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Abstract

Preventing private data leakage is crucial in federated learning. Existing secure1

aggregation (SA) protocols, which are the core protocols for privacy-preserving2

federated learning, require clients to synchronize at multiple points, meaning3

they must wait for other clients to send their messages before proceeding. This4

synchronization ensures that inputs can be aggregated without compromising5

privacy, while also accounting for client dropouts and message delays.6

This work presents PICASO, abbreviated from Per Iteration Client At most Syn-7

chronizes Once, a novel SA protocol minimizing synchronization overhead in8

privacy preserving federated learning, aligning its communication pattern more9

closely with that of non-private federated learning. PICASO outperforms previous10

works like SecAgg, SecAgg+, MicroSecAgg, and Flamingo with server runtime11

under 1 second for large clients. PICASO demonstrates viability by training various12

models on different datasets.13

We also detail extensions to PICASO to achieve various improvements over state-14

of-the-art algorithms in two key areas - detecting and removing malicious clients,15

and secure aggregation for heterogeneous datasets. Overall, PICASO presents an ef-16

ficient, secure, and flexible federated learning solution minimizing synchronization17

needs.18

1 Introduction19

Federated learning (FL) enables collaborative machine learning without sharing client data, by20

aggregating local model updates at a central coordinator. However, recent works show that training21

data can still be compromised from model updates alone [51, 82, 71], making secure aggregation22

(SA) crucial for privacy-preserving FL. SA computes the sum of user inputs while keeping individual23

inputs private. Like in traditional FL, the server typically selects a set of n clients for each iteration24

with the server repeating the process until the model converges. Typically, a new set of clients25

are chosen per iteration Note that the number of clients n can range from a hundred to tens of26

millions [58] and similarly the number of model parameters m can scale to millions [13]. The goal27

is to securely train a global model. Critically, for SA protocols to help with federated learning, the28

underlying protocol is needed to be robust to client dropouts. Furthermore, SA algorithms typically29

work over integers or field elements while the weights produced by an ML model are floating point30

values. Therefore, one often needs to quantize the weights and show that the model produced by the31

SA protocols still preserve accuracy. Existing SA algorithms broadly rely on Differential Privacy32

(DP) [44], Homomorphic Encryption (HE) [75, 96], or secure multiparty computation techniques33

[8, 13, 7, 68, 66, 86, 83, 98, 56, 94, 67, 63].34

SecAgg [13] introduced a practical solution for privacy-preserving horizontal federated learning. The35

protocol’s core idea involves pairwise masking seeds su,v shared between clients u, v P U , where U36

is the set of all users. Each client u masks its input using
ř

vău su,v ´
ř

vąu su,v . Note that a client37
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v ă u would generate its mask by subtracting su,v . Therefore, it is easy to see that the pairwise masks38

cancel out in aggregation, i.e.,
ř

uPU p
ř

vău su,v ´
ř

vąu su,vq “ 0. While a particular user u maybe39

offline, the remaining clients would still have used their pairwise mask with u in the aggregation.40

Therefore, su,v for an offline u and any online v needs to be secret shared with other clients to allow41

the server to reconstruct su,v and then remove the mask. Unfortunately, a server could label an online42

client u as offline which would give the server su,v, allowing it to unmask an online user’s inputs.43

Therefore, a client also uses a self-mask su to mask its inputs. This su is also secret-shared and is44

reconstructed should u be online. As is obvious, SecAgg involves multiple rounds of computation45

such as to establish pairwise masks, secret share the masks, sending the masked inputs, and then46

reconstructing the sum. Therefore, for n clients and a vector of size m, the protocol requires Opn2mq47

computation on the part of the aggregator, Opmnq for each client. Subsequent works have focused48

on reducing the complexity through various assumptions and techniques. Here the vector m can be49

viewed as the number of parameters in the model, i.e., the inputs to the secure aggregation algorithm.50

This work aims to address a critical scalability issue with existing SA algorithms. Prior works often,51

including SecAgg that was described above, require clients to synchronize their participation with52

others, an artifact of techniques where clients mask their inputs but must share masks with a quorum53

of clients to facilitate unmasking, if the client was unavailable later. This expensive ritual of sharing54

masks induces a bottleneck absent in non-private training, where clients simply train the model and55

send updates without additional synchronization.56

Our main contribution is PICASO, a secure aggregation protocol where each client synchronizes57

at most once per training iteration. The key idea is that in iteration ℓ, client i masks its input xi by58

computing yi “ xi ` GenerateMaskpki, ℓq, where ki is its private key. Client i sends yi to the server59

and GenerateMaskpki, ℓq to a separate "collector" party. Our model supports dynamic selection of60

collector. They are stateless and run a deterministic computation, simpler than the server’s own61

computation. A simple way of choosing a collector would be to use a randomness beacon [37] and62

the Algorithm 1 from Flamingo [68, Lines 2-5]. The collector aggregates the masks from all clients63

and sends their sum to the server. The server then reconstructs
ř

i xi using the masked inputs and the64

sum of masks. Unlike SecAgg (and its subsequent works), PICASO does not require sending masks65

to multiple parties or secret sharing, reducing synchronization overhead. It only needs to synchronize66

to identify the collector for that iteration. Looking ahead, the collector acts can be viewed as a single67

"decryptor" [68] or “committee member” [63], receiving information from clients, condensing it, and68

communicating the result to the server for secure aggregation (Figure 1a). In other words, PICASO69

utilizes one intermediate party while SecAgg employed n with subsequent works employing log n70

intermediate parties.71

Asymptotically, PICASO’s client computation cost is Opmq, where m is the input vector length (e.g.,72

the number of weights of the model), while the server and collector computation cost is Opmnq,73

where n is the number of clients (Table 2). PICASO offers several attractive features:74

• Dropout tolerance: Any number of selected clients can opt out without increasing computa-75

tional burden on remaining clients or requiring additional interaction.76

• Collusion resistance: Privacy of honest users’ inputs is preserved even if an adversary77

corrupts any number of clients and the aggregator.78

• Scalability and dynamism: New clients can join without an expensive setup phase, needing79

only public parameters and the aggregator’s iteration key.80

• Enhanced privacy: Input privacy is maintained against both collector and aggregator, pro-81

vided they do not collude. The collector can change in each iteration, facilitated by a82

randomness beacon which in tern prevents server manipulation.83

We also microbenchmark PICASO, comparing with the state-of-the-art secure aggregation algorithms84

to demonstrate competitive performance. For example, PICASO’s server computation time is ă 1s,85

even for large number of clients besting prior work. We also conduct extensive experiments on FL86

benchmark datasets to demonstrate that PICASO preserves performance, while guaranteeing privacy.87

Further, PICASO can easily be extended to offer:88

• a constant-round protocol to detect and remove malicious clients (i.e., sending inconsistent89

or incorrect messages), improving on the state-of-the-art ACORN which requires Oplog nq90

rounds where n is the number of clients.91
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(a) The PICASO system model operates in iterations.
Each iteration begins with the server sending a mes-
sage to initiate the process (Message 0). In response,
clients train the model on their local data, obtain
updates, and mask the input. Concurrently, clients
communicate with both the server and the collector
(Message 1): masked input is sent to the server, while
auxiliary information is transmitted to the collector.
Upon receiving information from all clients, the col-
lector combines these into a single value. Finally,
this consolidated data is sent to the server (Message
2), concluding the iteration.

Ĝ

Group Order

p ¨ ŝ

G :“ xg “ f ¨ hy

cyclic subgroup

p ¨ s

H :“ xhy “ txp : x P GuF :“ xfy

F : p
H : s

factors as

(b) A brief overview of the class group framework
we employ. Here, pG is group, whose order is ps ¨ p,
such that ps and p are co-prime. Further, s divides ps
and is the order of the group G, which is generated
by g and is denoted as G :“ xgy. Similarly, H is
a subgroup of G, generated by h whose order is s,
while F has order p and is generated by f . We have
g “ f ¨h. Further, ps (and s) is unknown but an upper
bound s̄ is known. The last property we will rely on
is that discrete logarithm is efficient in the subgroup
F.

Figure 1: The backbone of PICASO - the communication system model and the CL framework.

• a secure aggregation protocol supporting heterogeneous datasets via robust stochastic aver-92

aging [64], which improves upon DReS-FL [80] as DReS-FL requires the entire dataset to93

be secret shared among clients, which we avoid.94

1.1 Related Work95

Secure Aggregation Using Differential Privacy and Homomorphic Encryption. A simple96

approach to differential privacy (DP) is local DP [38], where clients add noise to their data before97

sending it to the server. This has been deployed by major tech companies [40, 1]. However, research98

shows that such data perturbation may reduce accuracy. Our techniques can be composed with DP99

solutions, using secure aggregation (SA) algorithms to mask noisy local inputs [57]. Meanwhile,100

BatchCrypt [96] employed homomorphic encryption (HE), building on earlier work. However, it101

required all clients to use the same key, posing a significant privacy risk.102

SA using Multiparty Computation. Secure multiparty computation (MPC) preserves privacy and103

accuracy by computing over encrypted data. Early works on Private Stream Aggregation [81] focused104

on secure summing of streaming data. Following SecAggBonawitz et al. [13], Federated Learning105

protocols with dropout resilience were developed, but multiple interaction rounds increased dropout106

risk. Subsequent works [8, 7, 68, 66, 86, 83, 98, 56, 94, 67, 63] have focused on reducing the number107

of intermediate parties to log n, or reusing the masked secret sharing across multiple iterations to108

reduce round count. This is summarized in Table 1 where we compare various protocols with respect109

to the following properties: (a) the number of rounds of interaction, (b) whether it can tolerate client110

dropouts, (c) on whether the aggregate value can be efficiently recovered, (d) public setup for security111

assumption, and (e) number of intermediate parties needed to help with the aggregation. Multi-server112

settings [33, 4] face challenges with long inputs due to increased communication and computation113

demands. Our approach assumes no server-collector collusion, a weaker assumption as the collector114

changes each iteration and performs less computation.115

2 System Model and Relevant Background116

We consider a federated learning framework, as shown in Figure 1a. There exist n clients, with each117

client Ci owning a dataset Di. The server holds the ML model Θ. In FL, the server first senders Θ to118

clients, and each client trains its local dataset on Di to generate the updated weights mi. Meanwhile,119
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Table 1: Comparison of various Secure Aggregation Algorithms based on MPC.
# Rounds Dropout Efficient Public # Additional

Resilience Aggregation Setup Parties

[81] 1 ✗ ✗ ✓ 0
[55] 1 ✗ ✓ ✗ 0
[9] 1 ✗ ✗ ✗ 0
[62] 1 ✓ ✓ ✗ 1
SecAgg[13] 3 ✓ ✓ ✓ n
SecAgg+[8] 3 ✓ ✓ ✓ log n
MicroSecAgg[49] 1+2 ✓ ✗* ✓ log n
LERNA[63] 1+2 ✓ ✓ ✓ log n
Flamingo[68] 1+2 ✓ ✓ ✓ log n
PICASO 1 ✓ ✓ ✓ 1

Table 2: Comparison of asymptotic complexity of some secure aggregation protocols. Note that in
PICASO, the collector performs Opmnq computation and communication.

