
A Identifiability of latents drawn from a vMF around cluster vectors238

In this section, we formally state and prove our core theoretical result. We start off by defining239

and discussing a useful notion, then introduce our assumptions on the data generating process. We240

proceed with the main statement and finish with the proof.241

A.1 Affine Generator Systems242

Definition 1 (Affine Generator System). A system of vectors {vc ∈ Rd|c ∈ C } is called an affine243

generator system if the affine hull defined by them is Rd. More precisely, any vector in Rd is an244

affine linear combination of the vectors in the system. Put into symbols: for any v ∈ Rd there exist245

coefficients αc ∈ R, such that246

v =
∑
c∈C

αcvc and
∑
c∈C

αc = 1. (3)

Lemma 1 (Properties of affine generator systems). The following hold for any affine generator247

system {vc ∈ Rd|c ∈ C }:248

1. for any a ∈ C the system {vc − va|c ∈ C } is now a generator system of Rd;249

2. the invertible linear image of an affine generator system is also an affine generator system.250

A.2 Assumptions and main result251

Assumptions 1C (DGP with vMF samples around cluster vectors). Assume the following DGP:252

(i) There exists a finite set of classes C , represented by a set of unit-norm d-dimensional cluster-253

vectors {vc|c ∈ C } ⊆ Sd−1 such that they form an affine generator system of Rd.254

(ii) There is a finite set of instace labels I and a well-defined, surjective class function C : I → C255

(every label belongs to exactly one class and every class is in use).256

(iii) Our data sample is labelled with an instance label chosen uniformly, i.e., I ∈ Uni(I ) and,257

hence, belongs to class C = C(I).258

(iv) The latent z ∈ Sd−1 of our data sample with label I is drawn from a vMF distribution around259

the cluster vector vC , where C = C(I):260

z ∼ p(z|C) ∝ eα⟨vC ,z⟩. (4)

(v) The data sample x is generated by passing the latent z through a continuous and injective261

generator function g :Sd−1→RD, i.e., x = g(z).262

Assume that, using the DIET objective (6), we train a continuous encoder f : RD → Rd on x and a263

linear classification head W on top of f . The rows of W are
{
w⊤

i | i ∈ I
}

. In other words, W264

computes similarities (scalar products) between its rows and the embeddings:265

W : f(x) 7→
[
⟨wi,f(x) ⟩ | i∈I

]
. (5)

In DIET, we optimize the following objective amongst all possible continuous encoders f , linear266

classifiersW , and β > 0:267

L(f ,W , β) = E(x,I)

[
− ln

eβ⟨wI ,f(x)⟩∑
j∈I eβ⟨wj ,f(x)⟩

]
(6)

Theorem 1C (Identifiability of latents drawn from a vMF around cluster vectors). Let (f ,W , β)268

globally minimize the DIET objective (6) under the following additional constraints:269

C1. both the embeddings f(x) and wi’s are unit-normalized. Then:270

(a) h = f ◦ g is orthogonal linear, i.e., the latents are identified up to an orthogonal linear271

transformation;272

(b) wi = h(vC(i)) for any i ∈ I , i.e., wi’s identify the cluster-vectors vc up to the same273

orthogonal linear transformation;274

(c) β = α, the temperature of the vMF distribution is also identified.275

C2. the embeddings f(x) are unit-normalized, the wi’s are unnormalized. Then:276

(a) h = f ◦ g is orthogonal linear;277

(b) wi =
α
βh(vC(i)) +ψ for any i ∈ I , where ψ is a constant vector independent of i.278
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C3. the embeddings f(x) are unnormalized, while the wi’s are unit-normalized. If the system279

{vc|c} is diverse enough in the sense of Assum. 2, then:280

(a) wi = OvC(i), for any i ∈ I , where O is orthogonal linear;281

(b) h = f ◦ g = α
βO with the same orthogonal linear transformation, but scaled with α

