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Abstract

Self-Supervised Learning (SSL) methods often consist of elaborate pipelines with1

hand-crafted data augmentations and computational tricks. However, it is unclear2

what is the provably minimal set of building blocks that ensures good downstream3

performance. The recently proposed instance discrimination method, coined DIET,4

stripped down the SSL pipeline and demonstrated how a simple SSL algorithm5

can work by predicting the sample index. Our work proves that DIET recovers6

cluster-based latent representations, while successfully identifying the correct7

cluster centroids in its classification head. We demonstrate the identifiability of8

DIET on synthetic data adhering to and violating our assumptions, revealing that9

the recovery of the cluster centroids is even more robust than the feature recovery.10

1 Introduction11

Self-Supervised Learning (SSL) methods use unlabeled datasets to learn representations by solving an12

auxiliary task, thus bypassing time-consuming labelling efforts. Importantly, co-occurance–based SSL13

relies on positive data pairs (similar samples, e.g., an original sample and a transformed/augmented14

one) and negative data pairs (dissimilar samples, often randomly drawn from the dataset). Contrastive15

and non-contrastive learning, the two prominent families of SSL methods, utilize positives and16

negatives differently, though they are theoretically connected [Balestriero and LeCun, 2022]. Con-17

trastive Learning (CL) [Chen et al., 2020, Zimmermann et al., 2021, von Kügelgen et al., 2021, Lyu18

et al., 2021, Eastwood et al., 2023] attracts positive pairs’ and repels negative pairs’ representations.19

Non-contrastive learning [Bardes et al., 2021, Zbontar et al., 2021, Mialon et al., 2022] only uses20

positive pairs, and avoids representation collapse with strategies such as momentum encoders or21

covariance regularization. Unfortunately, the many actively developed Self-Supervised Learning22

methods with such computational tricks potentially hinder selecting the best performing and simplest23

SSL method for a given task. Recently, Ibrahim et al. [2024] proposed DIET, a SSL method that24

strips away unnecessary details by reducing the auxiliary task to a simple instance classification25

paradigm, and showed competitive performance on small datasets.26

Identifiability theory, particularly Independent Component Analysis (ICA) [Comon, 1994, Hyvarinen27

et al., 2001] studies guarantees of probabilistic models to recover the ground-truth latent variables28

in a probabilistic latent variable model (LVM). Recent advances in nonlinear ICA theory proposed29

multiple self-supervised/weakly supervised models with identifiability guarantees [Hyvarinen et al.,30

2019, Gresele et al., 2019, Khemakhem et al., 2020a, Hälvä et al., 2021, Hyvarinen and Morioka,31

2016, Khemakhem et al., 2020b, Locatello et al., 2020, Morioka and Hyvarinen, 2023, Morioka et al.,32

2021]. Several papers study a contrastive scenario, [Hyvarinen and Morioka, 2016, Hyvarinen et al.,33

2019, Zimmermann et al., 2021, von Kügelgen et al., 2021, Rusak et al., 2024], providing a possible34

theoretical explanation for CL’s practical success.35

Our paper investigates whether DIET’s competitive performance can be explained by identifiability36

theory. We model the data generating process (DGP) in a new, cluster-based way, and show that37
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Figure 1: DIET [Ibrahim et al., 2024] learns identifiable features: DIET learns a linear
(N × d)−dimensional classification head W on top of a nonlinear encoder f through an instance
discrimination objective (1). For unit-normalized f(xn), DIET maps samples and their augmenta-
tions close to the cluster vector vc corresponding to the class as if sampled from a von Mises-Fisher
(vMF) distribution, centered around the cluster vector. In case of duplicate samples, i.e., matching
class labels, the corresponding rows ofW will be the same, as shown for x1 and xi with w1 = wi

DIET’s learned representation is linearly related to the ground truth representation. We also show38

how DIET’s classification head recovers the cluster centroids, a connection to clustering that is absent39

from prior identifiability works for Self-Supervised Learning. Unlike other SSL solutions such as40

SimCLR [Chen et al., 2020], BYOL [Grill et al., 2020], BarlowTwins [Zbontar et al., 2021], or41

VICReg [Bardes et al., 2021], DIET’s training objective applies to the same representation that is42

used post-training for solving downstream tasks. More precisely, no projector network is removed43

post-training. This implies that our theoretical guarantees directly apply to the SSL representation44

being used post-training, as opposed to other identifiability results in SSL [Zimmermann et al., 2021,45

von Kügelgen et al., 2021, Daunhawer et al., 2023, Rusak et al., 2024]. We corroborate our theoretical46

claims on synthetic data adhering to our assumptions—we even show that good performance is47

possible when the assumptions are violated. Notably, we observe that cluster centroids recovery48

from DIET’s classification head is more robust than ground-truth representation prediction from the49

learned representation.50

2 Identifiability guarantees for DIET51

This section presents our main theoretical contribution. After summarizing DIET, we introduce a52

mildly constrained theoretical setup, in which DIET provably recovers the correct latents. The setup53

is followed by the main result and a discussion on the intuition for our theoretical model.54