Client Server

Computation Communication Computation Communication

SecAgg[13] Opmn ` n2q Opm ` nq Opmn2q Opmn ` n2q

SecAgg+[8] Opm log n ` log2 nq Opm ` log nq Opn log2 n ` mn log nq Opmn ` n log nq

SASH[66] Opm ` n2q Opm ` nq Opm ` n2q Opmn ` n2q

PICASO Opmq Opmq Opmnq Opmnq

the server computes the average of these model updates tmiu to update its global model to Θ1. In the120

next iteration Θ1 is sent back for the next update. The goal is to use the collector to ensure that the121

weights mi remain secret while still allowing the server to compute the average, and thereby the new122

model Θ1.123

Threat Model. Our threat model follows the long line of prior works whereby an adversary can: (a)124

corrupt the server or the collector, (b) corrupt clients which enables the adversary to choose the client125

inputs for an iteration. The goal is to ensure that the honest users’ inputs remain private with only126

their sum being leaked. Our protocols are described in this setting, like all prior work. Note that prior127

works such as Flamingo [68], or LERNA [63] did not guarantee privacy when all the intermediate128

parties collude with each other. Similarly, we allow for the collector to corrupt clients and guarantee129

the security against a corrupted collector. If the server and collector collude at an iteration, however,130

there is no privacy for that iteration.1 Importantly, our collector can change from every iteration to131

iteration and is selected by a randomness beacon using an algorithm similar to how the set is chosen132

in Flamingo [68, Algorithm 1]. This is similar to how validators are chosen in some proof of stake133

blockchains [45].134

Modeling Security. We model security against both a corrupt server and a corrupt collector. A135

corrupt server can adaptively compromise clients and collude with them, issue arbitrary encryption136

messages for honest parties in any iteration, and receive the collector’s combined information at137

each iteration, but cannot corrupt the collector. The adversary selects honest clients H1, . . . ,Ht138

and provides two input sets: tx1, . . . , xtu and tx1
1, . . . , x

1
tu, where

ř

xi “
ř

x1
i. The challenger139

randomly selects and encrypts one set for the target time period τ . The adversary’s goal is to determine140

which set was chosen with probability significantly exceeding 1/2.141

Meanwhile, for privacy against a corrupt collector, the adversary receives individual communication142

sent by the clients to the collector. It can corrupt clients and also issue encryption queries, as before.143

It cannot corrupt the server but can adaptively issue the above queries. The challenge is the same as144

for a corrupt server - to distinguish between honest user inputs. Since it does not receive the final145

result, the challenge sets need not have the same sum.146

CL Framework. Cryptographic protocols often use cyclic groups G of prime order q, generated147

by gq, i.e., G :“ t1, gq, . . . , g
q´1
q u. The Discrete Logarithm (DL) Assumption [2] states that given148

X P G, finding x where gxq “ X is computationally infeasible.2 The Decisional Diffie-Hellman149

1In such a case the server can learn the individual client model updates. To protect against such an attack the
best that the clients can do is to add differential private noise to their updates.

2Small x are recoverable, as in [49, 81, 9].
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(DDH) Assumption [14] posits that given gq, g
x
q , g

y
q , distinguishing gxyq from a random element in G150

is computationally infeasible.151

The CL Framework [24, 27–29, 17] introduces the idea of a composite order group, where the order152

is unknown, but there is a subgroup of known prime order where the discrete logarithm computation153

is easy. This framework utilizes the group where DL is easy to ensure correctness and eventual154

message recovery, and the group where DL is hard to achieve security. The framework is summarized155

in Figure 1b.156

The security property relies on a modified DDH assumption (Definition 1) involving indistinguisha-157

bility between elements from groups G and H within a composite order group. While their orders158

are unknown, upper bounds exist. The input space is in F, and the key space in H. Distributions DG159

and DH are based on these upper bounds, with DG (resp. DH ) being statistically indistinguishable160

from G’s (resp. H’s) exponent space. Typically, DH :“ 0, . . . , B ´ 1 where B “ 240 ¨ s where s̄ is161

the upperbound of the order of H, shown by [89] to be 2´40-close to uniform. The security property162

relies on a modification of the DDH assumption (see Definition 1), where the indistinguishability is163

between elements from two different groups, G and H, within the composite order group. However,164

the orders of G and H are unknown, but there are upper bounds on their orders.165

Definition 1 (DDH-f Assumption). Let ppG,G,H,F, s̄q be the class group as defined in Figure 1b.166

Then, the following two distributions are computationally indistinguishable, i.e., there is no “efficient”167

attacker who can distinguish whether it is the first or the second distribution that a sampled value168

comes from, with a probability greater than half. Here, x, y Ð$ DH , u Ð$ Z{pZ169

tph, hx, hy, hxyu «c tph, hx, hy, hxy ¨ fuu

We refer the readers to Bouvier et al. [16] and Tucker [89] for a detailed exposition on class groups,170

techniques, and its extensive use in cryptography. They also survey the utility of CL framework in171

building other cryptographic primitives.172

3 PICASO173

In this section, we present an efficient privacy-preserving aggregation scheme called PICASO where174

each iteration involves a client speaking at most once. We begin by describing an additively homo-175

morphic masking algorithm. We then instantiate this in the CL framework. This is a generalization of176

the version presented in the introduction. We then present our complete description of PICASO and177

formally prove it secure in the random oracle model.178

3.1 Homomorphic Masking Algorithm179

Let ki denote the secret key of Client i. Let k0 denote the secret key of the aggregator. Further, for180

iteration ℓ, let pki,ℓ (resp. pk0,ℓ) denote the public key of client i (resp. the server) for iteration ℓ.181

Then, we require the following properties of our algorithm GenMask:182

• The masking function can be computed using two different ways, i.e., GenMaskppki,ℓ, k0q “183

GenMaskppk0,ℓ, kiq184

• Homomorphic over public key space, i.e.,
śn

i“1 GenMaskppki,ℓ, k0q “185

GenMaskp
śn

i“1 pkj,ℓ, k0q186

Further, we require that the generated mask is pseudorandom, i.e., GenMaskppk0,ℓ, kiq appears187

random provided the adversary cannot compute the mask on its own which requires the knowledge of188

ppk0,ℓ, kiq or ppki,ℓ, k0q.189

Construction 1 (Homomorphic Masking Algorithm). Let H : t0, 1u
˚

Ñ H be a hash function that190

maps strings to the unknown order subgroup of G.3 Then, for secret key ki Ð$ DH for i “ 0, . . . , n,191

we can define, for iteration ℓ, pki,ℓ :“ Hpℓqki and the mask value as maski,ℓ :“ Hpℓqk0¨ki192

We now show that the construction satisfies the required properties:193

3Note that for our purposes we can simply begin by hashing the input to an element in DH , and then raising
the group generator h to this value. This is because the knowledge of the discrete logarithm is not detrimental.
However, [77] present additional methods to hash into a group of unknown order, in a way that the discrete
logarithm is unknown.
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• maski,ℓ “ Hpℓqk0¨ki “ pkk0i,ℓ “ pkki0,ℓ194

• maski,ℓ ¨ maskj,ℓ “ Hpℓqk0pki`kjq “ ppki,ℓ ¨ pkj,ℓq
k0195

For a particular iteration ℓ, an adversary is either given Hpℓq, pk0,ℓ, pki,ℓ,maski,ℓ or196

Hpℓq, pk0,ℓ, pki,ℓ, U where U Ð$ G. This follows from the DDH-f assumption, which we define in197

Definition 1. Looking ahead, this pseudorandom mask will be used to mask the client input and198

thereby guaranteeing privacy.199

3.2 Formal Description of PICASO200

We first informally describe the protocol. At iteration ℓ, the server sends a message identifying201

clients who are participating in that round of interaction. In this message, it also includes its202

iteration public key pk0,ℓ. Client i, with its input xi,ℓ, first encodes it as fxi,ℓ . Recall that f is203

the generator of the cyclic, prime-order group F where discrete logarithm is easy, i.e., given this204

encoding, there exists an efficient algorithm that outputs xi,ℓ. Once encoded, it computes the mask205

maski,ℓ “ GenMaskppk0,ℓ, kiq. It sends to the server the masked input cti,ℓ “ maski,ℓ ¨ fxi,ℓ .206

Meanwhile, it also sends to the collector pki,ℓ.207

The collector simply multiplies all of the clients’ iteration public keys to compute AUXℓ “
ś

pki,ℓ.208

AUXℓ is sent to the server. The server does the following: multiplies all of the masked inputs
ś

cti,ℓ209

and divides it by GenMaskpAUXℓ, k0q. It then applies the efficient discrete logarithm to compute the210

aggregate. Formally, we present in Construction 2.211

Construction 2 (PICASO Protocol for iteration ℓ). The protocol description is as follows:212

• One-Time Setup Phase:213

Transparent Setup is executed and outputs pp “ ppG,F, p,DH ,DG, s̄, g, h, f,H : t0, 1u˚
Ñ Hq214

• Begin Iteration: Server, with key k0, computes pk0,ℓ “ Hpℓqk0 and sends to the chosen clients and215

collector.216

• Encryption Phase: Each online client Ci P OLℓ with key ki and input xi,ℓ does the following:217

– Compute maski,ℓ :“ GenMaskppk0,ℓ, kiq218

– Compute masked input cti,ℓ “ fxi,ℓ ¨maski,ℓ219

– Compute public key pki,ℓ “ Hpℓqki220

– Ci ÑServer: cti,ℓ221

– Ci ÑCollector: pki,ℓ222

• Collection Phase: Collector computes AUXℓ “
ś

iPOLℓ
pki,ℓ.223

CollectorÑServer: AUXℓ224

• Aggregation Phase: Server computes:225

– Compute Yℓ :“
ś

iPOLℓ
cti,ℓ226

– Compute Xℓ :“ GenMaskpAUXℓ, k0q227

– Compute Sumℓ :“ Yℓ{Xℓ228

– Take discrete log of Sumℓ, which is efficient.229

We omit the proof due to space constraints. However, the intuition for security comes from the fact230

that: (a) the honest user’s key is chosen by the honest user and is unknown to the adversary, (b) for231

such a random key, the mask generated is indeed pseudorandom under the DDH-f assumption, and232

(c) such a pseudorandom mask will blind the honest client’s inputs.233

Remark 1. Observe that it is possible that the client’s communication to either the server or the234

collector is dropped due to network issues. In this situation, the collector’s information relayed to the235

server does not yield correct aggregate. To handle such situation, the server and the collector can236

engage in one additional round of communication, per iteration. In this round, the collector first sends237

a list of clients from whom it has received communication. The server respond with the intersection238

of the collector’s list with its own list of clients. Finally, the collector “collects” only with respect to239

this set of clients.240

Remark 2. Note that each pki,ℓ is pseudorandom, if ki is unknown. However, masking only with241

pki,ℓ is insufficient for security against the collector. This is because the collector receives the masked242

input (masked by pki,ℓ) and pki,ℓ for ever honest client i. Therefore, the collector can easily recover243

the input. This prompts the need for a server’s iteration public key, generated as a function of its244

secret key k0.245
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Figure 2: Measure of Server and Client Computation Time as a function of number of clients across
various aggregation algorithms.
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Figure 3: Performance Measurement of PICASO for FL Tasks.

