A Proof for Propositions and Theorems

Proposition Denote v as the probability ratios :(Zl‘sz) calculated from sampled trajectories. If there are

sufficient number of sampled v, we have E[v] = 1 and E [vlogv] < Var(v — 1).

Proof. Denote pr(s,a) and q(s, a) are the probability density function of the state-action distribution under
different policies. Considering the divergence between g and p, are small, we assume that the policy change
will not cause the change in state distribution. We denote d(s) as the probability density function of the state
distribution. From the definition of the probability density function, we know that [ pr(s,a) d (s,a) = 1,
Considering the current trajectories are sampled under policy p-, we can obtain that

Bl = [ pr(s,a) 2L g 0

pr(a]s)

el s <)
= [ e

(10)
- [p6s “)pi(fé,ai) d(s,a)
~ [asa a1,
as p(s, a) is a probability density function. Therefore, E[v] = 1 is proven. Q.E.D O

Theorem |3;7| For a probability ratio vector Vv, if the variance of V is constant, then the upper bound of
the approximated forward KL divergence Dk, (7 || mo), will decrease as the element-wise lower bound of vV
increase.

Prg(s,a)

P and the

Proof. Using the same symbol in Proof of Proposition 3.1, ¥ is the vector consists of v =
definition of the forward KL divergence Dk (7 || m¢) can be expressed as

Dice( | 7) = [ pa(s,)log 2L

—E [log v]

_Zlogv (11)
N

N
—tog([Tv) ™,
=1

where NV is the number of elements in V. According to the Theorem in|Cartwright & Field|(1978)), we obtain
that

N 1 N
E@w) —[[o} < o i — E(v))”. 12
0 - 110" < gy, 2~ BC) (12)
As we know E(v) = 1 from Proposition 1Y, v~ >0,and N (v; — E(v))* = N - Var(¥) , we have
N
N -
HviN >1-— M
i 2 min v;
A Var(v)
1 N >log1- 222 (13)
08 <i1j[11}1 > - og( 2minvi>

Dy (|| me) < —log (1 _ Var(§) ) ~ Var(¥)

B ~ . .
2 min v; 2 min v;
Var(v)
2minv;°’

upper bound of Dk, (7 || 7), will decrease as the element-wise lower bound of ¥, min v;, increase.
Q.ED O

As Var(V) is a constant, Equation proves the upper bound of Dkr, (7 || 79) is showing that the

Theorem@ Given a feasible optimization problem of the form:

maximize V-A
st. v-A. <D
[¥]]2 <2Né E(V)=E(A)=E(A;) =0
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where vV, A, and A. are N-dimensional vectors, then the optimal solution v will lie in the A-A. plane
determined by A and A.

Proof. Assuming v, A, and A, can be represented by three orthonormal basis vectors i, j, and k, where
V =a1i+ b1j + c1k, A = a2i + b2j, and A, = asi, then the optimization problem becomes:

maximize aias + bibo
ay,by

st. a1 < D/as (14)

al + b3 < AN — &
From the geometric interpretation, we can find the optimal solution of the above problem always exists on the
circle a% + b% = 4N3?§% — c%. By increasing the radius of the circle, the line a1a2 + b1b2 will have a larger

intercept. Thus, the aforementioned problem will get its optimal solution when ¢; = 0, i.e., v will lie in the
A-A. plane determined by A. and A.

QED O

B Derivation in EM framework

B.1 Derivation of evidence lower bound
Following the definition in Section [3.1] we have p(O = 1|(s, a)) x exp(A(s, a)/a). Assume the likelihood
s

of acting a under s and 6 is p(als,0) = px,(a|s) * p(6) Then we can obtain following evidence lower
bound(ELBO)

log pry (O = 1) = log / (O =1(5,0)) * pry (5, 0) *p(0) d (s, )

p(O = 1|(s,a)) * pry (s, @) * p(Q)]
q(s,a)

- lOgEsr\adq,aNq I: (15)

> Byt g [logmo — 1/(s,)) + log P=(3:9)

q(s,a)
where d? is the state distribution under theoretical optimal distribution g. If we assume that the sampled policy 7
and ¢ is enough close that d™ = d?, then