DIET [Ibrahim et al., 2024]. DIET solves an instance classification problem, where each sample x55

in the training dataset has a unique instance label i. Augmentations do not affect this label. We have a56

composite modelW ◦f , where the backbone f produces d-dimensional representations, and a linear,57

bias-free classification headW that maps these representations to a logit vector equal in size to the58

cardinality of the training dataset. If the parameter vector corresponding to logit i is denoted aswi,59

thenW effectively computes similarity scores (scalar products) between the wi’s and embeddings60

f(x). DIET trains this architecture to predict the correct instance label using multinomial regression61

(with f ,W and temperature β as variables):62

L(f ,W , β) = E(x,i)

[
− ln

eβ⟨wi,f(x)⟩∑
j e

β⟨wj ,f(x)⟩

]
. (1)

Setup. For our theory, we need to formally define an latent variable model (LVM) for the data63

generating process (DGP) to assess the identifiability of latent factors. For this, we take a cluster-64

centric approach, representing semantic classes by cluster vectors, similar to proxy-based metric65

learning [Kirchhof et al., 2022]. Then, we model the samples of a class with a von Mises-Fisher (vMF)66

distribution, centered around the class’s cluster vector. This conditional distribution jointly models67

intra-class sample selection and augmentations of samples, together called intra-class variances. We68

provide an overview of our assumptions, and defer additional details to Assums. 1C in Appx. A:69

Assumptions 1 (DGP with vMF samples around cluster vectors. Details omitted.).70

(i) There is a finite set of semantic classes C , represented by a set of unit-norm d-dimensional71

cluster-vectors {vc|c ∈ C } ⊆ Sd−1. The system {vc} is sufficiently large and spread out.72

(ii) Any sample i belongs to exactly one class c = C(i).73
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(iii) The latent z ∈ Sd−1 of our data sample with instance label i is drawn from a vMF distribution74

around the cluster vector vc of class c = C(i):75

z ∼ p(z|c) ∝ eα⟨vc,z⟩. (2)

(iv) Sample x is generated by passing latent z through an injective generator function: x = g(z).76

Main result. Under Assums. 1, we prove the identifiability of both the latent representations and77

the cluster vectors, vc, in all four combinations of unit-normalized (i.e., when the latent space is the78

hypersphere, commonly used, e.g., in InfoNCE [Chen et al., 2020]); and non-normalized (as in the79

original DIET paper [Ibrahim et al., 2024]) latents, z, and weight vectors, wi . We state a concise80

version of our result and defer the full treatment and the proof to Thm. 1C in Appx. A:81

Theorem 1 (Identifiability of latents drawn from vMF around cluster vectors. Details omitted.). Let82

(f ,W , β) globally minimize the DIET objective (1) under the following additional constraints:83

C3. the embeddings f(x) are unnormalized, while the wi’s are unit-normalized. Then wi identifies84

the cluster vector vC(i) up to an orthogonal linear transformation O: wi = OvC(i), for any i.85

Furthermore, the inferred latents z̃ = f(x) identify the ground-truth latents z up to the same86

orthogonal transformation, but scaled.87

C4. neither the embeddings f(x) nor the wi’s are unit-normalized. Then the cluster vectors vc and88

the latent z are identified up to an affine linear and linear transformation, respectively.89

In all cases, the weight vectors belonging to samples of the same class are equal, i.e., for any i, j,90

C(i) = C(j) implies wi = wj .91

Intuition. DIET assigns a different (instance) label and a unique weight vectorwi to each training92

sample. The cross-entropy objective is optimized if the trained neural network can distinguish93

between the samples. Thus, the learned representation z̃ = f(x) should capture enough information94

to distinguish different samples, even from the same class.95

However, the weight vectorswi’s cannot be sensitive to the intra-class sample variance or the sample’s96

instance label i (because multiple instances will usually belong to the same class). This leads to the97

weight vectors taking the values of the cluster vectors. As cluster vectors only capture some statistics98

of the conditional, feature recovery is more fine-grained than cluster identifiability. The interaction99

between the two is dictated by the cross-entropy loss, which is minimized if the representation z̃100

is most similar to its own assigned weight vector wi. Fig. 1 provides a visualization conveying the101

intuition behind Thm. 1.102

3 Experiments103

In the following section, we empirically verify the claims made in Thm. 1 in the synthetic setting.104

We generate data samples according to Assums. 1: ground-truth latents are sampled around cluster105

centroids vc following a vMF distribution. Data augmentations, which share the same instance label106

i, are sampled from the same vMF distribution around vc.107

Synthetic Setup. We consider N data samples of dimensionality d generated from z ∼ p(z|vc),108

sampled around a set of |C | class vectors, vc uniformly distributed across the unit hyper-sphere. We109

use an invertible multi-layer perceptron (MLP) to map ground truth latents to data samples. We110

train a classification headW =[w⊤
i |Ni=1] and an MLP encoder that maps samples to representations111

z̃ ∈ Rd using the DIET objective (1). While to verify Thm. 1 case C4., we do not normalizeW , we112

do unit-normalize the weight vectors to validate Thm. 1 case C3. We verify our theoretical claims by113

measuring the predictability of the ground-truth z from z̃ and vc fromwi using the R2 score on a114

held-out dataset. For identifiability up to orthogonal linear transformations, we train linear mappings115

with no intercept, assess the R2 score and verify that the singular values of this transformation116

converge to one, while for identifiability up to affine linear transformations, we simply assess the117

predictive accuracy of a linear predictor with intercept.118

Results. Tab. 1 depicts our results for synthetic experiments. For both cases, when W is and119

is not unit-normalized, the R2 score for both the latents and the cluster vectors is close to 100%,120

except when the latent dimensionality is 20—such scalability problems are a common artifact in121

