Module models.resnet_cifar

Properly implemented ResNet-s for CIFAR10 as described in paper [1].

The implementation and structure of this file is hugely influenced by [2] which is implemented for ImageNet and doesn't have option A for identity. Moreover, most of the implementations on the web is copy-paste from torchvision's resnet and has wrong number of params.

Proper ResNet-s for CIFAR10 (for fair comparision and etc.) has following number of layers and parameters:

name | layers | params ResNet20 | 20 | 0.27M ResNet32 | 32 | 0.46M ResNet44 | 44 | 0.66M ResNet56 | 56 | 0.85M ResNet110 | 110 | 1.7M ResNet1202| 1202 | 19.4m

which this implementation indeed has.

Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 [2] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

If you use this implementation in you work, please don't forget to mention the author, Yerlan Idelbayev.

Expand source code
#!/usr/bin/env python3

# From https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py

"""
Properly implemented ResNet-s for CIFAR10 as described in paper [1].

The implementation and structure of this file is hugely influenced by [2]
which is implemented for ImageNet and doesn't have option A for identity.
Moreover, most of the implementations on the web is copy-paste from
torchvision's resnet and has wrong number of params.

Proper ResNet-s for CIFAR10 (for fair comparision and etc.) has following
number of layers and parameters:

name      | layers | params
ResNet20  |    20  | 0.27M
ResNet32  |    32  | 0.46M
ResNet44  |    44  | 0.66M
ResNet56  |    56  | 0.85M
ResNet110 |   110  |  1.7M
ResNet1202|  1202  | 19.4m

which this implementation indeed has.

Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385
[2] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

If you use this implementation in you work, please don't forget to mention the
author, Yerlan Idelbayev.
"""

import torch.nn as nn

# Import PyTorch layers, activations and more
import torch.nn.functional as F
import torch.nn.init as init


__all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']


def _weights_init(m):
    if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
        init.kaiming_normal_(m.weight)


class LambdaLayer(nn.Module):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1, option='A'):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            if option == 'A':
                """
                For CIFAR10 ResNet paper uses option A.
                """
                self.shortcut = LambdaLayer(lambda x:
                                            F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0))
            elif option == 'B':
                self.shortcut = nn.Sequential(
                    nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(self.expansion * planes)
                )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(ResNet, self).__init__()
        self.in_planes = 16

        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
        self.linear = nn.Linear(64, num_classes)

        self.apply(_weights_init)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = F.avg_pool2d(out, out.size()[3])
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


# TODO: Any way we can actually have an useful pretrained argument here?
def resnet20(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes)


def resnet32(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [5, 5, 5], num_classes=num_classes)


def resnet44(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [7, 7, 7], num_classes=num_classes)


def resnet56(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [9, 9, 9], num_classes=num_classes)


def resnet110(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [18, 18, 18], num_classes=num_classes)


def resnet1202(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [200, 200, 200], num_classes=num_classes)

Functions

def resnet110(pretrained=False, num_classes=10)
Expand source code
def resnet110(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [18, 18, 18], num_classes=num_classes)
def resnet1202(pretrained=False, num_classes=10)
Expand source code
def resnet1202(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [200, 200, 200], num_classes=num_classes)
def resnet20(pretrained=False, num_classes=10)
Expand source code
def resnet20(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [3, 3, 3], num_classes=num_classes)
def resnet32(pretrained=False, num_classes=10)
Expand source code
def resnet32(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [5, 5, 5], num_classes=num_classes)
def resnet44(pretrained=False, num_classes=10)
Expand source code
def resnet44(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [7, 7, 7], num_classes=num_classes)
def resnet56(pretrained=False, num_classes=10)
Expand source code
def resnet56(pretrained=False, num_classes=10):
    return ResNet(BasicBlock, [9, 9, 9], num_classes=num_classes)

Classes

class ResNet (block, num_blocks, num_classes=10)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(ResNet, self).__init__()
        self.in_planes = 16

        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
        self.linear = nn.Linear(64, num_classes)

        self.apply(_weights_init)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = F.avg_pool2d(out, out.size()[3])
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out

Ancestors

  • torch.nn.modules.module.Module

Class variables

var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    out = F.relu(self.bn1(self.conv1(x)))
    out = self.layer1(out)
    out = self.layer2(out)
    out = self.layer3(out)
    out = F.avg_pool2d(out, out.size()[3])
    out = out.view(out.size(0), -1)
    out = self.linear(out)
    return out