
A Additional Background

We introduce the pseudo-codes for both Tucker and CP decompositions with ALS, and the previous
work in this section.

A.1 Pseudo-codes for Tucker and CP Decompositions with ALS

Algorithm 3 Tucker-ALS: ALS procedure for Tucker decomposition
1: Input: Tensor TTT ∈ Rs1×···×sN , decomposition ranks {R1, . . . , RN}
2: Initialize {A(1), . . . ,A(N)} using HOSVD
3: while not converged do
4: for n ∈ [N ] do
5: Update YYY(n) based on (2.3)
6: A(n) ← Rn leading left singular vectors of Y(n)

(n)

7: end for
8: CCC ← YYY(N) ×N A(N)T

9: end while
10: return {CCC,A(1), . . . ,A(N)}

Algorithm 4 CP-ALS: ALS procedure for CP decomposition
1: Input: Tensor TTT ∈ Rs1×···×sN , rank R
2: Initialize {A(1), . . . ,A(N)} as uniformly distributed random matrices within [0, 1]
3: while not converged do
4: for n ∈ [N ] do
5: Update A(n) via solving Eq. (2.4)
6: end for
7: end while
8: return {A(1), . . . ,A(N)}

A.2 Previous Work

Randomized algorithms have been applied to both Tucker and CP decompositions in several previous
works. For Tucker decomposition, Ahmadi-Asl et al. [3] review a variety of random projection,
sampling and sketching based randomized algorithms. Methods introduced in [13, 13, 12, 70, 65]
accelerate the traditional HOSVD/HOOI via random projection, where factor matrices are updated
based on performing SVD on the matricization of the randomly projected input tensor. For these
methods, random projections are all performed based on Gaussian embedding matrices, and the
core tensor is calculated via TTMc among the input tensor and all the factor matrices, which costs
Ω(nnz(TTT )R) and is computationally inefficient for large sparse tensors. Sun et al. [64] introduce
randomized algorithms for Tucker decompositions for streaming data.

The most similar work to ours is Becker and Malik [39]. This work computes Tucker decomposition
via a sketched ALS scheme where in each optimization subproblem, one of the factor matrices
or the core tensor is updated. They also solve each sketched linear least squares subproblem via
TensorSketch. Our new scheme provides more accurate results compared to this method. Another
work that is closely relevant to us is [40]. This work introduces structure-preserving decomposition,
which is similar to Tucker decomposition but the factor matrices are not necessary orthogonal, and
the entries of the core tensor are explicitly taken from the original tensor. The authors design an
algorithm based on rank-revealing QR [21], which is efficient for sparse tensors, to calculate the
decomposition. However, their experimental results show that the relative error of the algorithm for
sparse tensors is much worse than that of the traditional HOSVD [40].

Several works discuss algorithms for sparse Tucker decomposition. Oh et al. [49] propose PTucker,
which provides algorithms for parallel sparse Tucker decomposition. Kaya and Ucar [29] provide
parallel algorithms for sparse Tucker decompositions. Li et al. [33] introduce SGD-Tucker, which
uses stochastic gradient descent to perform Tucker decomposition of sparse tensors.
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For CP decomposition, Battaglino et al. [7] and Jin et al. [27] introduce a randomized algorithm
based on Kronecker fast Johnson-Lindenstrauss Transform (KFJLT) to accelerate CP-ALS. However,
KFJLT is effective only for the decomposition of dense tensors. Aggour et al. [2] introduce adaptive
sketching for CP decomposition. Song et al. [63] discuss the theoretical relative error of various
tensor decompositions based on sketching. The work by Cheng et al. [14] and Larsen and Kolda [32]
accelerate CP-ALS based on leverage score sampling. Cheng et al. [14] use leverage score sampling
to accelerate MTTKRP calculations. Larsen and Kolda [32] propose an approximate leverage score
sampling scheme for the Khatri-Rao product, and they show with O

(
R(N−1) log(1/δ)/ε2

)
number

of samples, each unconstrained linear least squares subproblem in CP-ALS can be solved with
O(ε)-relative error with probability at least 1− δ. Zhou et al. [70] and Erichson et al. [20] accelerate
CP decomposition via performing randomized Tucker decomposition of the input tensor first, and
then performing CP decomposition of the smaller core tensor.

Several other works discuss techniques to parallelize and accelerate the computation of CP-ALS. Ma
and Solomonik [36, 37] approximate MTTKRP within CP-ALS based on information from previous
sweeps. For sparse tensors, parallelization strategies for MTTKRP have been developed both on
shared memory systems [48, 62] and distributed memory systems [34, 61, 30]. Researchers have also
been looking at different alternatives to accelerate the convergence of CP-ALS, including various
regularization techniques [45, 35], line search [58, 47, 43], and gradient-based methods [1, 51, 56,
66, 60].

B Background on Sketching

Throughout the paper we consider the linear least squares problem,

min
X∈C

1

2
‖PX−B‖2F , (B.1)

where P = A(1) ⊗ · · · ⊗A(N) ∈ RsN×RN is a chain of Kronecker products, N ≥ 2, P is dense and
B is sparse. In each subproblem of Tucker HOOI, the feasible region C contains matrices with the
rank constraint, as is shown in (2.2). The associated sketched problem is

min
X∈C

1

2
‖SPX− SB‖2F , (B.2)

where S ∈ Rm×sN is the sketching matrix withm� sN . We refer tom as the sketch size throughout
the paper.

The Kronecker product structure of P prevents efficient application of widely-used sketching matrices,
including Gaussian matrices and CountSketch matrices. For these sketching matrices, the computation
of SP requires forming P explicitly, which has a cost of O

(
sNRN

)
. We consider two sketching

techniques, TensorSketch and leverage score sampling, that are efficient for the problem. With
these two sketching techniques, SP can be calculated without explicitly forming P, and SB can be
calculated efficiently as well (with a cost of O(nnz(B))).

B.1 TensorSketch

TensorSketch is a special type of CountSketch, where the hash map is restricted to a specific format to
allow fast multiplication of the sketching matrix with the chain of Kronecker products. We introduce
the definition of CountSketch and TensorSketch below.
Definition 1 (CountSketch). The CountSketch matrix is defined as S = ΩD ∈ Rm×n, where

• h : [n]→ [m] is a hash map such that ∀i ∈ [n] and ∀j ∈ [m], Pr[h(i) = j] = 1/m,

• Ω ∈ Rm×n is a matrix with Ω(j, i) = 1 if j = h(i) ∀i ∈ [n] and Ω(j, i) = 0 otherwise,

• D ∈ Rn×n is a diagonal matrix whose diagonal is a Rademacher vector (each entry is +1 or −1
with equal probability).