+ logp(t‘))}

log pry (O = 1) > Esnga,ang logp(O = 1|(s,a)) + Escda,anq log % + log p(0)
o Byt aq [A(5, 0)] + OBt amg log 222045 100 p(9) (16)
q(als)
q(als)
= Eomdr amn A(s,a)| — aD log (0
e | A A5, )| - aDiata | 70) + 102000
Thus, the ELBO in Equation (TJ) is obtained.
B.2 Derivation in M-step
Recall Equation (7) in Section[3.4] we have following optimization problem
maxi}mize —aDkL(q || we) + log p(6). (17)
Consider 6 is a Gaussian prior around the policy parameter of sampled policy 6,ie., 0~ /\/(é7 5—%) Therefore,

the problem above will become
maximize —aDxi(¢ || 7o) — aB(0 — 0)TF; (0 —0). (18)
Note that (6 — é)TFé_l(G — 0) is the second order estimation of Dy (7 || 7g), we have
max(igmize —Dxki(q || mo) — BDx(7 || 7o). (19)
By converting the soft KL constraint into a hard constraint, we can obtain

minimize Dk (q || mo)
0 (20)
s.t. Dxn(rm || me) <9,

which is the same optimization problem as in Equation (8).
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C Details in heuristic algorithm and M-step

C.1 Heuristic algorithm

The detailed steps of iteratively heuristic algorithm are shown in Algorithm [T} Note that, after masking, the
masked elements are removed from the original vector, which means the size of v/ ,A”, and A’ is smaller than
v,A., and A.

Algorithm 1 Iteratively Heuristic Algorithm
Input: Advantage vector A, A,
Using QR decomposition to orthonormalize Aand A into orthogonal unit vectors A. = kA and
A.
Find ¢’ that makes v = 2N¢’(cos §’ A + sin 6’ A) become the optimal solution of the problem in
Theorem [3.4
while v violates element-wise lower bound constraint do
Clip the value in V to element-wise lower bound.
Record the clipped values and corresponding cost advantage value in v""* and A", mask
these clipped values and their corresponding advantage values to obtain new vector v/ and
corresponding advantage vectors A/, & A’.
Subtract the mean of A/ and A’ to obtain A/ & A”.
Initial a new zero vector v/ with the same size of v/
Calculate the lo-norm bound of ¥, i.e., &', using D(¥v") = E(v"?) — E(¥")2.
Using QR decomposition to orthonormalize A”and A’/ into orthogonal unit vectors A = kA”
and A"
Find ¢’ that maximize v’ A" while satisfy VA" < Nd' —v"™ A" — M -mean(Vv’) - mean(AL),
where M is the number of element in ¥, v/ = 2N§'(cos 8’ A + sin ¢’ A”).
Concatenate V""" and v’ + mean(v') according to the recorded location to obtain the new v
end while
Obtain optimal probability ratio v =v + 1.

C.2 Modified update gradient in M-step when conducting recovery update

In the recovery update process described in Section[3.2.2] the gradient update in the M-step is modified from
(v — %f)%%;’ to ((B(v — %) + (1 = B)A’c) 222, where A’c is the projection of v — P72 onto the cost
advantage vector A..

In Figure[5] the tracking trajectories with and without gradient modification are compared. The yellow target
point represents the location of v, and the blue start point represents the initial location of pif. The dashed
optimal trajectory demonstrates that the optimal way to approach v is to first enter the feasible region quickly and
then follow the zero reward boundary. This approach allows the agent to satisfy the constraint while preserving
the reward return for most of the trajectory. The blue line represents the trajectory before gradient modification.
In this case, %f directly heads towards v, leading to a violation of the cost constraint during the initial part
of the tracking. On the other hand, the orange line represents the trajectory after gradient modification, which
closely follows the optimal path at the beginning of the tracking. This modification ensures that the agent can
satisfy the constraint throughout the entire tracking path.

Target After modification

= Before modification

= === Optimal trajectory

L A = lteeccccccccsscsss Start

Figure 5: The tracking trajectories with and without modification.
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C.3 Clipping in M-step for constrain KL divergence

To satisfy the KL constraint in Equation (9), we employ a clipping technique similar to PPO to constrain the KL di-

vergence in the M-step. In this case, we clip the lower bound of %f to 0.6. Considering the original loss function

E [(v — %)2] , after taking the derivative, it can be rewritten as — [(v — %f)%f] . In this form, (v — %f)
can be treated as the advantage value in PPO, which does not require gradient. Therefore, following the clip tech-
nique in PPO, the new loss function can be expressed as — E [min ((v — %f ) %f, (v— %f)Clip( %{", 0.6))] ,
where Clip is a function that clips the value smaller than 0.6 to 0.6.