4 Experiments246

In this section, we perform different experimentation to demonstrate the efficiency, accuracy, and247

privacy of PICASO. All our experiments were carried out on an Apple M1 Pro CPU with 16 GB of248

unified memory, without any multi-threading or related parallelization. More details can be found in249

Section B.250

Microbenchmarking Secure Aggregation. We benchmark the client and server computation time251

of our protocol against existing state-of-the-art solutions, including [13], [8], MicroSecAgg [49], and252

PICASO. Additionally, we compare our results with specific parameter choices from prior work,253

such as grouping operations (clients share inputs with 50 or 100 parties) and offline rate (parties can254

go offline during the protocol). These settings are not applicable to PICASO. Our reported timing is255

taken as a mean of 20 iterations.256

As shown in Figure 2, our client computation time is significantly better than [13] and [8], and257

comparable to MicroSecAgg. However, unlike MicroSecAgg, our protocol does not incur offline258

waiting times due to multiple rounds of participation. For instance, when there are 100 clients,259

MicroSecAgg requires at least 30ms of offline time, which increases with more clients. Additionally,260

MicroSecAgg limits input size to achieve server efficiency, supporting only small model updates or261

quantized large model updates. Figure 2 demonstrates that PICASO’s server running time is under 1262

second, thanks to a single-round protocol with efficient aggregate recovery. This outperforms all other263

protocols. Any additional communication required to capture Remark 1 has a negligible impact on264

computation time, as it only involves gathering the list of clients and communicating with the collector.265

SASH [66] combines the secure aggregation protocol SecAgg [13] with a seed-homomorphic PRG266

to enhance efficiency for encrypting large input vectors. However, their performance is dominated267

by SecAgg, which we significantly outperform. Combining SASH with PICASO could achieve268

efficient round communication and improved server computation time, optimizing for input size269

scaling. Finally, PICASO requires 56 bytes of bandwidth for each of the following: server public270

key, masked input, while requiring 32 bytes for client’s iteration public key sent to the collector, and271

information sent to the server from the collector.272

Benchmarking FL Models. To demonstrate PICASO’s viability for federated learning, we use273

it to train various models. We train a logistic regression model on Kaggle Credit Card Fraud274
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Dataset [76]. Figure 3 shows PICASO’s MCC versus clear learning for varying clients and iterations.275

With the accuracy multiplier, PICASO’s MCC is very close to clear learning and even outperforms276

sometimes. The highly unbalanced dataset demonstrates PICASO can achieve strong performance277

even in challenging real-world scenarios. We then train a vanilla multi-layer perceptron (MLP)278

classifier on three datasets: MNIST, CIFAR-100. The details of the datasets, including quantization279

and license can be found in Table 4. The MLP accuracy, as a function of the iteration, is plotted280

in Figure 3. Our experiments demonstrate that PICASO preserves accuracy, while ensuring the281

privacy of client data. Note that vanilla MLP classifiers do not typically offer good performance for282

CIFAR datasets, but note that the goal of our experiments was to show that PICASO does not impact283

accuracy.284

5 Extensions to PICASO285

We defer additional extensions to Section D, due to space constraints.286

5.1 Robust PICASO287

PICASO requires clients to send iteration public keys to the collector and masked inputs to the server,288

potentially allowing malicious actors to disrupt aggregation by using inconsistent keys. While secure289

aggregation has been widely studied, less focus has been on detecting and mitigating malicious290

behavior. Prior works in this domain are limited to:291

• ACORN [7]: Offers a constant-round version detecting malicious behavior (aborting on292

detection) and a non-constant round version removing malicious inputs.293

• RoFL [67] and ACORN: Use zero-knowledge proofs (e.g., Bulletproofs [19] and improve-294

ments [43]) to prevent malicious input injection.295

The latter requires that the secure aggregation algorithm still proceeds, after having removed malicious296

clients. Indeed, PICASO ensures privacy of inputs, even if the server is corrupt and chooses to corrupt297

various users. Similarly, against corrupt collector who can corrupt users and inject messages into the298

system. In this section, we show how to augment PICASO to detect and remove malicious clients as299

described above. In Algorithm 3, we only present the additional proving steps by the client and the300

verification steps for the collector. In the construction, C is representative of the challenge space and301

integer A is chosen as a function of the size of C . We refer the reader to [17, §5.2] for details about302

the proof system and its correctness. Here, A is set to be an integer such that the size of challenge303

space C :“ |C | is negligibly small when compared to A ,i.e., C{A is negligible.304

Signatures can be employed to ensure the collector transmits only client-authenticated information to305

the server, mitigating malicious collector behavior. Our protocol can be enhanced with range-proof306

techniques from ACORN [7]. Notably, our inputs are encoded in prime-order subgroup F, which307

can be composed with standard Pedersen commitments [74] using a prime order cyclic subgroup G308

where the DDH assumption holds.309

Construction 3 (Additional Steps in Robust-PICASO). We assume that there is an hash function H : t0, 1u˚
Ñ310

C . Here, A :“ 240 ¨ |DH | ¨ C and rAs :“ t0, . . . , A´ 1u. We set C to be 2128.311

Proof Generation: Each online client Ci312

• Sample rk Ð$ rAs, rx Ð$ t0, . . . , p´ 1u313

• Compute t1 :“ Hpℓqrk , t2 :“ pkrk0,ℓ ¨ f
rx314

• Compute ch :“315

Hpℓ, pki,ℓ, cti,ℓ, t1, t2, pk0,ℓq316

• Compute sk :“ rk`ch ¨ki, sx :“ rx`ch ¨317

xi,ℓ mod p318

• Set proofi :“ psk, sx, chq319

• Ci ÑServer: cti,ℓ320

• Ci ÑCollector: pki,ℓ, cti,ℓ, proofi321

Proof Verification: Collector does: For client i in
OLℓ:

• Receive: ppki,ℓ, cti,ℓ, proofi “

psk, sx, chqq

• Compute t1
2 :“ pksk0,ℓ ¨ f

sx ¨ ct´ch
i,ℓ

• Compute t1
1 :“ pHpℓqqsk ¨Hpℓq´ch

• Compute ch1 :“
Hpℓ, pki,ℓ, cti,ℓ, t

1
1, t

1
2, pk0,ℓq

• if ch ‰ ch1 then
OLℓ :“ OLℓztiu
Add pproofi, cti,ℓ, pki,ℓq to list M

• Compute AUXℓ :“
ś

iPOLℓ
pki,ℓ

• CollectorÑServer:
AUXℓ, tcti,ℓuiPOLℓ

,M
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5.2 Byzantine-Robust Stochastic Aggregation and Heterogeneous Datasets322

Heterogeneity in Data Distribution. Data-centric methods [97, 72, 54] aim to align local and global323

distributions while preserving privacy, using techniques like sharing raw, synthesized, or augmented data.324

However, these approaches may compromise local data privacy [79]. Privacy-preserving machine learning can325

be achieved through secret sharing schemes such as homomorphic encryption (HE) [42, 46] and multiparty326

computation (MPC) [70]. However, HE is computationally expensive, and MPC faces scalability issues. Recent327

frameworks [85] utilize Lagrange coding and polynomial approximations to address these challenges in federated328

learning settings. RSA [64] is a class of stochastic sub-gradient methods for distributed learning robust to329

Byzantine workers. It mitigates the effects of incorrect messages due to malicious behavior, communication330

failures, or uneven data distribution by incorporating a regularization term in the objective function. At each331

iteration k, clients compute parameter updates based on local data, prior local models, and global parameters.332

The client and server updates are:333

Client: xk`1
i “ xk

i ´ ηk
´

∇F pxk
i , ξ

k
i q ` λsignpxk

i ´ wk
q

¯

334

Server: wk`1
“ wk

´ ηk

¨

˝∇f0pw
k
q ` λ

ÿ

iPrns

signpwk
´ xk

i q

˛

‚

where η is the learning rate, ξ is a local dataset sample, F p¨, ¨q is the loss function, fℓ2p¨q is the robust335

regularization term, λ weights the robustness term, sign is element-wise, and rns is the client set.336

Secure Aggregation with RSA. As pointed out by Franzese et al. [41], the only information needed337

by the server to aggregate is signpwk
´ xk

i q. In other words, the clients simply need to supply the server338

with a vector with elements in t´1, 1u. Furthermore, representing -1 as a 0 yields the following property:339

2 ¨
řn

i“1 vi´n “
řn

i“1 ui where ui P t´1, 1u and vi “ 0 iff ui “ ´1. In summary, the server has to perform340

aggregation over binary vectors. PICASO can be used to perform this securely, with only the client having to341

prove that the masked input is either 0 or 1. Such a proof is efficient and we describe below. We present the342

additional steps to be performed by the clients and the server in Construction 4, where the client proving that it343

has encrypted either a value of 0 or a value of 1. This is an adaptation of Groth and Kohlweiss [48] to the CL344

Framework. We omit the proof due to space constraints but it follows earlier results from Braun et al. [17].345