Definition 2 (TensorSketch [52]). The order N TensorSketch matrix S = ΩD ∈ Rm×
∏N
i=1 si is

defined based on two hash maps H and S defined below,

H : [s1]× [s2]× · · · × [sN ]→ [m] : (i1, . . . , iN ) 7→

(
N∑

n=1

(Hn(in)− 1) mod m

)
+ 1, (B.3)
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S : [s1]× [s2]× · · · × [sN ]→ {−1, 1} : (i1, . . . , iN ) 7→
N∏

n=1

Sn(in), (B.4)

where each Hn for n ∈ [N ] is a 3-wise independent hash map that maps [sn]→ [m], and each Sn is
a 4-wise independent hash map that maps [sn]→ {−1, 1}. A hash map is k-wise independent if any
designated k keys are independent random variables. Two matrices Ω and D are defined based on H
and S, respectively,

• Ω ∈ Rm×
∏N
i=1 si is a matrix with Ω(j, i) = 1 if j = H(i) ∀i ∈

[∏N
i=1 si

]
, and Ω(j, i) = 0

otherwise,

• D ∈ Rn×n is a diagonal matrix with D(i, i) = S(i).

Above we use the notation S(i) = S(i1, . . . , iN ) where i = i1 +
∑N

k=2

(∏k−1
`=1 sl

)
(ik − 1), and

similar for H .

The restricted hash maps (B.3),(B.4) used in S make it efficient to multiply with a chain of Kronecker
products. Define S(n) := Ω(n)D(n) ∈ Rm×sn , where Ω(n) ∈ Rm×sn is defined based on Hn and
D(n) ∈ Rsn×sn defined based on Sn, and let P = A(1) ⊗A(2) ⊗ · · · ⊗A(N) with A(n) ∈ Rsn×Rn

for n ∈ [N ],

SP = FFT−1

( N⊙
n=1

(
FFT

(
S(n)A(n)

))T)T
. (B.5)

Calculating each FFT
(
S(n)A(n)

)
costs O(snRn +m logmRn), and performing the Kronecker

product as well as the outer FFT costs O
(
m logm

∏N
n=1Rn

)
. When each sn = s and Rn = R, the

overall cost is O
(
NsR+m logmRN

)
.

B.2 Leverage Score Sampling

Leverage score sampling is a useful tool to pick important rows to form the sampled/sketched linear
least squares problem. Intuitively, let QP be an orthogonal basis for the column space of P. Then
large-norm rows of QP suggest large contribution to QT

PB, which is part of the linear least squares
right-hand-side we can solve for.

Definition 3 (Leverage Scores [18, 38]). Let P ∈ Rs×R with s > R, and let Q ∈ Rs×R be any
orthogonal basis for the column space of P. The leverage scores of the rows of P are given by

`i(P) := (QQT )(i, i) = ‖Q(i, :)‖22 for all i ∈ [s].

Definition 4 (Importance Sampling based on Leverage Scores). Let P ∈ Rs×R be a full-rank matrix
and s > R. The leverage score sampling matrix of P is defined as S = DΩ, where Ω ∈ Rm×s,
m < s is the sampling matrix, and D ∈ Rm×m is the rescaling matrix. For each row j ∈ [m] of Ω,
one column index i ∈ [s] is picked independently with replacement with probability pi = `i(P)/R,
and we set Ω(j, i) = 1,D(j, j) = 1√

mpi
. Other elements of Ω,D are 0.

To calculate the leverage scores of P, one can get the matrix Q via QR decomposition, and the scores
can be retrieved via calculating the norm of each row of Q. However, performing QR decomposition
of P is almost as costly as solving the linear least squares problem. The lemma below shows that
leverage scores of P can be efficiently calculated from smaller QR decompositions of the Kronecker
product factors composing P.

Lemma B.1 (Leverage Scores for Kronecker product [14]). Let P = A(1)⊗· · ·⊗A(N) ∈ RsN×RN ,
where A(i) ∈ Rs×R and s > R. Leverage scores of P satisfy

`i(P) =

N∏
k=1

`ik(A(k)), where i = 1 +

N∑
k=1

(ik − 1)sk−1. (B.6)
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Proof. To show (B.6), we only need to show the case when N = 2, since it can then be easily
generalized to arbitrary N . Consider the reduced QR decomposition of A(1) ⊗A(2),

A(1) ⊗A(2) = Q(1)R(1) ⊗Q(2)R(2) = (Q(1) ⊗Q(2))(R(1) ⊗R(2)) = QR.

The reduced Q term for A(1) ⊗A(2) is Q(1) ⊗Q(2). Therefore, the leverage score of the ith row in
Q, `i, can be expressed as,

`i(P) = ‖Q(i, :)‖22 =
∥∥∥Q(1)(i1, :)⊗Q(2)(i2, :)

∥∥∥2
2

=
∥∥∥Q(1)(i1, :)

∥∥∥2
2

∥∥∥Q(2)(i2, :)
∥∥∥2
2

= `i1(A(1))`i2(A(2)).

Let pi = `i(P)/RN denote the leverage score sampling probability for ith index, and p
(k)
ik

=

`ik(A(k))/R for k ∈ [N ] denote the leverage score sampling probability for ikth index of A(k).
Based on Lemma B.1, we have

pi = p
(1)
i1
· · · p(N)

iN
.

Therefore, leverage score sampling can be efficiently performed by sampling the row of P associated
with multi-index (i1, . . . , iN ), where ik is selected with probability p(k)ik

. To calculate the leverage
scores of each A(k), N QR decompositions are needed, which in total cost O

(
NsR2

)
. In addition,

the cost of this sampling process would be O(Nm) if m samples are needed, making the overall cost
O
(
NsR2 +Nm

)
. To calculate SP, for each sampled multi-index (i1, . . . , iN ), we need to perform

the Kronecker product,
A(1)(i1, :)⊗ · · · ⊗A(N)(iN , :),

which costs O
(
RN
)
. Therefore, including the cost of QR decompositions, the overall cost is

O
(
NsR2 +mRN

)
.

Rather than performing importance random sampling based on leverage scores, another way intro-
duced in [28] to construct the sketching matrix is to deterministically sample rows having the largest
leverage scores. This idea is also used in [32] for randomized CP decomposition. Papailiopoulos et
al. [53] show that if the leverage scores follow a moderately steep power-law decay, then deterministic
sampling can be provably as efficient and even better than random sampling. We compare both
leverage score sampling techniques in Section 5. For the sampling complexity analysis in Section 3
and Section 4, we only consider the random sampling technique.

C Initialization of Factor Matrices via the Randomized Range Finder

Algorithm 5 Init-RRF: Initialization based on randomized range finder
1: Input: Matrix M ∈ Rn×m, rank R, tolerance ε
2: Initialize S ∈ Rm×k, with k = O(R/ε), as a composite sketching matrix (see Definition 5)
3: B←MS
4: U,Σ,V← SVD(B)
5: return U(:, : R)

The effectiveness of sketching with leverage score sampling for Tucker-ALS is dependent on finding
a good initialization of the factor matrices. This sensitivity arises because in each subproblem
(2.2), only part of the input tensor being sampled is taken into consideration, and some non-zero
input tensor elements are unsampled in all ALS linear least squares subproblems if the initialization
of the factor matrices are far from the accurate solutions. Initialization is not a big problem for
CountSketch/TensorSketch, since all the non-zero elements in the input tensor appear in the sketched
right-hand-side.