C.4 The outline of CPPO method

Algorithm 2 CPPO Outline

Input: Policy network 7y, Value network V', V.
while Stopping criteria not met do
Rollout sampling from the environment, generate trajectories 7 ~ 7g.
Calculate advantage value A and A, from 7.
if Current policy violates the constraint then
Conduct recovery update in E-step to optimal policy v.
else
Conduct normal update in E-step to optimal policy v.
end if
Conduct M-step according to Equation (9 to update policy parameter # based on v.
Update value networks using GAE.
end while

D Details about test environments

The environment parameters used in our experiments are listed in Table[T} The implementation of the Safety
Gym environment can be found at https://github.com/openai/safety-gym as an open-source project. Similarly, the
open-source implementation of the Circle environment can be found at https://github.com/ymzhang01/mujoco-
circle. The PointCircle environment was created based on this open-source implementation, following the same
settings as described in|Achiam et al.[(2017).

TABLE 1: THE ENVIRONMENT PARAMETERS

ENVIRONMENT CARPUSH POINTGOAL POINTPUSH POINTCIRCLE ANTCIRCLE
BATCH SIZE 3 x 10* 3 x 10* 3 x 10* 1000 3 x 10*
TOTAL STEPS 1 x 107 1 x 107 1 x 107 2 x 10° 1 x 107
ROLLOUT LENGTH 1000 1000 1000 50 500
CONSTRAINT 25 25 25 5 50

E Details for experiments

The hyperparameters of proposed method and baseline methods are shown in Table[2] The baseline methods
are modified from https://github.com/openai/safety-starter-agents to a Pytorch version. The experiments are
conducted on a HPC with 24 nodes, each node has 32 CPU cores and 2 Nvidia A100 GPUs.

Note that, in CPPO, setting the KL divergence constraint to 0.02 does not directly determine the value of §’
in Equation . Although Proposition states that Var(v) determines the upper bound of the reverse KL
divergence, it does not provide a lower bound for the reverse KL divergence. Consequently, the update step may
become very small. To address this issue, we can consider the inequality

(2log2 — 1)(z —1)* + (z — 1) < zlog z, (21)

which holds for = values smaller than 2. This inequality implies that (2log 2 — 1)Var(v) could serve as a lower
bound for the reverse KL divergence. In order to prevent the KL divergence from becoming too small, we
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TABLE 2: HYPERPARAMETERS SETTING FOR EACH ALGORITHM IN EXPERIMENT

ALGORITHM PPO-LAG TRPO-LAG CPO CPPO
POLICY NETWORK (64,64) (64,64) (64,64) (64,64)
VALUE NETWORK (64,64) (64,64) (64,64) (64,64)
NETWORK ACTIVATION tanh tanh tanh tanh
DISCOUNT FACTOR 7y FOR RETURN 0.99 0.99 0.99 0.99
GAE )\ FOR RETURN 0.97 0.97 0.97 0.97
DISCOUNT FACTOR “. FOR COST 0.99 0.99 0.99 0.99
GAE \. FOR COST 0.95 0.95 0.95 0.95
LEARNING RATE FOR POLICY NETWORK 3x 1074 N/A N/A 1x 1074
LEARNING RATE FOR VALUE NETWORK 1x1073 1x107% 1x107® 1x1073
LEARNING RATE FOR LAGRANGIAN MULTIPLIER 5 x 1072 5x 1072 N/A N/A
KL DIVERGENCE CONSTRAINT 0.01 0.01 0.01 0.02
CLIPPING COEFFICIENT 0.2 N/A N/A 0.4!
3 IN RECOVERY UPDATE N/A N/A N/A 0.3

! THIS COEFFICIENT IS ONLY USED FOR CLIPPING THE LOWER BOUND, SEE APPENDIXFOR DETAILS.

choose &' = 0.02/(2log 2 — 1), ensuring that the reverse KL divergence of the optimal v lies within the range

(0.02,0.02/(2log 2 — 1)).

Remark E.1. By applying Cantelli’s inequality, we can derive the inequality Pr(v > 2) <

Var(v)
Var(v)+1"*

In the case

where Var(v) is sufficiently small, this upper bound can be approximated as Var(v). Since Var(v) = 0.02is a
small value, it validates the aforementioned assumption that v is smaller than 2.
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