β .282

C4. neither the embeddings f(x) nor the rows ofW are unit-normalized. Then:283

(a) h = f ◦ g is linear;284

(b) wi identifies vC(i) up to an affine linear transformation.285

Furthermore, in all cases, the row vectors that belong to samples of the same class are equal, i.e., for286

any i, j ∈ I , C(i) = C(j) implies wi = wj .287

Remark. In cases C2 and C4, the cluster vectors are unnormalized and, therefore, can absorb the288

temperature parameter β. Thus β can be set to 1 without loss of generality. In case C3, it is f that289

can absorb β.290

Assumption 2 (Diverse data). The system {vc|c ∈ C } is said to be diverse enough, if the following291

|C | × 2d matrix has full column rank of 2d:292  · · · · · · · · · · · · · · · · · ·
(vc ⊙ vc)⊤ v⊤c
· · · · · · · · · · · · · · · · · ·

 , (7)

where [x⊙ y]i = xiyi is the elementwise- or Hadamard product.293

As long as |C | ≥ 2d, this property holds almost surely w.r.t. the Lebesgue-measure of Sd−1 or any294

continuous probability distribution of vc ∈ Sd−1.295

Proof. Step 1: Deriving an equation characterizing the global optimizers of the objective.296

Rewriting the objective in terms of latents: we plug the expressionx = g(z) into the optimization297

objective (6) to express the dependence in terms of the latents z:298

L(f ,W , β) = E(z,I)

[
− ln

eβ⟨wI ,f◦g(z)⟩∑
j∈I eβ⟨wj ,f◦g(z)⟩

]
= Lz(f ◦ g,W , β), (8)

where the optimization is still over f (and not h = f ◦ g).299

We note that the generator g is, by assumption, continuously invertible on the compact set Sd−1.300

Therefore, its image g(Sd−1) is compact, too, and its inverse g−1 is also continuous. By Tietze’s301

extension theorem [Wikipedia, 2024b], g−1 can be continuously extended to a function F : RD →302

Sd−1. Therefore, any continuous function h : Sd−1 → Rd can take the role of f ◦ g by substituting303

f = h ◦ F continuous, since now f ◦ g = h ◦ (F ◦ g) = h ◦ idSd−1 = h.304

Hence, minimizing Lz(f ◦ g,W , β) (and by extension L(f ,W , β)) for continuous f equates to305

minimizing Lz(h,W , β) for continuous h:306

Lz(h,W , β) = E(z,I)

[
− ln

eβ⟨wI ,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
. (9)

Expressing the condition for global optimality of the objective: We rewrite the objective (9) by307

1) using the indicator variable δI=i of the event {I = i} and 2) applying the law of total expectation:308

Lz(h,W , β) = E(z,I)

[
−
∑
i∈I

δI=i ln
eβ⟨wi,h(z)⟩∑

j∈I eβ⟨wj ,h(z)⟩

]
(10)

= Ez

[
EI

[
−
∑
i∈I

δI=i ln
eβ⟨wi,h(z)⟩∑

j∈I eβ⟨wj ,h(z)⟩

∣∣∣∣ z]
]
. (11)
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Using the properties that E
[
Af(B)

∣∣B] = E
[
A
∣∣B]f(B) and that E[δI=i] = P(I = i), we conclude309

that:310

Lz(h,W , β) = Ez

[
−
∑
i∈I

EI

[
δI=i ln

eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

∣∣∣∣ z]
]

(12)

= Ez

[
−
∑
i∈I

EI

[
δI=i

∣∣z] ln eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
(13)

= Ez

[
−
∑
i∈I

P(I = i|z) ln eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩

]
. (14)

By Gibbs’ inequality [Wikipedia, 2024a], the cross-entropy inside the expectation is globally mini-311

mized if and only if312

eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩ = P(I = i|z), for any i ∈ I . (15)

Moreover, the entire expectation is globally minimized if and only if the above equality (15) holds313

almost everywhere for z ∈ Sd−1.314

Using that instance label I is uniformly distributed, or P(I = j) = P(I = i), the likelihood of the315

sample being in class i can be expressed via Bayes’ theorem as:316

P(I = i|z) = p(z|I = i)P(I = i)∑
j∈I p(z|I = j)P(I = j)

=
p(z|I = i)∑

j∈I p(z|I = j)
. (16)

Substituting (16) into (15) yields that for any i ∈ I and almost everywhere w.r.t. z ∈ Sd−1:317

eβ⟨wi,h(z)⟩∑
j∈I eβ⟨wj ,h(z)⟩ =

p(z|I = i)∑
j∈I p(z|I = j)

. (17)