An unsatisfactory initialization can severely affect the accuracy of leverage score sampling if ele-
ments of the tensor have large variability in magnitudes, a property known as high coherence. The
coherence [10] of a matrix U ∈ Rn×r with n > r is defined as µ(U) = n

r maxi<n ‖QT
Uei‖, where
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QU is an orthogonal basis for the column space of U and ei for i ∈ [n] is a standard basis. Large
coherence means that the orthogonal basis QU has large row norm variability. A tensor TTT has high
coherence if all of its matricizations TT

(i) for i ∈ [N ] have high coherence.

We use an example to illustrate the problem of bad initializations for leverage score sampling on
tensors with high coherence. Suppose we seek a rank R Tucker decomposition of TTT ∈ Rs×s×s

expressed as
TTT = CCC ×1 A×2 A×3 A +DDD,

where CCC ∈ RR×R×R is a tensor with elements drawn from a normal distribution,DDD ∈ Rs×s×s is a
very sparse tensor (has high coherence), and A ∈ Rs×R is an orthogonal basis for the column space
of a matrix with elements drawn from a normal distribution. Let all the factor matrices be initialized
by A. Consider R� s and let the leverage score sample size m = R. SinceDDD is very sparse, there
is a high probability that most of the non-zero elements in DDD are not sampled in all the sketched
subproblems, resulting in a decomposition error proportional to ‖DDD‖F .

This problem can be fixed by initializing factor matrices using the randomized range finder (RRF)
algorithm. For each matricization T(i) ∈ Rs×sN−1

, where i ∈ [N ], we first find a good low-rank
subspace U ∈ Rs×m, where m = O(R/ε), such that it is ε-close to the rank-R subspace defined by
its leading left singular vectors,∥∥∥T(i) −UUTT(i)

∥∥∥2
F
≤ (1 + ε) min

rank(X)≤R

∥∥∥T(i) −X
∥∥∥2
F
, (C.1)

and then initialize A(i) based on the first R columns of U. To calculate U, we use a composite
sketching matrix S defined in Definition 5, such that U is calculated via performing SVD on the
sketched matrix T(i)S. Based on Theorem C.1, (C.1) holds with high probability.
Definition 5 (Composite sketching matrix [8, 68]). Let k1 = O(R/ε) and k2 = O

(
R2 +R/ε

)
. The

composite sketching matrix S ∈ Rs×k1 is defined as S = TG, where T ∈ Rs×k2 is a CountSketch
matrix (defined in Definition 1), and G ∈ Rk2×k1 contains elements selected randomly from a normal
distribution with variance 1/k1.
Theorem C.1 (Good low-rank subspace [8]). Let T be an m× n matrix, R < rank(T) be a rank
parameter, and ε > 0 be an accuracy parameter. Let S ∈ Rn×k be a composite sketching matrix
defined as in Definition 5. Let B = TS and let Q ∈ Rm×k be any orthogonal basis for the column
space of B. Then, with probability at least 0.99,∥∥∥T−QQTT

∥∥∥2
F
≤ (1 + ε)

∥∥∥T− T̃
∥∥∥2
F
, (C.2)

where T̃ is the best rank-R approximation of T.

The algorithm is shown in Algorithm 5. The multiplication T(i)S costs O
(
nnz(TTT ) + sR3/ε

)
, and

the SVD step costsO
(
sR2/ε

)
, making the cost of the initialization stepO

(
nnz(TTT ) + sR3/ε

)
. Since

we need at least go over all the non-zero elements of the input tensor for a good initialization guess,
the cost is Ω(nnz(TTT ) + sR). Consequently, Algorithm 5 is computationally efficient for small R.

Note that since A(i) is only part of U, the error
∥∥T(i) −A(i)A(i)TT(i)

∥∥2
F

is generally higher than
that shown in (C.1), so further ALS sweeps are necessary to further decrease the residual. Based on
the experimental results shown in Section 5, this initialization greatly enhances the performance of
leverage score sampling for tensors with high coherence.

D Algorithm for CP Decomposition

When R � s, sketched Tucker-ALS can also be used to accelerate CP decomposition. When an
exact CP decomposition of the desired rank exists, it is attainable from a Tucker decomposition of
the same or greater rank. In particular, given a CP decomposition of the desired rank for the core
tensor from Tucker decomposition, it suffices to multiply respective factor matrices of the CP and
Tucker decompositions to obtain a CP decomposition of the original tensor. For the exact case, Tucker
decomposition can be computed exactly via the sequentially truncated HOSVD, and for approxi-
mation, the Tucker model is generally easier to fit than CP. Consequently, Tucker decomposition
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Algorithm 6 CP-Sketch-Tucker: CP decomposition with sketched Tucker-ALS
1: Input: Tensor TTT ∈ Rs1×···sN , rank R, maximum number of Tucker-ALS sweeps Imax, Tucker

sketching tolerance ε
2:
{
CCC,B(1), . . . ,B(N)

}
← Rand-Tucker-ALS(TTT , {R, . . . , R}, Imax, ε)

3:
{
A(1), . . . ,A(N)

}
← CP-ALS(CCC, R)

4: return {B(1)A(1), . . . ,B(N)A(N)}

has been employed as a pre-processing step prior to running CP decomposition algorithms such as
CP-ALS [11, 70, 9, 20].

We leverage the ability of Tucker decomposition to preserve low-rank CP structure to apply our fast
randomized Tucker algorithms to low-rank CP decomposition. We show the algorithm in Algorithm 6.
In practice, the randomized Tucker-ALS algorithm takes a small number of sweeps (less than 5) to
converge, and then CP-ALS can be applied on the core tensor, which is computationally inexpensive.

The state-of-the-art approach for randomized CP-ALS [32] is to use leverage score sampling to
solve each subproblem (2.4). The cost sufficient to get (1 +O(ε))-accurate residual norm for each
subproblem is O

(
sRN log(1/δ)/ε2

)
. With the same criteria, the cost for sketched Tucker-ALS with

leverage score sampling is O
(
sRN/(ε2δ) +R3(N−1)/(ε2δ)

)
. As we can see, when R� s, the cost

of each Tucker decomposition subproblem is only slightly higher than that of CP decomposition, and
the fast convergence of Tucker-ALS makes this Tucker + CP method more efficient than directly
applying CP decomposition on the input tensor.

