 128 256 128 512 1024 1024 2048
Max Input Length 100 130 100 100 100 100 128 256

Table 6: The hyperparameter configurations for best-performing models of all models except ChatGPT. CG, ST,
DAR, SQ, BA, MB and MG denote ControlledGen, StyleTransformer, DeleteAndRetrieve, SequentialTransfer,
BART-GEC, MORL-BARTLarge and MORL-Galactica1.3B.

Dataset CG DLS ST DAR SQ BA MB MG
P. S. P. S. P. S. P. S. P. S. P. S. P. S. P. S.

Test dataset 141M 4.76 69M 2.23 134M 0.97 100M 0.67 123M 5.49 406M 2.13 406M 2.13 1.3B 0.62

Table 7: The number of trainable parameters (P.) and the running speed (sentences/second, S.) on the test sets
of all models except ChatGPT. CG, ST, DAR, SQ, BA, MB, and MG denote ControlledGen, StyleTransformer,
DeleteAndRetrieve, SequentialTransfer, BART-GEC, MORL-BARTLarge, and MORL-Galactica1.3B.

D.1 ChatGPT AWF Task
Help me refine the following paragraph within "« »" to
make it more formal-academic. Specifically, you should
follow the 3 steps below:
Step1: Find and locate all grammatic mistakes in terms of
grammar and spelling, word choice and sentence structure
in the given paragraph. (Note that it is OK if you can’t find
any mistake. In this case, just respond with the original
given paragraph within "« »".)
Step2: Correct all mistakes you found in Step 1 without
changing any parts else in the paragraph.
Step3: Output the refined paragraph within "« »" in your
response without anything else.

Notice:
1) minimal changes to the original paragraph are preferred
2) you should try to preserve the given paragraph’s original
meaning and sentence structure as much as possible.

Here are some examples:

example 1
example 2
example 3

The given paragraph is: « paragraph content »

E Description of GPT-4 Annotation Task

E.1 Academic Formality Annotation Task
You are asked to participate in a text evaluation task
whose main objective is to score the degree of “Academic
Formality” for given paragraphs. Evaluating the degree
of “Academic Formality” means judging whether a given
paragraph sounds like a paragraph written by a native
English speaker or not. The scale of Academic Formality
score is an integer from 1 to 5. The detailed scoring rubric
is as below:

Score 0: If the paragraph contains any incomplete sentence
which doesn’t sounds likes being written by human.
Score 1: You are 100% sure that the paragraph was written
by a non-native speaker. The language expression is very
unclear or weird which makes you have no idea what
meaning the author is trying to express even by guessing.
Score 2: You think the paragraph was probably written by a
non-native speaker. The language expression is unclear that
you cannot fully understand the meaning. But you can guess
what meaning the paragraph is trying to express.
Score 3: You are not confident about whether the paragraph
was written by a non-native speaker or not. You can fully
understand what the paragraph is trying to express without
guessing. However, the language expression is rigid and
unnatural (for example Chinglish). A native English speaker
usually won’t express the same meaning in this way.
Score 4: You think the paragraph was probably written by a
native speaker. You can fully understand the meaning the
paragraph is trying to express and the language is natural
and fluent. The language expression is very consistent
with the style of native English speakers. But there are
minor parts in the paragraph that can be further improved
to make it closer to native English. For example, replace
a certain word with another word to express the meaning
more precisely.
Score 5: You are 100% sure that the paragraph was written
by a native speaker, which means you cannot rewrite it any
better. The language is very clear and fluent, completely in
the style of native English speakers. You cannot rewrite a
better one.

Each time, you will be given a batch of 20 paragraphs with
format below:
Paragraph 1: <Content of Paragraph 1>
Paragraph 2: <Content of Paragraph 2>
. . . . . .
Paragraph 20: <Content of Paragraph 20>
You should only output a json object that contains the fol-
lowing keys: Paragraph ID, Scoring Reason and Academic
Formality Score. Note for "Scoring Reason", you need to
briefly elaborate the reason why you grade the given para-
graph such a Academic Formality score within 20 words.