We now divide the equation (17) for the probability of a sample having label i with that of having318

label k and take the logarithm. This yields that Lz(h,W , β) is globally minimized if and only if319

β⟨wi −wk,h(z)⟩ = ln
p(z|I = i)

p(z|I = k)
(18)

holds for any i, k ∈ I and almost everywhere w.r.t. z ∈ Sd−1.320

Plugging in the vMF distribution: Plugging the assumed conditional distribution from (4) into321

(18) yields the equivalent expression:322

β⟨wi −wk,h(z)⟩ = α⟨vC(i) − vC(k), z⟩ (19)

holds for any i, k ∈ I and almost everywhere w.r.t. z ∈ Sd−1. Since h is continuous, the equation323

holds almost everywhere w.r.t. z if and only if it holds for all z ∈ Sd−1.324

Observe that if h = id|Sd−1 ,wi = vC(i) for any i ∈ I , and β = α, then the equation is satisfied.325

Thus, we can conclude that the global minimum of the cross-entropy loss is achieved.326

Step 2: Solving the equation for h,W and proving identifiability.327

We now find all solutions to prove the identifiability of the latent variables and that of the cluster328

vectors. Denote w̃i =
β
αwi to simplify the above equation to:329

⟨w̃i − w̃k,h(z)⟩ = ⟨vC(i) − vC(k), z⟩. (20)

h is injective and has full-dimensional image: We prove that h is injective. Assume that330

h(z1) = h(z2) for some z1, z2 ∈ Sd−1. Plugging z1 and z2 into (20) and subtracting the two331

equations yields:332

0 = ⟨w̃i − w̃k,h(z1)− h(z2)⟩ = ⟨vC(i) − vC(k), z1 − z2⟩, (21)
for any i, k. However, as the cluster vectors {vc|c} form an affine generator system, the vectors333

{vC(i) − vC(k)|i, k} form a generator system of Rd (see Lem. 1). Therefore, ⟨y, z1 − z2⟩ = 0, for334

any y ∈ Rd, which holds if and only if z1 = z2. Hence, h is injective.335

By the Borsuk-Ulam theorem, for any continuous map from Sd−1 to a space of dimensionality at336

most d−1 there exists some pair of antipodal points that are mapped to the same point. Consequently,337

no such function can be injective at the same time. Since h : Sd−1 → Rd is injective, the linear span338

of its image must be Rd.339
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Collapse of wi’s: We prove that w̃i = w̃k if C(i) = C(k), i.e., samples from the same cluster will340

have equal rows ofW associated with them.341

Assume that C(i) = C(k) and substitute them into (20):342

⟨w̃i − w̃k,h(z)⟩ = 0 for any z ∈ Sd−1. (22)

However, we have just seen that the linear span of the image of h is Rd, which implies that w̃i = w̃k.343

Consequently, we may abuse out notation by setting w̃c = w̃i if C(i) = c, which yields a new form344

for (20):345

⟨w̃a − w̃b,h(z)⟩ = ⟨va − vb, z⟩, (23)
for any a, b ∈ C and any z ∈ Sd−1.346

Linear transformation from va − vb to w̃a − w̃b: We now prove the existence of a linear map347

A on Rd such that A(va − vb) = w̃a − w̃b for any a, b ∈ C . For this, we prove that the following348

mapping is well-defined:349

A :
∑

a,b∈C

λab(va − vb) 7→
∑

a,b∈C

λab(w̃a − w̃b). (24)

Since the system {va − vb|a, b} is not necessarily linearly independent, we have to prove that350

the mapping is independent of the choice of the linear combination. More precisely if for some351

coefficients λab, λ
′
ab352 ∑

a,b∈C

λab(va − vb) =
∑

a,b∈C

λ′
ab(va − vb) (25)

holds, then it should be implied that353 ∑
a,b∈C

λab(w̃a − w̃b) =
∑

a,b∈C

λ′
ab(w̃a − w̃b). (26)

Assume that (25) holds. Then, the difference of the two sides is:354

0 =
∑

a,b∈C

(λab − λ′
ab)(va − vb). (27)

Taking the scalar product with an arbitrary z ∈ Sd−1 and using the linearity of the scalar product355

gives us:356

0 = ⟨
∑

a,b∈C

(λab − λ′
ab)(va − vb), z⟩ =

∑
a,b∈C

(λab − λ′
ab)⟨va − vb, z⟩. (28)