E Additional Experiments

In this section, we provide additional experimental results for both Tucker and CP decompositions.
In Appendix E.1, we present results for Tucker decomposition of dense tensors. In Appendix E.2, we
present results for Tucker decomposition of sparse tensors. In Appendix E.3, we provide additional
results for CP decomposition.

E.1 Additional Results for Tucker Decomposition of Dense Synthetic Tensors

Size (s) ALS ALS+leverage scores ALS+TensorSketch ALS+TensorSketch [39]
2× 102 5.06× 108 1.58× 108 1.77× 108 2.10× 108

2× 103 4.82× 1011 5.15× 108 5.25× 108 3.84× 108

2× 104 4.80× 1014 4.08× 109 4.00× 109 2.12× 109

2× 105 4.80× 1017 3.97× 1010 3.88× 1010 2.05× 1010

Table 3: Comparison of per-sweep computational cost of different methods. The input tensors are
assumed to be dense with size s× s× s, and the Tucker rank is R = 10. For sketching algorithms,
we set the sketch size as 16R2.

Cost comparison We compare the per-sweep computational cost (number of floating point oper-
ations (FLOPs)) between the standard HOOI, our ALS + leverage score sampling algorithm, our
ALS + TensorSketch, and the reference ALS + TensorSketch algorithm [39]. As can be seen from
Table 3, when the Tucker rank is small, the per-iteration cost of our algorithms are a bit higher than
the algorithm in [39]. In addition, the cost ratio of our algorithm over the reference is bounded by
2. Although the per-iteration cost increases slightly, the output accuracy has a large improvement
compared to the reference algorithm.

Relation between sketch size and accuracy. In our experiments, we parameterize the sketch size
asKRN−1, whereK incorporates the effect of ε and δ. Here we experimentally show that a moderate
K is enough to yield accurate results. Each time we solve a constrained least squares subproblem
in HOOI, Xr = arg minX,rank(X)≤r ||AX−B||F , we calculate the approximate solution X̂r using
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Figure 3: Relation between the final fitness and sketch size parameter K for each algorithm with
different synthetic tensors. For Tensor 3, TTT is generated based on (5.1). For all the experiments,
we set R = 5, α = 1.6, and K = 16. Each data point is the mean of 10 experimental results with
different random seeds. HOSVD/RRF initialization is used for all experiments.

K 4 16 64
e 0.22 0.05 0.01

Table 4: Relation between the sketch size parameter K and the average relative least squares residual
norm error (E.1). We test on Tensor 1, and set s = 200, R = 5, α = 1.6. The presented relative
residual norm error is the mean of 10 results using leverage score sampling.

leverage score sampling, and check the relative residual norm error,

e =
||AX̂r −B||2F − ||AXr −B||2F

||AXr −B||2F
. (E.1)

In our theoretical analysis, this term is bounded by O(ε). As can be seen from Table 4, setting K to
be 16 or 64 guarantees that each subproblem is accurately solved.

Fig. 3 show the relation between the final Tucker decomposition fitness and K. As is expected,
increasing K can increase the accuracy of the randomized linear least squares solve, thus improving
the final fitness. For leverage score sampling, Fig. 3b,3c shows that when the sketch size is small
(K = 4), the deterministic leverage score sampling scheme outperforms the random sampling
scheme for Tensor 2 and Tensor 3. This means that when the tensor has a strong low-rank signal, the
deterministic sampling scheme can be better, consistent with the results in [53].

Detailed fitness-sweeps relation. We show the detailed fitness-sweeps relation for different syn-
thetic dense tensors in Fig. 4. The reference randomized algorithm suffers from unstable convergence
as well as low fitness, while our new randomized ALS scheme, with either leverage score sampling or
TensorSketch, converges faster than the reference randomized algorithm and reaches higher accuracy.

Perturbation of factor matrices. We also compare the perturbation of factor matrices for each
randomized algorithm relative to the baseline HOOI. Let Âi be the output ith mode factor matrix
from a randomized algorithm, and let Ai be the output ith mode factor matrix from HOOI. We
calculate the relative perturbation of the subspace spanned by Ai,

pi =

∥∥∥ÂiÂ
T
i −AiA

T
i

∥∥∥
F∥∥AiAT

i

∥∥
F

,

and report the average relative perturbation acorss the tensor mode i, p = 1
N

∑N
i=1 pi. Smaller

perturbation means the output of the randomized algorithm is closer to the HOOI output.

As can be seen from Fig. 5, our new sketching algorithms yield less output perturbation compared
to the reference [39]. With the increase of The ratio Rtrue/R, denoted as α, all algorithms tend
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Figure 4: Detailed fitness-sweeps relation for Tucker decomposition of three dense tensors with
different parameters. For Tensor 3, TTT is generated based on (5.1). For all the experiments, we set
R = 5, α = 1.6. In the plots, Lev, Lev-fix, and TS denote our new sketched Tucker-ALS scheme
with leverage score random sampling, leverage score deterministic sampling, and TensorSketch,
respectively. TS-ref denotes the reference sketched Tucker-ALS algorithm with TensorSketch. HOOI
is initialized with HOSVD, and all other methods are initialized with RRF (Algorithm 5). Markers
represent the results per sweep.
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Figure 5: Relation between the relative perturbation of the subspace spanned by each factor matrix,
p, and sketch size parameter K for each algorithm. We test on Tensor 1, and set s = 200, R =
5, α = 1.6. Each data point is the mean of 10 experimental results with different random seeds.
HOSVD/RRF initialization is used for all experiments.

to yield higher perturbation. This is expected, since with large α, the input tensor tends to have
non-unique best rank-R decompositions, and a large perturbation in factor matrices can still yield
similar fitness. Overall the results show that our sketching algorithms are more accurate than the
reference TensorSketch approach [39].

E.2 Results for Tucker Decomposition of Sparse Tensors

We use two synthetic sparse tensors to evaluate different algorithms.

1. Sparse tensors with specific Tucker rank. We generate tensors based on (5.1) with each element
in the core tensor and factor matrices being an i.i.d normally distributed random variable N (0, 1)
with probability p and zero otherwise. Since each element,

TTT (i, j, k) =
∑
x,y,z

B(1)(i, x) ·B(2)(j, y) ·B(3)(k, z) · CCC(x, y, z), (E.2)

and
P
[
B(1)(i, x) ·B(2)(j, y) ·B(3)(k, z) · CCC(x, y, z) 6= 0

]
= p4,

the expected sparsity of TTT , which is equivalent to the probability that each element TTT (i, j, k) = 0,
is bounded below by 1−R3

truep
4. Through varying p, we generate tensors with different expected

sparsity.
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2. Tensors with large coherence. We also test on tensors with large coherence, TTT (b) = TTT +NNN . TTT is
generated based on (E.2), andNNN contains n� s elements with random positions and same large
magnitude. In our experiments, we set n = 10, and each nonzero element inNNN has the i.i.d. normal
distribution N (‖TTT ‖F /

√
n, 1), which means the expected norm ratio E[‖NNN‖F /‖TTT ‖F ] = 1. This

tensor has large coherence and is used to test the robustness problem detailed in Appendix C.
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(b) Tensor 2 with p = 0.5
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(d) Tensor 2 with p = 0.1
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(e) Tensor 1 with p = 0.02
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(f) Tensor 2 with p = 0.02

Figure 6: Experimental results for Tucker decomposition of sparse tensors. For all the experiments,
we set s = 2000, R = 10, α = 1.2 and K = 16. (a)(c)(e) Box plots of the final fitness for each
algorithm on Tensor 1 with different sparsity parameter p. (b)(d)(f) Box plots of the final fitness for
each algorithm on Tensor 2 with different sparsity parameter p. Each box is based on 10 experiments
with different random seeds.