Construction 4 (Secure, Byzantine-Robust Secure Aggregation with PICASO). We assume that there is an346

hash function H : t0, 1u˚
Ñ C . Here, A :“ 240 ¨ |DH | ¨ C and rAs :“ t0, . . . , A´ 1u.347

Proof Generation: Each online client Ci is encrypting348

xi,ℓ P t0, 1u where cti,ℓ :“ pkki0,ℓ ¨ f
xi,ℓ349

• Sample350

rk, r
1
k Ð$ rAs, rx Ð$ t0, . . . , p´ 1u351

• Compute t1 :“ pkrk0,ℓ ¨ f
rx , t2 :“ pk

r1
k

0,ℓ ¨352

frx¨xi,ℓ353

• Compute ch :“354

Hpℓ, pki,ℓ, cti,ℓ, t1, t2, pk0,ℓq355

• Compute sx :“ rx ` ch ¨ xi,ℓ mod p356

• Compute sk :“ rk ` ch ¨ ki, , s
1
k :“ r1

k `357

pch´ sxq ¨ ki358

• Set proofi :“ psk, s
1
k, sx, chq359

• Ci ÑServer: cti,ℓ, proofi360

• Ci ÑCollector: pki,ℓ361

Proof Verification: Server does: For client i in OLℓ:

• Receive: ppki,ℓ, cti,ℓ, proofi “

psk, s
1
k, sx, chqq

• Compute t1
1 :“ ct´ch

i,ℓ ¨ fsx ¨ pksk0,ℓ

• Compute t1
2 :“ ctsx´ch

i,ℓ ¨ pk
s1
k

0,ℓ

• Compute ch1 :“
Hpℓ, pki,ℓ, cti,ℓ, t

1
1, t

1
2, pk0,ℓq

• if ch ‰ ch1 then
OLℓ :“ OLℓztiu

6 Conclusion362

We present PICASO which is a secure aggregation protocol where client only has to synchronize once. This is an363

improvement over existing secure aggregation protocols. We also demonstrate that our protocol has a competitive364

performance over these protocols, and outperforms several of them. Finally, we show that PICASO preserves365

accuracy, while guaranteeing privacy. Our encryption time increasing proportionally with the length of vector.366

While this is expected, our use of group expoentiations makes the process slower. A possible direction for future367

research is to apply the SASH framework [66] with PICASO, which reduces number of group exponentiations.368

Despite limitations we believe PICASO significantly solves the scalability problem, while ensuring privacy. Its369

possible extensions improve on several state-of-the-art protocols.370

9



References371

[1] Apple machine learning research. URL https://machinelearning.apple.com/research/372

learning-with-privacy-at-scale.373

[2] Discrete logarithm. URL en.wikipedia.org/wiki/Discrete_logarithm. Wikipedia.374

[3] D. Abram, I. Damgård, C. Orlandi, and P. Scholl. An algebraic framework for silent preprocessing with375

trustless setup and active security. In Y. Dodis and T. Shrimpton, editors, Advances in Cryptology –376

CRYPTO 2022, Part IV, volume 13510 of Lecture Notes in Computer Science, pages 421–452. Springer,377

Heidelberg, Aug. 2022. doi: 10.1007/978-3-031-15985-5_15.378

[4] S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou. Prio+: Privacy preserving aggre-379

gate statistics vianbsp;boolean shares. In Security and Cryptography for Networks: 13th International380

Conference, SCN 2022, Amalfi (SA), Italy, September 12–14, 2022, Proceedings, page 516–539, Berlin,381

Heidelberg, 2022. Springer-Verlag. ISBN 978-3-031-14790-6. doi: 10.1007/978-3-031-14791-3_23. URL382

https://doi.org/10.1007/978-3-031-14791-3_23.383

[5] A. Arun, C. Ganesh, S. Lokam, T. Mopuri, and S. Sridhar. Dew: Transparent constant-sized zkSNARKs.384

Cryptology ePrint Archive, Report 2022/419, 2022. https://eprint.iacr.org/2022/419.385

[6] T. Attema, I. Cascudo, R. Cramer, I. B. Damgård, and D. Escudero. Vector commitments over rings and386

compressed σ-protocols. Cryptology ePrint Archive, Report 2022/181, 2022. https://eprint.iacr.387

org/2022/181.388

[7] J. Bell, A. Gascón, T. Lepoint, B. Li, S. Meiklejohn, M. Raykova, and C. Yun. ACORN: Input validation389

for secure aggregation. In 32nd USENIX Security Symposium (USENIX Security 23), pages 4805–4822,390

Anaheim, CA, Aug. 2023. USENIX Association. ISBN 978-1-939133-37-3. URL https://www.usenix.391

org/conference/usenixsecurity23/presentation/bell.392

[8] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova. Secure single-server aggregation393

with (poly) logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and394

Communications Security, pages 1253–1269, 2020.395

[9] F. Benhamouda, M. Joye, and B. Libert. A new framework for privacy-preserving aggregation of time-396

series data. ACM Trans. Inf. Syst. Secur., 18(3), mar 2016. ISSN 1094-9224. doi: 10.1145/2873069. URL397

https://doi.org/10.1145/2873069.398

[10] W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based signatures through class399

group computations. In S. D. Galbraith and S. Moriai, editors, Advances in Cryptology – ASIACRYPT 2019,400

Part I, volume 11921 of Lecture Notes in Computer Science, pages 227–247. Springer, Heidelberg, Dec.401

2019. doi: 10.1007/978-3-030-34578-5_9.402

[11] J.-F. Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields,403

2010. ISSN 1930-5346. URL /article/id/0151cba7-9512-448b-83ae-a272f0b836ce.404

[12] J.-F. Biasse, M. J. Jacobson, and A. K. Silvester. Security estimates for quadratic field based cryptosystems.405

In R. Steinfeld and P. Hawkes, editors, ACISP 10: 15th Australasian Conference on Information Security406

and Privacy, volume 6168 of Lecture Notes in Computer Science, pages 233–247. Springer, Heidelberg,407

July 2010.408

[13] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and409

K. Seth. Practical secure aggregation for privacy-preserving machine learning. In B. M. Thuraisingham,410

D. Evans, T. Malkin, and D. Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer411

and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages412

1175–1191. ACM, 2017. doi: 10.1145/3133956.3133982. URL https://doi.org/10.1145/3133956.413

3133982.414

[14] D. Boneh. The decision diffie-hellman problem. In J. P. Buhler, editor, Algorithmic Number Theory, pages415

48–63, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-540-69113-6.416

[15] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with applications to IOPs and417

stateless blockchains. In A. Boldyreva and D. Micciancio, editors, Advances in Cryptology – CRYPTO 2019,418

Part I, volume 11692 of Lecture Notes in Computer Science, pages 561–586. Springer, Heidelberg, Aug.419

2019. doi: 10.1007/978-3-030-26948-7_20.420

[16] C. Bouvier, G. Castagnos, L. Imbert, and F. Laguillaumie. I want to ride my BICYCL : BICYCL421

implements cryptography in class groups. J. Cryptol., 36(3):17, 2023. doi: 10.1007/s00145-023-09459-1.422

URL https://doi.org/10.1007/s00145-023-09459-1.423

10

https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
https://machinelearning.apple.com/research/learning-with-privacy-at-scale
en.wikipedia.org/wiki/Discrete_logarithm
https://doi.org/10.1007/978-3-031-14791-3_23
https://eprint.iacr.org/2022/419
https://eprint.iacr.org/2022/181
https://eprint.iacr.org/2022/181
https://eprint.iacr.org/2022/181
https://www.usenix.org/conference/usenixsecurity23/presentation/bell
https://www.usenix.org/conference/usenixsecurity23/presentation/bell
https://www.usenix.org/conference/usenixsecurity23/presentation/bell
https://doi.org/10.1145/2873069
/article/id/0151cba7-9512-448b-83ae-a272f0b836ce
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/s00145-023-09459-1


[17] L. Braun, I. Damgård, and C. Orlandi. Secure multiparty computation from threshold encryption based on424

class groups. In H. Handschuh and A. Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,425

Part I, volume 14081 of Lecture Notes in Computer Science, pages 613–645. Springer, Heidelberg, Aug.426

2023. doi: 10.1007/978-3-031-38557-5_20.427

[18] J. Buchmann and H. C. Williams. A key-exchange system based on imaginary quadratic fields. Journal of428

Cryptology, 1(2):107–118, June 1988. doi: 10.1007/BF02351719.429

[19] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for430

confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334.431

IEEE Computer Society Press, May 2018. doi: 10.1109/SP.2018.00020.432

[20] B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers. In A. Canteaut and433

Y. Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in434

Computer Science, pages 677–706. Springer, Heidelberg, May 2020. doi: 10.1007/978-3-030-45721-1_24.435

[21] D. Byrd, M. Hybinette, and T. H. Balch. Abides: Towards high-fidelity multi-agent market simulation.436

In Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,437

SIGSIM-PADS ’20, page 11–22, New York, NY, USA, 2020. Association for Computing Machinery.438

ISBN 9781450375924. doi: 10.1145/3384441.3395986. URL https://doi.org/10.1145/3384441.439

3395986.440

[22] I. Cascudo and B. David. ALBATROSS: Publicly AttestabLe BATched Randomness based On Secret441

Sharing. In S. Moriai and H. Wang, editors, Advances in Cryptology – ASIACRYPT 2020, Part III, volume442

12493 of Lecture Notes in Computer Science, pages 311–341. Springer, Heidelberg, Dec. 2020. doi:443

10.1007/978-3-030-64840-4_11.444

[23] G. Castagnos and F. Laguillaumie. On the security of cryptosystems with quadratic decryption: The445

nicest cryptanalysis. In A. Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume 5479446

of Lecture Notes in Computer Science, pages 260–277. Springer, Heidelberg, Apr. 2009. doi: 10.1007/447

978-3-642-01001-9_15.448

[24] G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from DDH. In K. Nyberg, editor,449

Topics in Cryptology – CT-RSA 2015, volume 9048 of Lecture Notes in Computer Science, pages 487–505.450

Springer, Heidelberg, Apr. 2015. doi: 10.1007/978-3-319-16715-2_26.451

[25] G. Castagnos, A. Joux, F. Laguillaumie, and P. Q. Nguyen. Factoring pq2 with quadratic forms: Nice452

cryptanalyses. In M. Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of453

Lecture Notes in Computer Science, pages 469–486. Springer, Heidelberg, Dec. 2009. doi: 10.1007/454