Now using (23) yields:357

0 =
∑

a,b∈C

(λab − λ′
ab)⟨w̃a − w̃b,h(z)⟩ = ⟨

∑
a,b∈C

(λab − λ′
ab)(w̃a − w̃b),h(z)⟩. (29)

However, the linear span of the image of h is Rd, which implies that358 ∑
a,b∈C

(λab − λ′
ab)(w̃a − w̃b) = 0, (30)

equivalent to (26). Therefore, the mapping is well-defined. The linearity of A follows trivially.359

h is linear: Equation (23) becomes:360

⟨A(va − vb),h(z)⟩ = ⟨va − vb, z⟩, (31)

for any a, b ∈ C and any z ∈ Sd−1. Nevertheless, {va − vb|a, b ∈ C } is a generator system of Rd,361

and, hence, (31) is equivalent to362

⟨Ay,h(z)⟩ = ⟨y, z⟩, for any y ∈ Rd and any z ∈ Sd−1. (32)

This is further equivalent to363

⟨y,A⊤h(z)⟩ = ⟨y, z⟩. (33)
Since y is arbitrary, we conclude that A⊤h(z) = z for any z ∈ Sd−1. Therefore A is an invertible364

transformation and h = (A⊤)−1 is linear.365
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Proving Thm. 1C case C4: We have shown that h is linear. Furthermore, from (31) it follows, by366

fixing b and defining ψ = Avb −wb, that367

w̃a = Ava +ψ, for any a ∈ C , (34)

which proves case C4 of Thm. 1C.368

Proving Thm. 1C case C2: As a special case of the previous one, now we assume that h(z)369

is unit-normalized and maps Sd−1 to Sd−1. That amounts to h = (A⊤)−1 being linear, norm-370

preserving, and therefore orthogonal. Consequently A is also orthogonal, h = A and (34) simplifies371

to β
αwa = w̃a = Ava +ψ = h(va) +ψ, which proves C2 of Thm. 1C.372

Proving Thm. 1C case C1: We now assume that both h and wi’s are unit-normalized. Conse-373

quently, h = A is orthogonal linear and wa = α
βAva +ψ.374

Therefore, on one hand, the wa’s lie on a d-dimensional hypersphere of radius α
β and center ψ. On375

the other hand, by definition, wa’s also lie on the unit hypersphere Sd−1.376

Since the system {wa|a ∈ C } is the bijective affine linear image of the affine generator system377

{va|a ∈ C }, {wa|a ∈ C } is also an affine generator system (Lem. 1). Consequently, there could be378

at most one hypersphere in Rd which contains all thewa’s. Hence α
β = 1, ψ = 0, andwa = h(va),379

which proves C1 of Thm. 1C.380

Proving Thm. 1C case C3: Finally, we assume that wi’s are unit-normalized. As this is a special381

case of Thm. 1C C4, we know that there exists a constant vector ψ such that:382

wa =
α

β
Ava +ψ, (35)

for any a ∈ C . We are going to prove that O = α
βA is orthogonal and ψ = 0.383

Let O = U⊤ΣV be the singular value decomposition (SVD) of O. Consequently, after premultiplying384

with U , we receive:385

Uwa = ΣVva + Uψ. (36)
As orthogonal transformations U and V keep their arguments unit-normalized and {Vva − Vvb} is386

still an affine generator system (Lem. 1), we may assume without the loss of generality that387

wa = Σva +ψ, (37)

for any a ∈ C , where all va’s and wa’s are unit-normalized.388

Let us assume that ψ ̸= 0. In that case both sides of (37) can be scaled such that the offset ψ has389

unit norm. In this case wa’s are no longer on the unit hypersphere, but they instead have a mutual390

norm r. Assuming that the diagonal elements of Σ are σ = (σ1, . . . , σd), this is equivalent to:391

r2 = ∥Σva +ψ∥2 = ∥Σva∥2 + 2⟨Σva,ψ⟩+ ∥ψ∥2 (38)
= ⟨va ⊙ va,σ ⊙ σ⟩+ ⟨va, 2σ ⊙ψ⟩+ 1, (39)

where [x⊙ y]i = xiyi is the elementwise product. Eq. (39) is equivalent to the following:392