We show our experimental results for sparse tensors in Fig. 6. For both Tensor 1 and Tensor 2, we
test on tensors with different sparsity via varying the parameter p. When p = 0.1 (Fig. 6c, 6d), the
expected sparsity of the tensor is greater than 0.9. When p = 0.02 (Fig. 6e, 6f), the expected sparsity
of the tensor is greater than 0.9998.

The results for Tensor 1 are shown in Fig. 6a,6c,6e. Our new randomized ALS scheme, with either
leverage score sampling or TensorSketch, outperforms the reference randomized algorithm with
p = 0.1 and p = 0.5. The relative fitness improvement ranges from 3.6% (Fig. 6c) to 12.7% (Fig. 6a).
The performance of our new scheme is comparable to the reference with p = 0.02. The reason for
the reduced improvements is that these tensors have high decomposition fitness (0.8 ∼ 0.9) and each
non-zero element has the same distribution, so sophisticated sampling is not needed to achieve high
accuracy. Similar to the case of dense tensors shown in 1a, we observe similar behavior for Tensor 1
with random initialization and RRF-based initialization.
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The results for Tensor 2 are shown in Fig. 6b,6d,6f. Our new randomized ALS scheme outperforms
the reference randomized algorithm for all the cases. Similar to the case of dense tensors (Fig. 1c),
for leverage score sampling, the random initialization results in approximately zero final fitness,
and the RRF-based initialization can greatly improve the output fitness. Therefore, the RRF-based
initialization scheme is important for improving the robustness of leverage score sampling.

On the contrary, TensorSketch based algorithms are not sensitive to the choice of initialization
scheme. Although they perform much better compared to the leverage score sampling with random
initialization, the output fitness is still a bit worse than HOOI and can have relatively larger variance
(Fig. 6d,6f). This means TensorSketch is less effective than leverage score sampling with RRF
initialization for this tensor.

In summary, we observe the algorithm combining leverage score sampling, the RRF-based initializa-
tion and our new ALS scheme achieves the highest accuracy and the most robust performance across
test problems among randomized schemes.

E.3 Additional Experiments for CP Decomposition

0.5 0.1 0.02
p

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Fi
tn

es
s

Method
CP
Tucker+CP
Lev CP
Lev Tucker+CP

(a) α = 1.2

0.5 0.1 0.02
p

0.35

0.40

0.45

0.50

0.55

Fi
tn

es
s

Method
CP
Tucker+CP
Lev CP
Lev Tucker+CP

(b) α = 1.6

Figure 7: Relation between final fitness and sparsity parameter p for CP decomposition. For all the
experiments, we set s = 2000, R = 10 and K = 16. In the plots, CP denotes running CP-ALS,
Tucker+CP denotes running the Tucker HOOI + CP-ALS algorithm, Lev CP denotes running leverage
score sampling based randomized CP-ALS, and Lev Tucker+CP denotes running the leverage score
sampling based Tucker-ALS + CP-ALS algorithm. Each box is based on 10 experiments with
different random seeds.

For (sketched) Tucker + CP algorithms, we run 5 (sketched) Tucker-ALS sweeps first, and then
run the CP-ALS algorithm on the core tensor for 25 sweeps. RRF-based initialization is used for
Tucker-ALS, and HOSVD on the core tensor is used to initialize the factor matrices of the small CP
decomposition problem. For (sketched) CP-ALS algorithms, we also use the RRF-based initialization
and run 30 sweeps afterwards, which is sufficient for CP-ALS to converge based on our experiments.
This initialization makes sure that leverage score sampling is effective for sparse tensors. We set the
sketch size as KR2 for both algorithms. For the RRF-based initialization, we set the sketch size (k in
Algorithm 5) as

√
KR.

We show the relation between final fitness and the tensor sparsity parameter, p, in Fig. 7. As can
be seen, for all the tested tensors, the Tucker + CP algorithms perform similarly, and usually better
than directly performing CP decomposition. When the input tensor is sparse (p = 0.1 and 0.02), the
advantage of the Tucker + CP algorithms is greater. The sketched Tucker-ALS + CP-ALS scheme has
a comparable performance compared to Tucker HOOI + CP-ALS, while requiring less computation.

F Detailed Proofs for Section 3

In this section, we provide detailed proofs for the sketch size upper bounds of both sketched un-
constrained and rank-constrained linear least squares problems. In Appendix F.1, we define the
(γ, δ, ε)-accurate sketching matrix, and show the error bound for sketched unconstrained linear least
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squares, under the assumption that the sketching matrix is a (1/2, δ, ε)-accurate sketching matrix.
In Appendix F.2, we show the error bound for sketched rank-constrained linear least squares. In
Appendix F.3 and Appendix F.4, we finish the proofs by giving the sketch size bounds that are suffi-
cient for the TensorSketch matrix and leverage score sampling matrix to be the (1/2, δ, ε)-accurate
sketching matrix, respectively.

F.1 Error Bound for Sketched Unconstrained Linear Least Squares

We define the (γ, δ, ε)-accurate sketching matrix in Definition 6. In Lemma F.1, we show the relative
error bound for the unconstrained linear least squares problem with a (1/2, δ, ε)-accurate sketching
matrix. By QP we denote a matrix whose columns form an orthonormal basis for the column space
of P.

Definition 6 ((γ, δ, ε)-accurate Sketching Matrix). A random matrix S ∈ Rm×s is a (γ, δ, ε)-accurate
sketching matrix for P ∈ Rs×R if the following two conditions hold simultaneously.