978-3-642-10366-7_28.455

[26] G. Castagnos, L. Imbert, and F. Laguillaumie. Encryption switching protocols revisited: Switching456

modulo p. In J. Katz and H. Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I, volume457

10401 of Lecture Notes in Computer Science, pages 255–287. Springer, Heidelberg, Aug. 2017. doi:458

10.1007/978-3-319-63688-7_9.459

[27] G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted inner product functional460

encryption modulo p. In T. Peyrin and S. Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,461

Part II, volume 11273 of Lecture Notes in Computer Science, pages 733–764. Springer, Heidelberg, Dec.462

2018. doi: 10.1007/978-3-030-03329-3_25.463

[28] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-party ECDSA from hash proof464

systems and efficient instantiations. In A. Boldyreva and D. Micciancio, editors, Advances in Cryptology –465

CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science, pages 191–221. Springer,466

Heidelberg, Aug. 2019. doi: 10.1007/978-3-030-26954-8_7.467

[29] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-efficient threshold468

EC-DSA. In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020: 23rd International469

Conference on Theory and Practice of Public Key Cryptography, Part II, volume 12111 of Lecture Notes in470

Computer Science, pages 266–296. Springer, Heidelberg, May 2020. doi: 10.1007/978-3-030-45388-6_10.471

[30] Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H. Rangwala. Fedat: A communication-efficient federated472

learning method with asynchronous tiers under non-iid data. arXiv preprint arXiv:2010.05958, 2020.473

[31] P. Chaidos and G. Couteau. Efficient designated-verifier non-interactive zero-knowledge proofs of knowl-474

edge. In J. B. Nielsen and V. Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III,475

volume 10822 of Lecture Notes in Computer Science, pages 193–221. Springer, Heidelberg, Apr. / May476

2018. doi: 10.1007/978-3-319-78372-7_7.477

11

https://doi.org/10.1145/3384441.3395986
https://doi.org/10.1145/3384441.3395986
https://doi.org/10.1145/3384441.3395986


[32] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala. Asynchronous online federated learning for edge devices478

with non-iid data. In 2020 IEEE International Conference on Big Data (Big Data), pages 15–24. IEEE,479

2020.480

[33] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation of aggregate statis-481

tics. In A. Akella and J. Howell, editors, 14th USENIX Symposium on Networked Systems Design482

and Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages 259–282. USENIX483

Association, 2017. URL https://www.usenix.org/conference/nsdi17/technical-sessions/484

presentation/corrigan-gibbs.485

[34] G. Couteau, M. Klooß, H. Lin, and M. Reichle. Efficient range proofs with transparent setup from486

bounded integer commitments. In A. Canteaut and F.-X. Standaert, editors, Advances in Cryptology487

– EUROCRYPT 2021, Part III, volume 12698 of Lecture Notes in Computer Science, pages 247–277.488

Springer, Heidelberg, Oct. 2021. doi: 10.1007/978-3-030-77883-5_9.489

[35] G. Couteau, D. Goudarzi, M. Klooß, and M. Reichle. Sharp: Short relaxed range proofs. In H. Yin,490

A. Stavrou, C. Cremers, and E. Shi, editors, ACM CCS 2022: 29th Conference on Computer and Commu-491

nications Security, pages 609–622. ACM Press, Nov. 2022. doi: 10.1145/3548606.3560628.492

[36] Y. Deng, S. Ma, X. Zhang, H. Wang, X. Song, and X. Xie. Promise Σ-protocol: How to construct efficient493

threshold ECDSA from encryptions based on class groups. In M. Tibouchi and H. Wang, editors, Advances494

in Cryptology – ASIACRYPT 2021, Part IV, volume 13093 of Lecture Notes in Computer Science, pages495

557–586. Springer, Heidelberg, Dec. 2021. doi: 10.1007/978-3-030-92068-5_19.496

[37] Drand. Drand/drand: a distributed randomness beacon daemon - go implementation. URL https:497

//github.com/drand/drand.498

[38] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found. Trends Theor.499

Comput. Sci., 9(3–4):211–407, aug 2014. ISSN 1551-305X. doi: 10.1561/0400000042. URL https:500

//doi.org/10.1561/0400000042.501

[39] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE502

Transactions on Information Theory, 31(4):469–472, 1985. doi: 10.1109/TIT.1985.1057074.503

[40] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable privacy-preserving ordinal504

response. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 2014: 21st Conference on Computer and505

Communications Security, pages 1054–1067. ACM Press, Nov. 2014. doi: 10.1145/2660267.2660348.506

[41] N. Franzese, A. Dziedzic, C. A. Choquette-Choo, M. R. Thomas, M. A. Kaleem, S. Rabanser, C. Fang,507

S. Jha, N. Papernot, and X. Wang. Robust and actively secure serverless collaborative learning. In508

Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.509

net/forum?id=SouroWC5Un.510

[42] C. Gentry. Fully homomorphic encryption using ideal lattices. Proceedings of the forty-first annual ACM511

symposium on Theory of computing, pages 169–178, 2009.512

[43] C. Gentry, S. Halevi, and V. Lyubashevsky. Practical non-interactive publicly verifiable secret sharing513

with thousands of parties. In O. Dunkelman and S. Dziembowski, editors, Advances in Cryptology –514

EUROCRYPT 2022, Part I, volume 13275 of Lecture Notes in Computer Science, pages 458–487. Springer,515

Heidelberg, May / June 2022. doi: 10.1007/978-3-031-06944-4_16.516

[44] R. C. Geyer, T. Klein, and M. Nabi. Differentially private federated learning: A client level perspective.517

CoRR, abs/1712.07557, 2017. URL http://arxiv.org/abs/1712.07557.518

[45] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine agreements519

for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,520

page 51–68, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450350853.521

doi: 10.1145/3132747.3132757. URL https://doi.org/10.1145/3132747.3132757.522

[46] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryptonets: Applying523

neural networks to encrypted data with high throughput and accuracy. In International conference on524

machine learning, pages 201–210. PMLR, 2016.525

[47] N. Glaeser, M. Maffei, G. Malavolta, P. Moreno-Sanchez, E. Tairi, and S. A. Thyagarajan. Foundations of526

coin mixing services. Cryptology ePrint Archive, Report 2022/942, 2022. https://eprint.iacr.org/527

2022/942.528

12

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://github.com/drand/drand
https://github.com/drand/drand
https://github.com/drand/drand
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://openreview.net/forum?id=SouroWC5Un
https://openreview.net/forum?id=SouroWC5Un
https://openreview.net/forum?id=SouroWC5Un
http://arxiv.org/abs/1712.07557
https://doi.org/10.1145/3132747.3132757
https://eprint.iacr.org/2022/942
https://eprint.iacr.org/2022/942
https://eprint.iacr.org/2022/942


[48] J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin. In529

E. Oswald and M. Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume530

9057 of Lecture Notes in Computer Science, pages 253–280. Springer, Heidelberg, Apr. 2015. doi:531

10.1007/978-3-662-46803-6_9.532

[49] Y. Guo, A. Polychroniadou, E. Shi, D. Byrd, and T. Balch. Microsecagg: Streamlined single-server533

secure aggregation. Proceedings on Privacy Enhancing Technologies, 2024(4):77–101, 2024. doi:534

10.56553/popets-2024-0077. URL https://doi.org/10.56553/popets-2024-0077.535

[50] J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for computation of class groups.536

Journal of the American mathematical society, 2(4):837–850, 1989.537

[51] B. Hitaj, G. Ateniese, and F. Pérez-Cruz. Deep models under the GAN: Information leakage from538

collaborative deep learning. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM539

CCS 2017: 24th Conference on Computer and Communications Security, pages 603–618. ACM Press,540

Oct. / Nov. 2017. doi: 10.1145/3133956.3134012.541

[52] D. Hühnlein, M. J. Jacobson Jr., S. Paulus, and T. Takagi. A cryptosystem based on non-maximal imaginary542

quadratic orders with fast decryption. In K. Nyberg, editor, Advances in Cryptology – EUROCRYPT’98,543

volume 1403 of Lecture Notes in Computer Science, pages 294–307. Springer, Heidelberg, May / June544

1998. doi: 10.1007/BFb0054134.545

[53] M. J. Jacobson. Computing discrete logarithms in quadratic orders. J. Cryptol., 13(4):473–492, jan 2000.546

ISSN 0933-2790. doi: 10.1007/s001450010013. URL https://doi.org/10.1007/s001450010013.547

[54] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-Y. Kang. Communication-efficient on-device548

machine learning: Federated distillation and augmentation under non-iid private data. arXiv preprint549

arXiv:1811.11479, 2018.550

[55] M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of time-series data. In A.-R.551

Sadeghi, editor, FC 2013: 17th International Conference on Financial Cryptography and Data Security,552

volume 7859 of Lecture Notes in Computer Science, pages 111–125. Springer, Heidelberg, Apr. 2013. doi:553

10.1007/978-3-642-39884-1_10.554

[56] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran. Fastsecagg: Scalable secure aggregation555

for privacy-preserving federated learning. CoRR, abs/2009.11248, 2020. URL https://arxiv.org/556

abs/2009.11248.557

[57] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for local differential privacy. In Z. Ghahra-558

mani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in Neural Information559

Processing Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.560

cc/paper_files/paper/2014/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf.561

[58] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,562

G. Cormode, R. Cummings, et al. Advances and open problems in federated learning. Foundations and563

Trends® in Machine Learning, 14(1-2):1–210, 2021.564

[59] A. Kate, E. V. Mangipudi, P. Mukherjee, H. Saleem, and S. A. K. Thyagarajan. Non-interactive vss565

using class groups and application to dkg. Cryptology ePrint Archive, Paper 2023/451, 2023. URL566

https://eprint.iacr.org/2023/451. https://eprint.iacr.org/2023/451.567

[60] T. Kleinjung. Quadratic sieving. Math. Comput., 85(300):1861–1873, 2016. doi: 10.1090/mcom/3058.568

URL https://doi.org/10.1090/mcom/3058.569

[61] R. W. F. Lai and G. Malavolta. Subvector commitments with application to succinct arguments. In570

A. Boldyreva and D. Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part I, volume571

11692 of Lecture Notes in Computer Science, pages 530–560. Springer, Heidelberg, Aug. 2019. doi:572

10.1007/978-3-030-26948-7_19.573

[62] I. Leontiadis, K. Elkhiyaoui, and R. Molva. Private and dynamic time-series data aggregation with trust574

relaxation. In D. Gritzalis, A. Kiayias, and I. G. Askoxylakis, editors, CANS 14: 13th International575

