
A Proof for Propositions and Theorems

Proposition 3.1 Denote v as the probability ratios q(a|s)
pπ(a|s) calculated from sampled trajectories. If there are

sufficient number of sampled v, we have E[v] = 1 and E [v log v] ≤ Var(v − 1).

Proof. Denote pπ(s, a) and q(s, a) are the probability density function of the state-action distribution under
different policies. Considering the divergence between q and pπ are small, we assume that the policy change
will not cause the change in state distribution. We denote d(s) as the probability density function of the state
distribution. From the definition of the probability density function, we know that

∫
pπ(s, a) d (s, a) = 1,

Considering the current trajectories are sampled under policy pπ , we can obtain that

E[v] =
∫
pπ(s, a)

q(a | s)
pπ(a | s)

d (s, a)

=

∫
pπ(s, a)

q(a | s)× d(s)
pπ(a | s)× d(s)

d (s, a)

=

∫
pπ(s, a)

q(s, a)

pπ(s, a)
d (s, a)

=

∫
q(s, a) d (s, a) = 1,

(10)

as p(s, a) is a probability density function. Therefore, E[v] = 1 is proven. Q.E.D

Theorem 3.7 For a probability ratio vector v, if the variance of v is constant, then the upper bound of
the approximated forward KL divergence DKL(π ‖ πθ), will decrease as the element-wise lower bound of v
increase.

Proof. Using the same symbol in Proof of Proposition 3.1, v is the vector consists of v =
pπθ (s,a)

pπ(s,a)
and the

definition of the forward KL divergence DKL(π ‖ πθ) can be expressed as

DKL(π ‖ πθ) =
∫
pπ(s, a) log

pπ(s, a)

pπθ (s, a)

= −E [log v]

= −
∑

log v

N

= − log(

N∏
i=1

vi)
1
N ,

(11)

where N is the number of elements in v. According to the Theorem in Cartwright & Field (1978), we obtain
that

E(v)−
N∏
i=1

v
1
N
i ≤

1

2N min vi

N∑
i=1

(vi − E(v))2. (12)

As we know E(v) = 1 from Proposition 3.1,
∏N
i=1 v

1
N
i > 0, and

∑N
i=1(vi − E(v))2 = N ·Var(v) , we have

N∏
i=1

v
1
N
i ≥ 1− Var(v)

2min vi

log

(
N∏
i=1

v
1
N
i

)
≥ log

(
1− Var(v)

2min vi

)
DKL(π ‖ πθ) ≤ − log

(
1− Var(v)

2min vi

)
≈ Var(v)

2min vi
.

(13)

As Var(v) is a constant, Equation (13) proves the upper bound of DKL(π ‖ πθ) is Var(v)
2min vi

, showing that the
upper bound of DKL(π ‖ πθ), will decrease as the element-wise lower bound of v, min vi, increase.

Q.E.D

Theorem 3.4 Given a feasible optimization problem of the form:
maximize

v
v ·A

s.t. v ·Ac ≤ D
‖v‖2 ≤ 2Nδ E(v) = E(A) = E(Ac) = 0

12

where v, A, and Ac are N -dimensional vectors, then the optimal solution v will lie in the A-Ac plane
determined by Ac and A.

Proof. Assuming v, A, and Ac can be represented by three orthonormal basis vectors i, j, and k, where
v = a1i+ b1j+ c1k, A = a2i+ b2j, and Ac = a3i, then the optimization problem becomes:

maximize
a1,b1

a1a2 + b1b2

s.t. a1 ≤ D/a3
a21 + b21 ≤ 4N2δ2 − c21

(14)

From the geometric interpretation, we can find the optimal solution of the above problem always exists on the
circle a21 + b21 = 4N2δ2 − c21. By increasing the radius of the circle, the line a1a2 + b1b2 will have a larger
intercept. Thus, the aforementioned problem will get its optimal solution when c1 = 0, i.e., v will lie in the
A-Ac plane determined by Ac and A.