(va ⊙ va)⊤(σ ⊙ σ) + v⊤a (2σ ⊙ψ)− r2 = −1. (40)

Collecting the equations for all a ∈ C yields:393

D

 σ ⊙ σ
2σ ⊙ψ

r2

 = −1|C |, (41)

where D is the following |C | × (2d+ 1) matrix:394

D =

 · · · · · · · · · · · · · · · · · · · · ·
(va ⊙ va)⊤ v⊤a −1
· · · · · · · · · · · · · · · · · · · · ·

 . (42)

By Assum. 2, the left |C | × 2d submatrix of D has full rank of 2d. Consequently, the solution space395

to the more general, linear equation Dt = −1|C |, where t ∈ Rd, has a dimensionality of at most 1.396
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Using the unit-normality of va’s, we see that (va ⊙ va)⊤1d = 1. From this, it follows that the397

solutions are exactly the following:398

t =

(
γ · 1d

0d

γ + 1

)
, where γ ∈ R. (43)

Therefore, for any solution of (41) there exists γ such that:399

σ ⊙ σ = γ · 1d (44)
σ ⊙ψ = 0d. (45)

However, as the original transformation A was invertible, all singular values σi are strictly positive400

and, thus, it follows that ψ = 0. Technically speaking, this is a contradiction to our initial assumption401

that ψ ̸= 0. All in all, it follows that ψ = 0 is the only possibility.402

Therefore, (37) becomes:403

wa = Σva, (46)
where all va’s and wa’s are unit-normalized. Following the same derivation yields:404

1 = ∥Σva∥2 = (va ⊙ va)⊤(σ ⊙ σ), (47)

or, after collecting the equations for all a ∈ C :405

B(σ ⊙ σ) = 1|C |, (48)

where B is the |C | × d matrix406

B =

 · · · · · · · · ·
(va ⊙ va)⊤
· · · · · · · · ·

 . (49)

By Assum. 2, B has full rank, thus, there is at most one solution to the equation Bt = 1|C |. Due to407

the unit-normality of va’s, this solution is exactly t = 1d. However, as the singular values σi are all408

positive, the only solution to σ ⊙ σ = 1d is σ = 1d. This is equivalent to saying that O = α
βA is409

orthogonal.410

Furthermore, h = (A⊤)−1 = (βαO
⊤)−1 = α

βO.411

412

B Additional experimental results413

In Tab. 2, we present additional ablation studies exploring the effect of varying the levels of con-414

centration for vc across the unit hyper-sphere. We do not observe any significant impact on the R2415

scores from more concentrated cluster centroids vc.

Table 2: Identifiability in the synthetic setup. Mean ± standard deviation across 5 random seeds.
Settings that match our theoretical assumptions are ✓. We report the R2 score for linear mappings,
z̃ → z and wi → vc for cases with normalized (o) and unormalized (a) wi. For unormalized wi,
we verify that mappings z̃ → z are orthogonal by reporting the mean absolute error between their
singular values and those of an orthogonal transformation.

normalized wi cases unnormalized wi

R2
o(↑) MAEo(↓) R2

a (↑)
N d |C | p(vc) p(z|vc) M. z̃ → z wi → vc z̃ → z wi → vc z̃ → z wi → vc

103 5 100 Uniform vMF(κ=10) ✓ 98.6±0.01 99.9±0.01 0.01±0.00 0.00±0.00 99.0±0.00 99.9±0.00

103 5 100 Laplace vMF(κ=10) ✓ 98.7±0.00 99.5±0.00 0.01±0.00 0.00±0.00 99.1±0.00 99.8±0.00

103 5 100 Normal vMF(κ=10) ✓ 98.2±0.01 99.2±0.01 0.01±0.00 0.00±0.00 99.2±0.00 99.8±0.00

416
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C Acronyms417

CL Contrastive Learning418

DGP data generating process419

ICA Independent Component Analysis420

LVM latent variable model421

SSL Self-Supervised Learning422

vMF von Mises-Fisher423

13


	Identifiability of latents drawn from a vMF around cluster vectors
	Affine Generator Systems
	Assumptions and main result

	Additional experimental results
	Acronyms