Conference on Cryptology and Network Security, volume 8813 of Lecture Notes in Computer Science,576

pages 305–320. Springer, Heidelberg, Oct. 2014. doi: 10.1007/978-3-319-12280-9_20.577

[63] H. Li, H. Lin, A. Polychroniadou, and S. Tessaro. LERNA: Secure single-server aggregation via key-578

homomorphic masking. In J. Guo and R. Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023,579

Part I, volume 14438 of Lecture Notes in Computer Science, pages 302–334. Springer, Heidelberg, Dec.580

2023. doi: 10.1007/978-981-99-8721-4_10.581

13

https://doi.org/10.56553/popets-2024-0077
https://doi.org/10.1007/s001450010013
https://arxiv.org/abs/2009.11248
https://arxiv.org/abs/2009.11248
https://arxiv.org/abs/2009.11248
https://proceedings.neurips.cc/paper_files/paper/2014/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
https://eprint.iacr.org/2023/451
https://eprint.iacr.org/2023/451
https://doi.org/10.1090/mcom/3058


[64] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling. Rsa: Byzantine-robust stochastic aggregation methods582

for distributed learning from heterogeneous datasets. In Proceedings of the Thirty-Third AAAI Conference583

on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and584

Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19.585

AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33011544. URL https:586

//doi.org/10.1609/aaai.v33i01.33011544.587

[65] H. Lipmaa. Secure accumulators from euclidean rings without trusted setup. In F. Bao, P. Samarati, and588

J. Zhou, editors, ACNS 12: 10th International Conference on Applied Cryptography and Network Security,589

volume 7341 of Lecture Notes in Computer Science, pages 224–240. Springer, Heidelberg, June 2012. doi:590

10.1007/978-3-642-31284-7_14.591

[66] Z. Liu, S. Chen, J. Ye, J. Fan, H. Li, and X. Li. SASH: efficient secure aggregation based on SHPRG for592

federated learning. In J. Cussens and K. Zhang, editors, Uncertainty in Artificial Intelligence, Proceedings593

of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2022, 1-5 August 2022,594

Eindhoven, The Netherlands, volume 180 of Proceedings of Machine Learning Research, pages 1243–1252.595

PMLR, 2022. URL https://proceedings.mlr.press/v180/liu22c.html.596

[67] H. Lycklama, L. Burkhalter, A. Viand, N. Küchler, and A. Hithnawi. RoFL: Robustness of secure federated597

learning. In 2023 IEEE Symposium on Security and Privacy, pages 453–476. IEEE Computer Society598

Press, May 2023. doi: 10.1109/SP46215.2023.10179400.599

[68] Y. Ma, J. Woods, S. Angel, A. Polychroniadou, and T. Rabin. Flamingo: Multi-round single-server secure600

aggregation with applications to private federated learning. In 2023 IEEE Symposium on Security and601

Privacy, pages 477–496. IEEE Computer Society Press, May 2023. doi: 10.1109/SP46215.2023.10179434.602

[69] K. McCurley. Cryptographic key distribution and computation in class groups. Proceedings of NATO603

ASI Number Theory and applications, pages 459–479, 1989. URL https://cir.nii.ac.jp/crid/604

1570854174866004864.605

[70] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine learning. In 2017606

IEEE symposium on security and privacy (SP), pages 19–38. IEEE, 2017.607

[71] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep learning: Passive and608

active white-box inference attacks against centralized and federated learning. In 2019 IEEE Symposium on609

Security and Privacy, pages 739–753. IEEE Computer Society Press, May 2019. doi: 10.1109/SP.2019.610

00065.611

[72] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V. Poor. Federated learning for612

covid-19 detection with generative adversarial networks in edge cloud computing. IEEE Internet of Things613

Journal, 2021.614

[73] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D. Huba. Federated learning with615

buffered asynchronous aggregation. In G. Camps-Valls, F. J. R. Ruiz, and I. Valera, editors, Proceedings of616

The 25th International Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of617

Machine Learning Research, pages 3581–3607. PMLR, 28–30 Mar 2022. URL https://proceedings.618

mlr.press/v151/nguyen22b.html.619

[74] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In J. Feigenbaum,620

editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages621

129–140. Springer, Heidelberg, Aug. 1992. doi: 10.1007/3-540-46766-1_9.622

[75] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-preserving deep learning via additively623

homomorphic encryption. IEEE Transactions on Information Forensics and Security, 13(5):1333–1345,624

2018. doi: 10.1109/TIFS.2017.2787987.625

[76] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Calibrating probability with undersampling for626

unbalanced classification. In 2015 IEEE Symposium Series on Computational Intelligence, pages 159–166,627

2015. doi: 10.1109/SSCI.2015.33.628

[77] I. A. Seres, P. Burcsi, and P. Kutas. How (not) to hash into class groups of imaginary quadratic629

fields? Cryptology ePrint Archive, Paper 2024/034, 2024. URL https://eprint.iacr.org/2024/034.630

https://eprint.iacr.org/2024/034.631

[78] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, nov 1979. ISSN 0001-0782. doi:632

10.1145/359168.359176. URL https://doi.org/10.1145/359168.359176.633

[79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.634

14

https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1609/aaai.v33i01.33011544
https://doi.org/10.1609/aaai.v33i01.33011544
https://proceedings.mlr.press/v180/liu22c.html
https://cir.nii.ac.jp/crid/1570854174866004864
https://cir.nii.ac.jp/crid/1570854174866004864
https://cir.nii.ac.jp/crid/1570854174866004864
https://proceedings.mlr.press/v151/nguyen22b.html
https://proceedings.mlr.press/v151/nguyen22b.html
https://proceedings.mlr.press/v151/nguyen22b.html
https://eprint.iacr.org/2024/034
https://eprint.iacr.org/2024/034
https://doi.org/10.1145/359168.359176


[80] J. Shao, Y. Sun, S. Li, and J. Zhang. Dres-fl: dropout-resilient secure federated learning for non-iid635

clients via secret data sharing. In Proceedings of the 36th International Conference on Neural Information636

Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.637

[81] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation of time-series638

data. In ISOC Network and Distributed System Security Symposium – NDSS 2011. The Internet Society,639

Feb. 2011.640

[82] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine learning641

models. In 2017 IEEE Symposium on Security and Privacy, pages 3–18. IEEE Computer Society Press,642

May 2017. doi: 10.1109/SP.2017.41.643

[83] J. So, R. E. Ali, B. Güler, and A. S. Avestimehr. Secure aggregation for buffered asynchronous federated644

learning. CoRR, abs/2110.02177, 2021. URL https://arxiv.org/abs/2110.02177.645

[84] J. So, R. E. Ali, B. Güler, and A. S. Avestimehr. Secure aggregation for buffered asynchronous federated646

learning, 2021.647

[85] J. So, B. Guler, and A. S. Avestimehr. Codedprivateml: A fast and privacy-preserving framework for648

distributed machine learning. IEEE Journal on Selected Areas in Information Theory, 2(1):441–451, 2021.649

[86] J. So, B. Güler, and A. S. Avestimehr. Turbo-aggregate: Breaking the quadratic aggregation barrier in650

secure federated learning. IEEE Journal on Selected Areas in Information Theory, 2(1):479–489, 2021.651

doi: 10.1109/JSAIT.2021.3054610.652

[87] J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E. Ali, B. Guler, and S. Avestimehr. Lightsecagg: a lightweight653

and versatile design for secure aggregation in federated learning, 2022.654

[88] S. A. K. Thyagarajan, G. Castagnos, F. Laguillaumie, and G. Malavolta. Efficient CCA timed commitments655

in class groups. In G. Vigna and E. Shi, editors, ACM CCS 2021: 28th Conference on Computer and656

Communications Security, pages 2663–2684. ACM Press, Nov. 2021. doi: 10.1145/3460120.3484773.657

[89] I. Tucker. Functional encryption and distributed signatures based on projective hash functions, the658

benefit of class groups. Theses, Université de Lyon, Oct. 2020. URL https://theses.hal.science/659

tel-03021689.660

[90] M. van Dijk, N. V. Nguyen, T. N. Nguyen, L. M. Nguyen, Q. Tran-Dinh, and P. H. Nguyen. Asynchronous661

federated learning with reduced number of rounds and with differential privacy from less aggregated662

gaussian noise. arXiv preprint arXiv:2007.09208, 2020.663

[91] B. Wesolowski. Efficient verifiable delay functions. In Y. Ishai and V. Rijmen, editors, Advances in664

Cryptology – EUROCRYPT 2019, Part III, volume 11478 of Lecture Notes in Computer Science, pages665

379–407. Springer, Heidelberg, May 2019. doi: 10.1007/978-3-030-17659-4_13.666

[92] B. Wesolowski. Efficient verifiable delay functions. Journal of Cryptology, 33(4):2113–2147, Oct. 2020.667

doi: 10.1007/s00145-020-09364-x.668

[93] C. Xie, S. Koyejo, and I. Gupta. Asynchronous federated optimization. arXiv preprint arXiv:1903.03934,669

2019.670

[94] C. Yang, J. So, C. He, S. Li, Q. Yu, and S. Avestimehr. Lightsecagg: Rethinking secure aggregation in671

federated learning. CoRR, abs/2109.14236, 2021. URL https://arxiv.org/abs/2109.14236.672

[95] T. H. Yuen, H. Cui, and X. Xie. Compact zero-knowledge proofs for threshold ECDSA with trustless673

setup. In J. Garay, editor, PKC 2021: 24th International Conference on Theory and Practice of Public674

Key Cryptography, Part I, volume 12710 of Lecture Notes in Computer Science, pages 481–511. Springer,675

Heidelberg, May 2021. doi: 10.1007/978-3-030-75245-3_18.676

[96] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu. BatchCrypt: Efficient homomorphic encryption for677

Cross-Silo federated learning. In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages678

493–506. USENIX Association, July 2020. ISBN 978-1-939133-14-4. URL https://www.usenix.679

org/conference/atc20/presentation/zhang-chengliang.680

[97] L. Zhang, B. Shen, A. Barnawi, Y. Tang, Z. Luo, W. Wang, W. Zhang, and Z. Han. Feddpgan: federated681

differentially private generative adversarial networks framework for the detection of covid-19 pneumonia.682

Information Systems Frontiers, 23(6):1403–1415, 2021.683

[98] Y. Zhao and H. Sun. Information theoretic secure aggregation with user dropouts. In 2021 IEEE684

International Symposium on Information Theory (ISIT), pages 1124–1129, 2021. doi: 10.1109/ISIT45174.685

2021.9517953.686

15

https://arxiv.org/abs/2110.02177
https://theses.hal.science/tel-03021689
https://theses.hal.science/tel-03021689
https://theses.hal.science/tel-03021689
https://arxiv.org/abs/2109.14236
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang


Table 3: Comparison of the RSA Modulus Size and the Class Group Size for various Security Levels.
All the sizes are in bits. The RSA Modulus forms the basis of the DCR-based construction.