Q.E.D

B Derivation in EM framework

B.1 Derivation of evidence lower bound

Following the definition in Section 3.1, we have p(O = 1|(s, a)) ∝ exp(A(s, a)/α). Assume the likelihood
of acting a under s and θ is p(a|s, θ) = pπθ (a|s) ∗ p(θ) Then we can obtain following evidence lower
bound(ELBO)

log pπθ (O = 1) = log

∫
p(O = 1|(s, a)) ∗ pπθ (s, a) ∗ p(θ) d (s, a)

= logEs∼dq,a∼q
[
p(O = 1|(s, a)) ∗ pπθ (s, a) ∗ p(θ)

q(s, a)

]
≥ Es∼dq,a∼q

[
log p(O = 1|(s, a)) + log

pπ(s, a)

q(s, a)
+ log p(θ)

] (15)

where dq is the state distribution under theoretical optimal distribution q. If we assume that the sampled policy π
and q is enough close that dπ = dq , then

log pπθ (O = 1) ≥ Es∼dq,a∼q log p(O = 1|(s, a)) + Es∼dq,a∼q log
pπθ (s, a)

q(s, a)
+ log p(θ)

∝ Es∼dπ,a∼q [A(s, a)] + αEs∼dπ,a∼q log
pπθ (a|s)
q(a|s) + log p(θ)

= Es∼dπ,a∼π
[
q(a|s)
pπ(a|s)

A(s, a)

]
− αDKL(q ‖ πθ) + log p(θ)

(16)

Thus, the ELBO in Equation (1) is obtained.

B.2 Derivation in M-step

Recall Equation (7) in Section 3.4, we have following optimization problem

maximize
θ

−αDKL(q ‖ πθ) + log p(θ). (17)

Consider θ is a Gaussian prior around the policy parameter of sampled policy θ̂, i.e., θ ∼ N (θ̂,
F
θ̂

αβ
). Therefore,

the problem above will become

maximize
θ

−αDKL(q ‖ πθ)− αβ(θ − θ̂)TF−1

θ̂
(θ − θ̂). (18)

Note that (θ − θ̂)TF−1

θ̂
(θ − θ̂) is the second order estimation of DKL(π ‖ πθ), we have

maximize
θ

−DKL(q ‖ πθ)− βDKL(π ‖ πθ). (19)

By converting the soft KL constraint into a hard constraint, we can obtain

minimize
θ

DKL(q ‖ πθ)

s.t. DKL(π ‖ πθ) ≤ δ,
(20)

which is the same optimization problem as in Equation (8).

13

C Details in heuristic algorithm and M-step

C.1 Heuristic algorithm

The detailed steps of iteratively heuristic algorithm are shown in Algorithm 1. Note that, after masking, the
masked elements are removed from the original vector, which means the size of v′ ,A′c, and A′ is smaller than
v ,Ac, and A.

Algorithm 1 Iteratively Heuristic Algorithm
Input: Advantage vector A, Ac

Using QR decomposition to orthonormalize Aand Ac into orthogonal unit vectors Ãc = kAc and
Ã.
Find θ′ that makes v = 2Nδ′(cos θ′Ãc + sin θ′Ã) become the optimal solution of the problem in
Theorem 3.4.
while v violates element-wise lower bound constraint do

Clip the value in v to element-wise lower bound.
Record the clipped values and corresponding cost advantage value in vm and Am

c , mask
these clipped values and their corresponding advantage values to obtain new vector v′ and
corresponding advantage vectors A′c & A′.
Subtract the mean of A′c and A′ to obtain A′′c & A′′.
Initial a new zero vector v′′ with the same size of v′
Calculate the l2-norm bound of v′′, i.e., δ′, using D(v′′) = E(v′′2)− E(v′′)2.
Using QR decomposition to orthonormalize A′′and A′′c into orthogonal unit vectors Ã′′c = kA′′c
and Ã′′.
Find θ′ that maximize v′′A′′ while satisfy v′′A′′c ≤ Nd′−vmAm

c −M ·mean(v′) ·mean(A′c),
where M is the number of element in vm, v′′ = 2Nδ′(cos θ′Ã′′c + sin θ′Ã′′).
Concatenate vm and v′′ + mean(v′) according to the recorded location to obtain the new v

end while
Obtain optimal probability ratio v = v + 1.