E.2 Fluency Annotation Task
You are asked to participate in a text evaluation task whose
main objective is to score the degree of “Fluency” for given
paragraphs. Evaluating the degree of “Fluency” means
judging whether the paragraph is consistent and coherent.
The scale of Fluency score is an integer from 1 to 5. The
detailed scoring rubric is as below:

Score 0: If the paragraph contains any incomplete sentence
which doesn’t sounds likes being written by human.
Score 1: The paragraph is neither consistent nor coherent
at all which makes you have no idea about what the
paragraph is trying to express even by guessing. Usually,
it means some parts of the paragraph are not related to
others. Note that a paragraph with errors like logic bugs
and contradictions should not be scored to 1 since the
occurrences of these errors require the context has some
relation.
Score 2: The paragraph is neither consistent nor coherent,
but you can still have a brief idea about what the given
paragraph is trying to express by guessing. The only
difference between scores 1 and 2 is that for score 2,
different parts of the given paragraph are more or less
related to others. However, you can only guess at what
the paragraph is trying to express as these parts are
managed without logic. Score 3: You can fully understand
what the given paragraph is trying to express without
guessing. However, it is obvious that the content is neither
coherent nor consistent. For example, you can easily find a
contradiction within the paragraph even though you are not
an expert in this discipline. For these paragraphs, you should
be able to rewrite them by adding, deleting, or exchanging a
few words but hard to keep its original meaning.
Score 4: You can easily understand what the given
paragraph is trying to express since its content is both
coherent and consistent. However, you can still find
some minor contradictions or bugs that can only be
found by experts or native English speakers. For these
paragraphs, you should be able to rewrite it to make
it more consistent or coherent by adding, deleting,
or exchanging few words while keeping its original
meaning. Score 5: The content of the given paragraph is
both coherent and consistent. For these paragraphs, you
can’t rewrite them to make them more consistent or coherent.

Each time, you will be given a batch of 20 paragraphs with
format below:
Paragraph 1: <Content of Paragraph 1>
Paragraph 2: <Content of Paragraph 2>
. . . . . .
Paragraph 20: <Content of Paragraph 20>

You should only output a json object that contains the
following keys: Paragraph ID, Scoring Reason and Fluency
Score. Note for "Scoring Reason", you need to briefly
elaborate the reason why you grade the given paragraph
such a Fluency score within 20 words.

E.3 Similarity Annotation Task
You are asked to participate in a text evaluation task whose
main objective is to score the degree of “Similarity” for
given paragraphs and their respective reference paragraphs.
Evaluating the degree of “Similarity” means to judge
whether the given paragraph is similar to its reference
paragraph in terms of content, vocabulary usage and writing
style.

The scale of Similarity score is an integer from 1 to 5. The
detailed scoring rubric is as below:
Score 0: If the given paragraph contains any incomplete
sentence which doesn’t sounds likes being written by human.
In this case, you can directly give the given paragraph score
0 without reading its reference paragraph.
Score 1: The content of the given paragraph has nothing to
do with its reference paragraph. The things they are trying
to express don’t even belong to the same discipline or area
of research. The sentence structure of given paragraph is not
similar to its reference at all.
Score 2: You can distinguish the given paragraph and its
reference paragraph are talking about two unrelated things.
However, you can tell what they are trying to express belong
to a same discipline or area of research because they share
some similarities in one or two of the 3 aspects: vocabulary
usage, writing style or sentence structure.
Score 3: You can distinguish the given paragraph and its
reference paragraph are talking about two unrelated things.
However, you can tell what they are trying to express belong
to a same discipline or area of research because they share
some similarities in all 3 aspects: vocabulary usage, writing
style and sentence structure.
Score 4: You can determine that the given paragraph and its
reference paragraph are talking about a same thing and they
share similar vocabulary and sentence structure. However,
they may not share the same viewpoint or focus on the same
aspect of that thing.
Score 5: The given paragraph and its reference are very
similar, and they are talking about the exact same thing
with exact same viewpoint and focus. In this case, you
can only find few differences between the given paragraph
and its reference, like some words being replaced with its
synonyms, differences in tenses or some minor grammatic
errors etc.