Security Level RSA Size Modulus Class Group Size
112 2048 1348
128 3072 1872
192 7680 3598
256 15360 5971

A Deferred Discussion on Class Groups and Cryptography687

A.1 Class Group and Cryptography688

Class Group-based Cryptography has its roots in the late 1980s, with the pioneering work of [18] and [69]. They689

proposed that the class group of ideals of maximal orders of imaginary quadratic fields might offer better security690

compared to the multiplicative group of finite fields. One of the key features of class group cryptography is its691

suitability for protocols involving multiple parties while requiring only a one-time transparent (or public-coin)692

setup without extensive interaction. This has enabled the construction of verifiable random functions without a693

trusted setup by [91, 92], accumulators by [65, 15], encryption switching protocols by [26], designated verifier694

non-interactive zero knowledge proofs of knowledge by [31], SNARKs [61, 20, 5], homomorphic secret sharing,695

and pseudorandom correlation functions for oblivious transfer by [3], range proofs by [34, 35], and vector696

commitments by[6]. Subsequent advancements in the computation of the structure of class groups of quadratic697

imaginary number fields were made by [50], and further improvements were presented in the works of [53],[11],698

and [60]. However, the computational costs of these algorithms increase with the size of ∆, with the largest699

current computation involving 512 bits for the size of ∆ by [10]. It is worth noting that the subexponential700

complexity of computing class groups is asymptotically slower than integer factorization. Indeed, in the work of701

[12], it was conjectured that one needs the size of the discriminant of class group ∆k to be 1872 bits to achieve702

128 bits of security. Meanwhile, one needs an RSA modulus of 3072 bits to achieve 128-bit security. Some703

additional parameters for our class groups are: the size of s̄ is 914 bits and the size of the prime p is 128 bits.704

We present the comparison in Table 3 that details the sizes for various levels of security. Looking ahead, the705

presence of the RSA modulus and related cryptographic assumptions is the main reason why BatchCrypt [96]706

and the works of [55] and [62] have inefficient parameter sizes, when compared to class group based protocol.707

Efforts to improve the efficiency of cryptosystems based on class groups were undertaken by Hühnlein et708

al. [52]. However, their work was later attacked by [23] and [25]. Despite this setback, there has been a notable709

resurgence in the use of class groups in various applications over the past decade. [24] made a significant710

contribution by designing a cryptosystem based on a subgroup of a class group where discrete logarithms are711

easy to compute. This framework has since become the foundation of several protocols, including projective712

hash functions used to construct inner-product functional encryption [27], two-party and fully-threshold ECDSA713

signatures [28, 29, 95, 36], coin-mixing [47], and secure timed commitments [88]. Additionally, the framework714

has been employed to build secure multiparty computation from threshold encryption [17] and non-interactive715

verifiable secret sharing [59, 22]. We rely on this framework for our protocol.716

A.2 Expanded Discussion on CL Framework717

Broadly, the framework is defined by two functions - CLGen,CLSolve with the former outputting a tuple of718

public parameters. The elements of this framework are the following:719

• Input Parameters: κc is the computational security parameter, κs is a statistical security parameter, a720

prime p such that p ą 2κc , and uniform randomness ρ that is used by the CLGen algorithm and is721

made public.722

• Groups: pG is a finite multiplicative abelian group, G is a cyclic subgroup of pG, F is a subgroup of G,723

H “ txp, x P Gu724

• Orders: F has order p, pG has order p ¨ ps, G has order p ¨ s such that s divides ps and gcdpp, psq “725

1, gcdpp, sq “ 1, H has order s and therefore G “ FˆH.726

• Generators: f is the generator of F, g is the generator of G, and h is the generator of H with the727

property that g “ f ¨ h728

• Upper Bound: Only an upper bound s̄ of ps (and s) is provided.729

• Additional Properties: Only encodings of pG can be recognized as valid encodings and s, ps are730

unknown.731
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• Distributions: D (resp. Dp) be a distribution over the set of integers such that the distribution732

tgx : xÐ$ Du (resp. tgxp : xÐ$ Dpu) is at most distance 2´κs from the uniform distribution over G733

(resp. H).734

Remark 3. The motivations behind these additional distributions are as follows. One can efficiently recognize735

valid encodings of elements in pG but not G. Therefore, a malicious adversary A can run our constructions by736

inputting elements belonging to pGp (rather than in H). Unfortunately, this malicious behavior cannot be detected737

which allows A to obtain information on the sampled exponents modulo sω (the group exponent of pGp). By738

requiring the statistical closeness of the induced distribution to uniform in the aforementioned groups allows739

flexibility in proofs. Note that the assumptions do not depend on the choice of these two distributions. Further,740

the order s of H and group exponent sω of pGp are unknown and the upper bound s̄ is used to instantiate the741

aforementioned distribution.742

We also have the following lemma from Castagnos, Imbert, and Laguillaumie [26] which defines how to sample743

from a discrete Gaussian distribution.744

Lemma 1. Let G be a cyclic group of order n, generated by g. Consider the random variable X sampled745

uniformly from G; as such it satisfies PrrX “ hs “ 1
n

for all h P G. Now consider the random variable Y with746

values in G as follows: draw y from the discrete Gaussian distribution DZ,σ with σ ě n
b

lnp2p1`1{ϵqq

π
and set747

Y :“ gy . Then, it holds that:748

∆pX,Y q ď 2ϵ

Definition 2 (Class Group Framework). The framework is defined by two algorithms pCLGen,CLSolveq such749

that:750

• pp “ pp, κc, κs, s̄, f, h, pG,F,DG,DH , ρq Ð$ CLGenp1κc , 1κs , p; ρq751

• The DL problem is easy in F, i.e., there exists a deterministic polynomial algorithm CLSolve that752

solves the discrete logarithm problem in F:753

Pr

»

–x “ x1
pp “ Ð$ CLGenp1κc , 1κs , p; ρq
xÐ$ Z{pZ, X “ fx;
x1
Ð CLSolveppp, Xq

fi

fl “ 1

A.3 Why CL Framework?754

Cryptographic protocols are often proven secure, under a hardness assumption. The hardness assumption755

guarantees that an adversary cannot break this assumption in polynomial time. A common setting for these756

cryptographic protocols is cyclic groups, usually of prime order q Let G be such a group and because it is cyclic,757

there exists a generator g such that G :“ tg0, . . . , gq´1
u. Now, consider the simpler setting where we want to758

securely sum up integer values. The immediate question is how to we encrypt these integer values when working759

over cyclic groups. The solution is to take your input x and map it to an element in the group G as gx. This was760

the idea behind a famous encryption scheme known as ElGamal encryption proposed by Taher ElGamal [39].761

Unfortunately, the security of this encryption scheme also required that given a random group element g1
P G,762

one cannot efficiently recover x1 such that g1
“ gx

1

, i.e., that the discrete logarithm of g1 cannot be efficiently763

computed. For our use case of the server recovering the sum of the integers, using such an encoding scheme764

would require the server to compute the discrete logarithm which is inefficient. However, while computing765

the discrete logarithm for a random element is inefficient, the problem becomes simpler if we assume that the766

maximum value of the discrete logarithm is bounded. In other words, rather than searching over the entire767

set t0, . . . , q ´ 1u, the problem is simplified to searching over t0, . . . , B ´ 1u, where B ăă q. This is the768

assumption made by Shi et al. [81] and Guo et al. [49].769

The CL Framework also works over cyclic groups but its security does not rely on the inefficiency of computing770

the discrete logarithm. Instead, it relies on the inefficiency of computing the order of the group. This gives us the771

ability to encode input x in the subgroup F where discrete logarithm is efficient while using the element in H to772

mask the inputs. This gives us the ciphertext ct :“ hk
¨ fx where k is some random key. Note that if the order773

of H (call it s) is known, then the security is lost. This is because I can compute cts “ hks
¨ fsx with hks being774

the identity element. Then, sx can be recovered because the discrete logarithm is efficiently computable, with x775

recoverable after. Therefore, the benefit of the CL framework is the following: Encode the elements into a cyclic776

group, from which the sum can be recovered efficiently without restricting the input sizes.777

B Experimental Details778

ABIDES Framework. To simulate evaluate real network conditions, we run the ABIDES simulator [21].779

ABIDES supports a latency model which consists a base delay and plus a jitter that controls the percentage of780

messages that arrive within a given time. We set the base delay to the “global” setting in ABIDES’s default781

parameters (the range is 21 microseconds to 53 milliseconds), and use the default parameters for the jitter.782
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Table 4: Details about Datasets
Fraud Detection MNIST CIFAR-10 CIFAR-100

No. of classes 2 10 10 100
No. of training samples 2̃13k 60,000 50,000 50,000
No. of test samples 7̃1k 10,000 10,000
Feature Details 30 features Image Size: 28 ˆ 28 Image Size: 32 ˆ 32 Image Size: 32 ˆ 32
Quantization Multiplier 104 216 216 216

License Open Database Creative Commons Apache MIT
License Attribution-Share License 2.0 License

Alike 3.0 License

Dataset Details. The license and feature details of our datasets can be found in Table 4.783

Architecture Details for MLP Classifier. The default neural network defined by784

sklearn.neural_network.MLPClassifier has the following characteristics. Note that our goal is to show785

that the secure aggregation does not impact accuracy when compared to learning in the clear.786

• Architecture:787

– Multi-layer perceptron (MLP) with one hidden layer788

– Hidden layer contains 100 neurons by default789

• Activation function:790

– ReLU (Rectified Linear Unit) for the hidden layer791

– Softmax for the output layer792

• Optimizer:793

– Adam (Adaptive Moment Estimation)794

• Learning rate:795

– Initial learning rate set to 0.001796

– Uses adaptive learning rate (’constant’ schedule)797

• Regularization:798

– L2 regularization with alpha=0.0001799

• Batch size:800

– Mini-batch gradient descent with a batch size of 200801

• Maximum iterations:802

– Default maximum number of iterations is 200803

• Early stopping:804

– Not enabled by default805

• Initialization:806

– Xavier initialization for weight initialization807

Microbenchmarking Robust-PICASO. For completeness, we implement Robust-PICASO on the BI-808

CYCL library [16] to show its running time. For completeness, we also benchmark the running time of the809

encryption and aggregation protocols steps of Robust-PICASO in Figure 4.810

C Deferred Proofs811

Theorem 2. Under the DDH´ f assumption (see Definition 1), Algorithm 2 is secure in the random oracle812

model.813

The proof of security of this theorem is through a sequence of hybrids. As mentioned in the introduction, the814

adversary triggers a challenge phase by presenting a set of honest clients whose inputs it wants to recover:815

H1, . . . , Ht while also presenting two sets of challenge inputs for these clients x1, . . . , xt and x1
1, . . . , x

1
t. The816

challenger chooses to encrypt one of these sets at random and provide it to the attacker. While we defer the817

formal proof due to space constraints, we present a description of the hybrids below:818

• Hybrid 0: The challenger outputs 1 if the adversary guesses correctly which of the challenge set was819

chosen, else outputs 0.820
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Figure 4: Performance of Robust-PICASO. Here, security level indicates the computational power
needed to break the security of the protocol.