C.2 Modified update gradient in M-step when conducting recovery update

In the recovery update process described in Section 3.2.2, the gradient update in the M-step is modified from
(v − pπθ

pπ
) ∂πθ
∂θ

to ((β(v − pπθ
pπ

) + (1 − β)A′c) ∂πθ
∂θ

, where A′c is the projection of v − pπθ
pπ

onto the cost
advantage vector Ac.

In Figure 5, the tracking trajectories with and without gradient modification are compared. The yellow target
point represents the location of v, and the blue start point represents the initial location of

pπθ
pπ

. The dashed
optimal trajectory demonstrates that the optimal way to approach v is to first enter the feasible region quickly and
then follow the zero reward boundary. This approach allows the agent to satisfy the constraint while preserving
the reward return for most of the trajectory. The blue line represents the trajectory before gradient modification.
In this case,

pπθ
pπ

directly heads towards v, leading to a violation of the cost constraint during the initial part
of the tracking. On the other hand, the orange line represents the trajectory after gradient modification, which
closely follows the optimal path at the beginning of the tracking. This modification ensures that the agent can
satisfy the constraint throughout the entire tracking path.

Target

StartAc

After modification

Before modification

Optimal trajectory

Target

StartAc

After modification

Before modification

Optimal trajectory

Figure 5: The tracking trajectories with and without modification.

14

C.3 Clipping in M-step for constrain KL divergence

To satisfy the KL constraint in Equation (9), we employ a clipping technique similar to PPO to constrain the KL di-
vergence in the M-step. In this case, we clip the lower bound of

pπθ
pπ

to 0.6. Considering the original loss function

E
[
(v − pπθ

pπ
)2
]
, after taking the derivative, it can be rewritten as−E

[
(v − pπθ

pπ
)
pπθ
pπ

]
. In this form, (v− pπθ

pπ
)

can be treated as the advantage value in PPO, which does not require gradient. Therefore, following the clip tech-
nique in PPO, the new loss function can be expressed as−E

[
min

(
(v − pπθ

pπ
)
pπθ
pπ
, (v − pπθ

pπ
)Clip(

pπθ
pπ
, 0.6)

)]
,

where Clip is a function that clips the value smaller than 0.6 to 0.6.

C.4 The outline of CPPO method

Algorithm 2 CPPO Outline
Input: Policy network πθ, Value network V , Vc
while Stopping criteria not met do

Rollout sampling from the environment, generate trajectories τ ∼ πθ.
Calculate advantage value A and Ac from τ .
if Current policy violates the constraint then

Conduct recovery update in E-step to optimal policy v.
else

Conduct normal update in E-step to optimal policy v.
end if
Conduct M-step according to Equation (9) to update policy parameter θ based on v.
Update value networks using GAE.

end while

D Details about test environments

The environment parameters used in our experiments are listed in Table 1. The implementation of the Safety
Gym environment can be found at https://github.com/openai/safety-gym as an open-source project. Similarly, the
open-source implementation of the Circle environment can be found at https://github.com/ymzhang01/mujoco-
circle. The PointCircle environment was created based on this open-source implementation, following the same
settings as described in Achiam et al. (2017).