1. With probability at least 1− δ/2, each singular value σ of SQP satisfies

1− γ ≤ σ2 ≤ 1 + γ. (F.1)

2. With probability at least 1− δ/2, for any fixed matrix B, we have

‖QT
PSTSB−QT

PB‖2F ≤ ε2 · ‖B‖2F . (F.2)

Lemma F.1 (Linear Least Squares with (1/2, δ, ε)-accurate Sketching Matrix [69, 32, 19]). Given
a full-rank matrix P ∈ Rs×R with s ≥ R, and B ∈ Rs×n. Let S ∈ Rm×s be a (1/2, δ, ε)-
accurate sketching matrix. Let B⊥ = PXopt − B, with Xopt = arg minX‖PX−B‖F , and
X̃opt = arg minX ‖SPX− SB‖F . Then the following approximation holds with probability at least
1− δ, ∥∥∥PX̃opt −PXopt

∥∥∥2
F
≤ O

(
ε2
)∥∥B⊥∥∥2

F
. (F.3)

Proof. Define the reduced QR decomposition, P = QPRP . The unconstrained sketched problem
can be rewritten as

min
X
‖SPX− SB‖F = min

X

∥∥SPX− S(PXopt + B⊥)
∥∥
F

= min
X

∥∥SQPRP (X−Xopt)− SB⊥
∥∥
F
,

thus the optimality condition is

(SQP )TSQPRP (X̃opt −Xopt) = (SQP )TSB⊥. (F.4)

Based on (F.1),(F.2), with probability at least 1− δ, both of the following hold,

σ2
min(SQP ) ≥ 1− γ = 1/2, (F.5)∥∥QT

PSTSB⊥
∥∥2
F

=
∥∥QT

PSTSB⊥ −QT
PB⊥

∥∥2
F
≤ ε2 ·

∥∥B⊥∥∥2
F
, (F.6)

where σmin(SQP ) is the singular value of SQP with the smallest magnitude. Combining (F.4), (F.5),
and (F.6), we obtain∥∥∥PX̃opt −PXopt

∥∥∥2
F

=
∥∥∥RP X̃opt −RPXopt

∥∥∥2
F

(F.5)
≤ 4

∥∥∥(SQP )TSQPRP (X̃opt −Xopt)
∥∥∥2
F

(F.4)
= 4

∥∥QT
PSTSB⊥

∥∥2
F

(F.6)
≤ 4ε2 ·

∥∥B⊥∥∥2
F

= O
(
ε2
)∥∥B⊥∥∥2

F
.
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F.2 Error Bound for Sketched Rank-constrained Linear Least Squares

We show in Theorem F.3 that with at least 1− δ probability, the relative residual norm error for the
rank-constrained linear least squares with a (1/2, δ, ε)-accurate sketching matrix is bounded by O(ε).
We first state Mirsky’s Inequality below, which bounds the perturbation of singular values when the
input matrix is perturbed. We direct readers to the reference for its proof. This bound will be used in
Theorem F.3.

Lemma F.2 (Mirsky’s Inequality for Perturbation of Singular Values [41]). Let A and F be arbitrary
matrices (of the same size) where σ1 ≥ · · · ≥ σn are the singular values of A and σ′1 ≥ · · · ≥ σ′n
are the singular values of A + F. Then

n∑
i=1

(σi − σ′i)2 ≤ ‖F‖2F . (F.7)

Theorem F.3 (Rank-constrained Linear Least Squares with (1/2, δ, ε)-accurate Sketching Matrix).
Given P ∈ Rs×R with orthonormal columns (such that P = QP ), and B ∈ Rs×n. Let S ∈ Rm×s be
a (1/2, δ, ε)-accurate sketching matrix. Let X̃r be the best rank-r approximation of the solution of the
problem minX ‖SPX− SB‖F , and let Xr = arg minX,rank(X)=r‖PX−B‖F . Then the residual
norm error bound, ∥∥∥PX̃r −B

∥∥∥2
F
≤ (1 +O(ε))

∥∥∥PXr −B
∥∥∥2
F
, (F.8)

holds with probability at least 1− δ.

Proof. Let R = ‖PXr −B‖F . In addition, let Xopt = arg minX‖PX−B‖F be the optimum
solution of the unconstrained linear least squares problem. Since the residual in the true solution for
each component of the least-squares problem (column of B⊥) is orthogonal to the error due to low
rank approximation,

R2 = ‖PXr −B‖2F = ‖PXopt −B‖2
F

+ ‖PXr −PXopt‖2F
=
∥∥B⊥∥∥2

F
+ ‖Xr −Xopt‖2F . (F.9)

The last equality holds since P has orthonormal columns. Let X̃opt = arg minX‖SPX− SB‖F be
the optimum solution of the unconstrained sketched problem. We have∥∥∥PX̃r −B

∥∥∥2
F

=
∥∥∥PX̃r −PX̃opt

∥∥∥2
F

+
∥∥∥PX̃opt −B

∥∥∥2
F

+ 2
〈
PX̃r −PX̃opt,PX̃opt −B

〉
F

=
∥∥∥X̃r − X̃opt

∥∥∥2
F

+
∥∥∥X̃opt −Xopt

∥∥∥2
F

+
∥∥B⊥∥∥2

F
+ 2
〈
X̃r − X̃opt, X̃opt −Xopt

〉
F
.

(F.10)

Next we bound the magnitudes of the first, second and the fourth terms. According to Lemma F.1,
with probability at least 1− δ, the second term in (F.10) can be bounded as∥∥∥X̃opt −Xopt

∥∥∥2
F

=
∥∥∥PX̃opt −PXopt

∥∥∥2
F
≤ Cε2

∥∥B⊥∥∥2
F
, (F.11)

for some constantC ≥ 1. Suppose X̃opt has singular values σ̃i = σi+δσi for i in {1, . . . ,min(R,n)},
where σi are the singular values of Xopt. Since X̃r is defined to be the best low rank approximation
to X̃opt, we have

∥∥∥X̃r − X̃opt

∥∥∥2
F

=

min(R,n)∑
i=r+1

σ̃2
i =

min(R,n)∑
i=r+1

(σi + δσi)
2 =

min(R,n)∑
i=r+1

(
σ2
i + δσ2

i + 2σiδσi
)
. (F.12)

Since P has orthonormal columns, Xr is the best rank-r approximation of Xopt,

min(R,n)∑
i=r+1

σ2
i = ‖Xr −Xopt‖2F .
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In addition, based on Mirsky’s inequality (Lemma F.2),

min(R,n)∑
i=r+1

δσ2
i ≤

min(R,n)∑
i=1

δσ2
i

(F.7)
≤
∥∥∥X̃opt −Xopt

∥∥∥2
F

(F.11)
≤ Cε2

∥∥B⊥∥∥2
F
, (F.13)

and
min(R,n)∑
i=r+1

|2σiδσi| = ε

min(R,n)∑
i=r+1

∣∣∣∣2σi δσiε
∣∣∣∣ ≤ εmin(R,n)∑

i=r+1

(
σ2
i +

δσ2
i

ε2

)
(F.13)
≤ Cε

(
‖Xr −Xopt‖2F +

∥∥B⊥∥∥2
F

)
= CεR2,

thus (F.12) can be bounded as∥∥∥X̃r − X̃opt

∥∥∥2
F
≤ ‖Xr −Xopt‖2F + Cε2

∥∥B⊥∥∥2
F

+ CεR2

= ‖Xr −Xopt‖2F +O(ε)R2. (F.14)