SSL [Zimmermann et al., 2021, Rusak et al., 2024]. For unit-normalized W , the MAE is close to122

zero even in such cases. We also observe that for a higher concentration of samples around vc (i.e.123
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Table 1: Identifiability in the synthetic setup. Mean ± standard deviation across 5 random seeds.
Settings that match and violate our theoretical assumptions are ✓ and ✗ respectively. We report the
R2 score for linear mappings, z̃ → z andwi → vc for cases with normalized (o) and not normalized
(a) wi. For normalized wi, we verify that mappings z̃ → z are orthogonal by reporting the mean
absolute error between their singular values and those of an orthogonal transformation.

normalized wi cases unnormalized wi

R2
o(↑) MAEo(↓) R2

a (↑)
N d |C | p(z|vc) M. z̃ → z wi → vc z̃ → z wi → vc z̃ → z wi → vc

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.00 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

105 5 100 vMF(κ=10) ✓ 98.2±0.01 99.5±0.00 0.00±0.00 0.00±0.00 99.7±0.00 99.8±0.00

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.00 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 10 100 vMF(κ=10) ✓ 92.5±0.01 99.6±0.00 0.01±0.00 0.00±0.00 93.0±0.03 99.6±0.00

103 20 100 vMF(κ=10) ✓ 70.8±0.02 97.1±0.01 0.03±0.00 0.00±0.00 81.9±0.01 99.7±0.00

103 5 10 vMF(κ=10) ✓ 88.6±0.05 85.7±0.15 0.02±0.00 0.00±0.00 90.0±0.05 99.0±0.03

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 1000 vMF(κ=10) ✓ 99.3±0.00 99.9±0.00 0.00±0.00 0.00±0.00 99.2±0.00 99.9±0.00

103 5 100 vMF(κ=5) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 0.01±0.00 0.00±0.00

103 5 100 vMF(κ=10) ✓ 99.0±0.00 99.9±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

103 5 100 vMF(κ=50) ✓ 45.0±0.06 49.7±0.06 0.30±0.00 0.00±0.00 0.30±0.00 0.00±0.00

103 5 100 vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 100 Laplace (b=1.0) ✗ 85.2±0.01 99.7±0.01 0.01±0.00 0.00±0.00 85.4±0.00 99.5±0.00

103 5 100 Normal (σ2=1.0) ✗ 98.7±0.00 99.8±0.00 0.01±0.00 0.00±0.00 98.6±0.00 99.6±0.00

κ=50) as well as lower number of clusters (i.e. |C |=10), identifiability suffers (i.e., the R2 score124

decreases), which is also a common phenomenon, and is possibly explained by the content-style125

partitioning of latents [von Kügelgen et al., 2021] and insufficient augmentation overlap [Wang et al.,126

2022, Rusak et al., 2024]. Our results also suggest that even under model misspecification (last two127

rows with non-vMF latent distributions), identifiability still holds. We provide an additional ablation128

study for the concentration of vc across the unit hyper-sphere in Appx. B.129

4 Discussion130

Limitations. Our analysis proves the identifiability of DIET [Ibrahim et al., 2024] with a cluster-131

based DGP, thus providing the first such result for self-supervised parametric instance classification132

methods. However, our theory cannot yet explain the importance of label smoothing in DIET, noted133

by Ibrahim et al. [2024], and it also remains to be seen whether such identifiability results scale134

for larger datasets, for which the large-dimensional classifier head in DIET in the original form is135

prohibitive. It also remains an issue that the vMF conditional distribution around cluster centroids136

jointly models intra-class sample selection and augmentations of samples, as we suspect that the137

supports of augmentation spaces of different samples do not overlap as much as it would be suggested138

by the choice of conditional. Also, we leave it for future work to investigate a formal connection to139

nonlinear ICA methods such as InfoNCE [Zimmermann et al., 2021] or the Generalized Contrastive140

Learning framework [Hyvarinen et al., 2019].141

Conclusion. By modeling the DGP in DIET [Ibrahim et al., 2024] with a cluster-based latent142

variable model, we provide identifiability results for both the latent representation and the cluster143

vectors, which is the first of its kind for self-supervised instance discrimination methods . We144

also showcase this in synthetic settings, where we recover both the latents and cluster vectors even145

under model misspecification. We hope that our work inspires further research into investigating the146

theoretical guarantees of simplified but effective SSL methods like DIET.147
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