TABLE 1: THE ENVIRONMENT PARAMETERS

ENVIRONMENT CARPUSH POINTGOAL POINTPUSH POINTCIRCLE ANTCIRCLE

BATCH SIZE 3× 104 3× 104 3× 104 1000 3× 104

TOTAL STEPS 1× 107 1× 107 1× 107 2× 105 1× 107

ROLLOUT LENGTH 1000 1000 1000 50 500
CONSTRAINT 25 25 25 5 50

E Details for experiments

The hyperparameters of proposed method and baseline methods are shown in Table 2. The baseline methods
are modified from https://github.com/openai/safety-starter-agents to a Pytorch version. The experiments are
conducted on a HPC with 24 nodes, each node has 32 CPU cores and 2 Nvidia A100 GPUs.

Note that, in CPPO, setting the KL divergence constraint to 0.02 does not directly determine the value of δ′

in Equation (5). Although Proposition 3.1 states that Var(v) determines the upper bound of the reverse KL
divergence, it does not provide a lower bound for the reverse KL divergence. Consequently, the update step may
become very small. To address this issue, we can consider the inequality

(2 log 2− 1)(x− 1)2 + (x− 1) ≤ x log x, (21)

which holds for x values smaller than 2. This inequality implies that (2 log 2− 1)Var(v) could serve as a lower
bound for the reverse KL divergence. In order to prevent the KL divergence from becoming too small, we

15

TABLE 2: HYPERPARAMETERS SETTING FOR EACH ALGORITHM IN EXPERIMENT

ALGORITHM PPO-LAG TRPO-LAG CPO CPPO

POLICY NETWORK (64,64) (64,64) (64,64) (64,64)
VALUE NETWORK (64,64) (64,64) (64,64) (64,64)
NETWORK ACTIVATION tanh tanh tanh tanh
DISCOUNT FACTOR γ FOR RETURN 0.99 0.99 0.99 0.99
GAE λ FOR RETURN 0.97 0.97 0.97 0.97
DISCOUNT FACTOR γc FOR COST 0.99 0.99 0.99 0.99
GAE λc FOR COST 0.95 0.95 0.95 0.95
LEARNING RATE FOR POLICY NETWORK 3× 10−4 N/A N/A 1× 10−4

LEARNING RATE FOR VALUE NETWORK 1× 10−3 1× 10−3 1× 10−3 1× 10−3

LEARNING RATE FOR LAGRANGIAN MULTIPLIER 5× 10−2 5× 10−2 N/A N/A
KL DIVERGENCE CONSTRAINT 0.01 0.01 0.01 0.02
CLIPPING COEFFICIENT 0.2 N/A N/A 0.41

β IN RECOVERY UPDATE N/A N/A N/A 0.3
1 THIS COEFFICIENT IS ONLY USED FOR CLIPPING THE LOWER BOUND, SEE APPENDIX C FOR DETAILS.

choose δ′ = 0.02/(2 log 2− 1), ensuring that the reverse KL divergence of the optimal v lies within the range
(0.02, 0.02/(2 log 2− 1)).

Remark E.1. By applying Cantelli’s inequality, we can derive the inequality Pr(v ≥ 2) ≤ Var(v)
Var(v)+1

. In the case
where Var(v) is sufficiently small, this upper bound can be approximated as Var(v). Since Var(v) = 0.02 is a
small value, it validates the aforementioned assumption that v is smaller than 2.

16

	Introduction
	Preliminary and Related Work
	Constrained Markov Decision Process
	Related Work
	Proximal Policy Optimization (PPO)
	Constrained Reinforcement Learning

	Constrained Proximal Policy Optimization (CPPO)
	Modelling CRL as Inference
	E-Step
	Surrogate Constrained Policy Optimization
	Recovery update

	Heuristic algorithm from geometric interpretation
	M-Step

	Experiment
	Limitations and Boarder Impact
	Conclusion
	Proof for Propositions and Theorems
	Derivation in EM framework
	Derivation of evidence lower bound
	Derivation in M-step

	Details in heuristic algorithm and M-step
	Heuristic algorithm
	Modified update gradient in M-step when conducting recovery update
	Clipping in M-step for constrain KL divergence
	The outline of CPPO method

	Details about test environments
	Details for experiments