Next we bound the magnitude of the inner product term in (F.10),∣∣∣〈X̃r − X̃opt, X̃opt −Xopt

〉
F

∣∣∣ ≤ ∥∥∥X̃r − X̃opt

∥∥∥
F

∥∥∥X̃opt −Xopt

∥∥∥
F

(F.11)
≤
√
Cε
∥∥∥X̃r − X̃opt

∥∥∥
F
‖B⊥‖F

≤
√
C
ε

2

(∥∥∥X̃r − X̃opt

∥∥∥2
F

+
∥∥B⊥∥∥2

F

)
(F.14)
≤
√
C
ε

2

(
‖Xr −Xopt‖2F +O(ε)R2 +

∥∥B⊥∥∥2
F

)
= O(ε)R2. (F.15)

Therefore, based on (F.10),(F.11),(F.14),(F.15), with probability at least 1− δ,∥∥∥PX̃r −B
∥∥∥2
F
≤ (1 +O(ε))R2 = (1 +O(ε))

∥∥∥PXr −B
∥∥∥2
F
.

F.3 TensorSketch for Unconstrained & Rank-constrained Least Squares

In this section, we first give the sketch size bound that is sufficient for the TensorSketch matrix to
be the (1/2, δ, ε)-accurate sketching matrix in Lemma F.6. The proof is based on Lemma F.4 and
Lemma F.5, which follows from results derived in previous work [6, 17]. Lemma F.4 bounds the
sketch size sufficient to reach certain matrix multiplication accuracy, while Lemma F.5 bounds the
singular values of the matrix obtained from applying TensorSketch to a matrix with orthonormal
columns. We direct readers to prior work for a detailed proof of Lemma F.4, but provide a simple
proof of Lemma F.5 by application of Lemma F.4.
Lemma F.4 (Approximate Matrix Multiplication with TensorSketch [6]). Given matrices P ∈
RsN−1×RN−1

and B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be an order N − 1 TensorSketch matrix. For
m ≥ (2 + 3N−1)/(ε2δ), the approximation error bound,

‖PTSTSB−PTB‖2F ≤ ε2 · ‖P‖2F · ‖B‖2F ,

holds with probability at least 1− δ.
Lemma F.5 (Singular Value Bound for TensorSketch [17]). Given a full-rank matrix P ∈
RsN−1×RN−1

with s > R, and B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be an order N − 1 TensorSketch
matrix. For m ≥ R2(N−1)(2 + 3N−1)/(γ2δ), each singular value σ of SQP satisfies

1− γ ≤ σ2 ≤ 1 + γ

with probability at least 1− δ, where QP is an orthonormal basis for the column space of P.
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Proof. Since QP is an orthonormal basis for P, QT
PQP = I, and ‖QP ‖2F = RN−1. Based on

Lemma F.4, for m ≥ R2(N−1)(2 + 3N−1)/(γ2δ), with probability at least 1− δ, we have∥∥QT
PSTSQP −QT

PQP

∥∥2
F

=
∥∥QT

PSTSQP − I
∥∥2
F
≤ γ2

R2(N−1) · ‖QP ‖4F = γ2.

Therefore, ∥∥QT
PSTSQP − I

∥∥
2
≤
∥∥QT

PSTSQP − I
∥∥
F
≤ γ,

which means the singular values of SQP satisfy 1− γ ≤ σ2 ≤ 1 + γ.

The previous two lemmas can be combined to demonstrate that the TensorSketch matrix provides an
accurate sketch within our analytical framework.
Lemma F.6 ((1/2, δ, ε)-accurate TensorSketch Matrix). Given the sketch size,

m = O
(

(R(N−1) · 3N−1)/δ · (R(N−1) + 1/ε2)
)
,

an order N − 1 TensorSketch matrix S ∈ Rm×sN−1

is a (1/2, δ, ε)-accurate sketching matrix for any
full rank matrix P ∈ RsN−1×RN−1

.

Proof. Based on Lemma F.5 with γ = 1/2, for

m ≥ R2(N−1)(2 + 3N−1)/(1/4 · δ/2) = O
(

(R2(N−1) · 3N−1)/δ
)
,

(F.1) in Definition 6 will hold. Based on Lemma F.4, for m ≥ RN−1(2 + 3N−1)/(ε2δ),

‖QT
PSTSB−QT

PB‖2F ≤
ε2

RN−1 · ‖QP ‖2F · ‖B‖2F = ε2‖B‖2F ,

thus (F.2) in Definition 6 will hold. Therefore, we need

m = O
(

(R2(N−1) · 3N−1)/δ + (R(N−1) · 3N−1)/(ε2δ)
)

= O
(

(R(N−1) · 3N−1)/δ · (R(N−1) + 1/ε2)
)
.

Using Lemma F.6, we can then easily derive the upper bounds for both unconstrained and rank-
constrained linear least squares with TensorSketch.
Theorem F.7 (TensorSketch for Unconstrained Linear Least Squares). Given a full-rank matrix
P ∈ RsN−1×RN−1

with s > R, and B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be an order N − 1
TensorSketch matrix. Let X̃opt = arg minX ‖SPX− SB‖F and Xopt = arg minX‖PX−B‖F .
With

m = O
(

(R(N−1) · 3N−1)/δ · (R(N−1) + 1/ε)
)
, (F.16)

the approximation error bound,
∥∥∥AX̃opt −B

∥∥∥2
F
≤ (1 +O(ε))

∥∥∥AXopt −B
∥∥∥2
F
, holds with probabil-

ity at least 1− δ.

Proof. Based on Lemma F.1, to prove this theorem, we derive the sketch sizem sufficient to make the
sketching matrix (1/2, δ,

√
ε)-accurate. According to Lemma F.6, the sketch size (F.16) is sufficient

for being (1/2, δ,
√
ε)-accurate.

Proof of Theorem 3.1. Based on Theorem F.3, to prove this theorem, we derive the sketch size m
sufficient to make the sketching matrix (1/2, δ, ε)-accurate. According to Lemma F.6, the sketch size

m = O
(

(R(N−1) · 3N−1)/δ · (R(N−1) + 1/ε2)
)

is sufficient for being (1/2, δ, ε)-accurate.
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F.4 Leverage Score Sampling for Unconstrained & Rank-constrained Least Squares

In this section, we first give the sketch size bound that is sufficient for the leverage score sampling
matrix to be ab (1/2, δ, ε)-accurate sketching matrix according to Lemma F.10. Using Lemma F.10,
we can then easily derive the upper bounds for both unconstrained and rank-constrained linear least
squares with leverage score sampling. To establish these results, we leverage two lemmas. Lemma F.8
bounds the sketch size sufficient to reach certain matrix multiplication accuracy, while Lemma F.9
bounds the singular values of the sketched matrix obtained from applying leverage score sampling to
a matrix with orthonormal columns. These first two lemmas follow from prior work, and we direct
readers to references for detailed proofs of both lemmas.