Each time, you will be given a batch of 10 paragraphs and
their respective reference paragraphs with format below:

Paragraph 1: <Content of Paragraph 1>
Reference paragraph for paragraph 1: <Content of
Paragraph 1’s reference paragraph>
Paragraph 2: <Content of Paragraph 2>
Reference paragraph for paragraph 2: <Content of
Paragraph 2’s reference paragraph>
. . . . . .
Paragraph 10: <Content of Paragraph 10>
Reference paragraph for paragraph10: <Content of
Paragraph 10’s reference paragraph>

You should only output a json object that contains the
following keys: Paragraph id, Scoring Reason and Similarity
Score. Note for "Scoring Reason", you need to briefly
elaborate the reason why you grade the given paragraph
such a Similarity score within 20 words.

Response “Yes, I’m ready” if you fully understand
your task.

F Examples for Case Study

Table 8 shows three more generated samples
from our baseline models.



Model Paragraph Example

Origin In each subsections the effect of each parameters are analyzed and individually.
ControlledGen In each subsections the effect of each parameters are analyzed and individually.
DeepLatentSequence In each way the effect of each parameters are analyzed and individually .
StyleTransformer These results are explained in details in the subsequent subsections.
DeleteAndRetrieve These results show of the best parameter values for the corresponding [...]
SequentialTransfer In each subsection the effect of each parameter are analyzed and individually.
BART-GEC In each subsections, the effect of each parameters are analyzed and individually.
ChatGPT In each subsection, the effects of each parameter are analyzed individually.
MORL-BARTLarge In each subsection, the effects of each parameter are analyzed and individually.
MORL-Galactica1.3B In each subsection, the effect of each parameter is analyzed and individually.
GroundTruth In each subsection, the effect of each parameter is analyzed individually.

Origin When apply Naturalistic Driving Film into the design process, there are several
aspects need to take into consideration.

ControlledGen When apply Naturalistic Driving Film into the design process, there are several
aspects need to take into consideration.

DeepLatentSequence When apply longitudinally driving film into the design process, there are several
aspects need to take into consideration.

StyleTransformer When apply Realist Driving Film into the design process, there are several
aspects need to take into consideration.

DeleteAndRetrieve When the student’s interest is the same as the most important thing ...
SequentialTransfer When applying Naturalistic Driving Film into the design process, there are

several aspects needed to take into consideration.
BART-GEC When apply Naturalistic Driving Film into the design process, there are several

aspects need to take into consideration.
ChatGPT When incorporating Naturalistic Driving Film into the design process, there

are several aspects that need to be taken into consideration.
MORL-BARTLarge When apply Naturalistic Driving Film into the design process, there are several

aspects to need to take into consideration.
MORL-Galactica1.3B When apply Naturalistic Driving Film into the design process, there are several

aspects need to be considered.
GroudTruth When applying the Naturalistic Driving Film in the design process, there are

several aspects that need to be taken into consideration.

Origin ... of histamine biosynthesis would be expected to be a useful tool in the analysis
of the biological roles of this biogenetic amine.

ControlledGen ... of histamine biosynthesis would be expected to be a useful tool in the analysis
of the biological roles of this nearfields amine.

DeepLatentSequence ... of gabaergic biosynthesis would be expected to be a useful tool in the analysis
of the biological roles of this enigmatic entity.

StyleTransformer ... of histamine biosynthesis would be expected to be a useful tool in the analysis
of the biological roles of this pathogenesis.

DeleteAndRetrieve ... present the results of the study of the different types of remifentanil.
SequentialTransfer ... of histamine biosynthesis would be expected to be a useful tool in the analysis

of the biological roles of this biogenic amine.
BART-GEC ... of histamine biosynthesis would be expected to be a useful tool in the analysis

of the biological roles of this biogenetic amine.
ChatGPT ... of histamine biosynthesis would be expected to be a useful tool in the analysis

of the biological roles of this biogenic amine.
MORL-BARTLarge ... of histamine biosynthesis would be be expected to a useful tool in the analysis

of the biological roles of this biogenetic amine.
MORL-Galactica1.3B ... of histamine biosynthesis would be useful in the analysis of the biological

roles of this biogenetic amine.
GroundTruth ... of histamine biosynthesis would be be expected to a useful tool in the analysis

of the biological roles of this biogenetic amine.

Table 8: Examples of refined results and academic writing formalization test set. Red and italic words indicates
wrong usage in the original sentence, Blue and italic words are words refined by insertion or replacement while
Green and italic words with strikethrough are words regined by deletion.