Lemma F.8 (Approximate Matrix Multiplication with Leverage Score Sampling [32]). Given matri-
ces P ∈ RsN−1×RN−1

consists of orthonormal columns and B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be a
leverage score sampling matrix for P. For m ≥ 1/(ε2δ), the approximation error bound,

‖PTSTSB−PTB‖2F ≤ ε2 · ‖P‖2F · ‖B‖2F ,

holds with probability at least 1− δ.

Lemma F.9 (Singular Value Bound for Leverage Score Sampling [69]). Given a full-rank matrix
P ∈ RsN−1×RN−1

with s > R, and B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be a leverage score sampling
matrix for P. For m = O

(
R(N−1) log(R(N−1)/δ)/γ2

)
= Õ

(
R(N−1)/γ2

)
, each singular value σ

of SQP satisfies

1− γ ≤ σ2 ≤ 1 + γ

with probability at least 1− δ, where QP is an orthonormal basis for the column space of P.

Lemma F.10 ((1/2, δ, ε)-accurate Leverage Score Sampling Matrix). Let m = O
(
RN−1/(ε2δ)

)
denote the sketch size, then the leverage score sampling matrix S ∈ Rm×sN−1

is a (1/2, δ, ε)-accurate
sketching matrix for the full-rank matrix P ∈ RsN−1×RN−1

.

Proof. Based on Lemma F.9 with γ = 1/2, for m = Õ
(
R(N−1)), (F.1) in Definition 6 will hold.

Based on Lemma F.8, for m = O
(
RN−1/(ε2δ)

)
,

‖QT
PSTSB−QT

PB‖2F ≤
ε2

RN−1 · ‖QP ‖2F · ‖B‖2F = ε2‖B‖2F ,

thus (F.2) in Definition 6 will hold. Thus we need m = Õ
(
R(N−1)) + O

(
RN−1/(ε2δ)

)
=

O
(
RN−1/(ε2δ)

)
.

Theorem F.11 (Leverage Score Sampling for Unconstrained Linear Least Squares). Given a full-rank
matrix P ∈ RsN−1×RN−1

with s > R, and B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be a leverage score
sampling matrix. Let X̃opt = arg minX ‖SPX− SB‖F and Xopt = arg minX‖PX−B‖F . With

m = O
(
RN−1/(εδ)

)
, (F.17)

the approximation error bound,
∥∥∥AX̃opt −B

∥∥∥2
F
≤ (1 +O(ε))

∥∥∥AXopt −B
∥∥∥2
F
, holds with probabil-

ity at least 1− δ.

Proof. Based on Lemma F.1, to prove this theorem, we derive the sample size m sufficient to make
the sketching matrix (1/2, δ,

√
ε)-accurate. According to Lemma F.10, the sketch size (F.17) is

sufficient for being (1/2, δ,
√
ε)-accurate.

Proof of Theorem 3.2. Based on Theorem F.3, to prove this theorem, we derive the sketch size m
sufficient to make the sketching matrix (1/2, δ, ε)-accurate. According to Lemma F.10, the sketch
size O

(
RN−1/(ε2δ)

)
is sufficient for being (1/2, δ, ε)-accurate.
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G TensorSketch for General Constrained Least Squares

In this section, we provide sketch size upper bound of TensorSketch for general constrained linear
least squares problems.
Theorem G.1 (TensorSketch for General Constrained Linear Least Squares). Given a full-rank matrix
P ∈ RsN−1×RN−1

with s > R, and B ∈ RsN−1×n. Let S ∈ Rm×sN−1

be an order N − 1 TensorS-
ketch matrix. Let X̃opt = arg minX∈C ‖SPX− SB‖F , and let Xopt = arg minX∈C‖PX−B‖F .
With

m = O
(
nR2(N−1) · 3N−1/(ε2δ)

)
,

the approximation error bound,∥∥∥PX̃opt −B
∥∥∥2
F
≤ (1 +O(ε))

∥∥∥PXopt −B
∥∥∥2
F
, (G.1)

holds with probability at least 1− δ.

Proof. The proof is similar to the analysis performed in [69] for other sketching techniques. Let
the ith column of B,X be denoted bi,xi, respectively. We can express each column in the residual
PX−B as

Pxi − bi = [P bi]

[
xi

−1

]
:= P̃(i)yi.

Based on Lemma F.5, let m ≥ n(R(N−1) + 1)2(2 + 3N−1)/(ε2δ), we have with probability at least
1− δ/n that for some i ∈ [n], each singular value σ of SQP̃ (i) satisfies

1− ε ≤ σ2 ≤ 1 + ε.

This means for any yi ∈ RRN−1+1, we have

(1− ε)
∥∥∥P̃(i)yi

∥∥∥2
2
≤
∥∥∥SP̃(i)yi

∥∥∥2
2
≤ (1 + ε)

∥∥∥P̃(i)yi

∥∥∥2
2
. (G.2)

Using the union bound, (G.2) implies that with probability at least 1− δ,

(1−ε)
∥∥∥PX̃opt −B

∥∥∥
F
≤
∥∥∥SPX̃opt − SB

∥∥∥
F

and ‖SPXopt − SB‖
F
≤ (1+ε)‖PXopt −B‖

F
.

Therefore, we have∥∥∥PX̃opt −B
∥∥∥
F
≤ 1

1− ε

∥∥∥SPX̃opt − SB
∥∥∥
F
≤ 1

1− ε
‖SPXopt − SB‖

F

≤ 1 + ε

1− ε
‖PXopt −B‖

F
= (1 +O(ε))‖PXopt −B‖

F
.

Therefore, m = O
(
nR2(N−1) · 3N−1/(ε2δ)

)
is sufficient for the approximation in (G.1).
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the pa-

per’s contributions and scope? [Yes] Our abstract and introduction clearly states our
contribution, the algorithm, the theoretical results, and the experimental results.

(b) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] Our work focuses on accelerating tensor decompositions and there is no
direct potential negative societal impacts.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Did you describe the limitations of your work? [Yes] The limitations and future work

is discussed in the last paragraph of Section 6. In addition, the assumption that we only
consider low-rank approximations is stated in the introduction.

2. If you are including theoretical results...
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(a) Did you state the full set of assumptions of all theoretical results? [Yes] These are
stated in Section 3.

(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs are
provided in Appendix F.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include our
code and instructions (in the readme) in the supplemental materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] Error bars are reported in the box plots that show the
experimental results on synthetic random tensors.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The computational resources used
is shown in the first paragraph of Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use the NumPy

library, and the coil100 dataset and a time-lapse image datasets. All of them are cited
in the paper.

(b) Did you mention the license of the assets? [Yes] The two image datasets are cited, and
their licences are mentioned in the code.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Yes, our code is included in the supplemental materials.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount
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