• Hybrid 1: The change is that for every query to the random oracle H, the challenger tosses a biased821

coin δt. The biasing of the coin is that it takes 1 with probability 1{qenc ` 1 and 0 with the remaining822

probability. Then let’s define an event E: if for target iteration τ , δtau “ 0 or for some t ‰ τ , for an823

honest user i, there was an encryption query which produced δt “ 1. If E happens, then challenger824

just outputs a random bit. Prr␣Es “ 1
qenc`1

¨

´

qenc
qenc`1

¯qenc

ě 1
epqenc`1q

825

• Hybrid 2: Now, further modify the generation of Hptq. If δt “ 0, then we sample wt Ð$ DH826

and setting Hptq :“ hwt . Meanwhile, if δt “ 1, it additionally samples ut Ð$ Z{pZ setting827

Hptq :“ hwt ¨ fut . Note that the view between Hybrids 1 and 2 only happens when δt “ 1 and this828

is protected by the DDH-f assumption.829

Note that if E has not happened, then the challenge epoch has δτ “ 1, which implies that Hpτq :“ hwτ ¨ fuτ .830

In other words, every cti,τ will be represented as: fxi,τ `uτ ¨maski,τ . We will then show that this uτ provides831

sufficient masking of the inputs. Observe that for the honest parties, the server does not know any information832

about ki. Meanwhile, pki,τ is also not provided to the adversary. Therefore, at the challenge epoch, we sample833

individual values ui,τ for honest i. Each of these ui,τ masks the inputs xi,τ . Meanwhile, to ensure correctness834

of decryption, the challenger correctly simulates AUXτ .835

D Other Extensions to PICASO836

D.1 Asynchronous Secure Aggregation837

While FL algorithms have handled the problem of stragglers by simply considering them as dropouts. However,838

Asynchronous FL [30, 32, 90, 93] which focused on updating the global model, as soon as the local updates are839

received, even if the updates are for an old iteration. This was designed to ensure that stragglers in an iteration840

do not delay the global model update. Increased staleness in local models leads to greater errors when updating841

the global model [93], which was remedied by their proposed staleness-aware weighted averaging protocol842

called FedAsync. Unfortunately, Asynchronous FL is not easily composable with existing Secure Aggregation843

techniques. [73] presented an approach where the local updates are buffered, before updating the global model,844

with the buffer being stored in a trusted execution environment (TEE) to guarantee privacy. TEEs are known to845

be expensive. Later, BASecAgg[84] avoided the use of TEE by composing the buffering technique with a secure846

aggregation protocol, with the aggregation incorporating the staleness function. Unfortunately, BASecAgg847

required that each client share its mask with every other client, for every iteration which is undesirable for848

asynchrony.849

BASecAgg. BASecAgg [84] successfully combined techniques of secure aggregation with asynchronous850

FL. Specifically, the server aggregates the model weights as:
ř

i ϕpt´ tiq ¨ xi where ti is the iteration count of851

client i, with the corresponding updates being xi. ϕpt´ tiq is a “staleness” function which is 1 if t “ ti and852

is monotonically decreasing. BASecAgg presented a solution where the aggregation of shares accounted for853

this staleness function. This is because LightSecAgg [87], unlike other works[13, 8], had the server reconstruct854

the sum of the masks masks for the online clients which can then be used to unmask. Similarly, PICASO also855

only helps the server reconstruct the online clients’ masks. Therefore, using PICASO as the secure aggregation856

component of BASecAgg, we can build an asynchronous secure aggregation protocol that avoids the expensive857

secret sharing costs associated with LightSecAgg.858
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D.2 Minimizing Trust Assumption859

Existing protocols that offer secure aggregation rely on a non-colluding assumption. Typically, this is modeled860

by allowing the server to collude with up to a threshold t, out of n parties, with the security being completely861

lost if even t` 1 parties are corrupted. It follows that if the server colludes with all n parties, then privacy is lost.862

These parties are those involved in helping reconstruct the sum, even in the presence of dropouts. In SecAgg,863

these parties are fellow clients while in LERNA and Flamingo, this corresponds to the committee members.864

However, PICASO can be easily extended to support a committee of M collectors. In this setting, the server can865

corrupt to a certain threshold t of collectors and need the help of at least 1` t of collectors to reconstruct the866

sum.867

A naive implementation would be to secret-share the current public key among the committee of such collectors.868

This technique is called secret sharing [78]. More recently, Braun et al. [17] demonstrated how to construct869

secret sharing techniques, compatible with the CL Framework. However, it is to be noted that this comes at a870

significant cost:871

• The communication cost and computation cost scales linearly with the size of the committee.872

• The server’s computation and communication costs also increase. Additionally, the server has to873

engage in expensive coordination with the committee. Factoring in networking delays, it is entirely874

possible that different committee members receive inputs from different subsets of clients. Now, the875

server has to find the intersection of online clients among this list.876
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NeurIPS Paper Checklist877

The checklist is designed to encourage best practices for responsible machine learning research, addressing878

issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: The879

papers not including the checklist will be desk rejected. The checklist should follow the references and880

precede the (optional) supplemental material. The checklist does NOT count towards the page limit.881

Please read the checklist guidelines carefully for information on how to answer these questions. For each882

question in the checklist:883

• You should answer [Yes] , [No] , or [NA] .884

• [NA] means either that the question is Not Applicable for that particular paper or the relevant885

information is Not Available.886

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).887

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area888

chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions)889

with the final version of your paper, and its final version will be published with the paper.890

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While891

"[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a proper892

justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or893

"we were unable to find the license for the dataset we used"). In general, answering "[No] " or "[NA] " is not894

grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is895

often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting896

evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer897

[Yes] to a question, in the justification please point to the section(s) where related material for the question can898

be found.899

IMPORTANT, please:900

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",901

• Keep the checklist subsection headings, questions/answers and guidelines below.902

• Do not modify the questions and only use the provided macros for your answers.903

1. Claims904

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s905

contributions and scope?906

Answer: [Yes]907

Justification: The paper sets out to solve a critical problem in prior work on secure aggregation. In908

this work, we demonstrate how to reduce the synchronization by employing one additional party. We909

demonstrate experiments to show competitive performance over prior work. In addition, we also train910

machine learning models to justify that our protocol can be used for its intended purpose.911

Guidelines:912

• The answer NA means that the abstract and introduction do not include the claims made in the913

paper.914

• The abstract and/or introduction should clearly state the claims made, including the contributions915

made in the paper and important assumptions and limitations. A No or NA answer to this916

question will not be perceived well by the reviewers.917

• The claims made should match theoretical and experimental results, and reflect how much the918

results can be expected to generalize to other settings.919

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not920

attained by the paper.921

2. Limitations922

Question: Does the paper discuss the limitations of the work performed by the authors?923

Answer: [Yes]924

Justification: We have a conclusion paragraph that draws attention to some of the limitations while925

identifying how they can be remedied in future work.926

Guidelines:927
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• The answer NA means that the paper has no limitation while the answer No means that the paper928

has limitations, but those are not discussed in the paper.929

• The authors are encouraged to create a separate "Limitations" section in their paper.930

• The paper should point out any strong assumptions and how robust the results are to violations of931

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,932

asymptotic approximations only holding locally). The authors should reflect on how these933

assumptions might be violated in practice and what the implications would be.934

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested935

on a few datasets or with a few runs. In general, empirical results often depend on implicit936

assumptions, which should be articulated.937

• The authors should reflect on the factors that influence the performance of the approach. For938

example, a facial recognition algorithm may perform poorly when image resolution is low or939

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide940

closed captions for online lectures because it fails to handle technical jargon.941

• The authors should discuss the computational efficiency of the proposed algorithms and how942

they scale with dataset size.943

• If applicable, the authors should discuss possible limitations of their approach to address problems944

of privacy and fairness.945

• While the authors might fear that complete honesty about limitations might be used by reviewers946

as grounds for rejection, a worse outcome might be that reviewers discover limitations that947

aren’t acknowledged in the paper. The authors should use their best judgment and recognize948

that individual actions in favor of transparency play an important role in developing norms that949

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize950

honesty concerning limitations.951

3. Theory Assumptions and Proofs952

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete953

(and correct) proof?954

Answer: [Yes]955

Justification: The paper introduces all the necessary theoretical framework and assumptions for security956

of the construction. There’s detailed proof deferred to the appendix.957

Guidelines:958

• The answer NA means that the paper does not include theoretical results.959

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.960

• All assumptions should be clearly stated or referenced in the statement of any theorems.961

• The proofs can either appear in the main paper or the supplemental material, but if they appear in962

the supplemental material, the authors are encouraged to provide a short proof sketch to provide963

intuition.964

• Inversely, any informal proof provided in the core of the paper should be complemented by965

formal proofs provided in appendix or supplemental material.966

• Theorems and Lemmas that the proof relies upon should be properly referenced.967

4. Experimental Result Reproducibility968

Question: Does the paper fully disclose all the information needed to reproduce the main experimental969

results of the paper to the extent that it affects the main claims and/or conclusions of the paper970

(regardless of whether the code and data are provided or not)?971

Answer: [Yes]972

Justification: The protocols are well detailed, including the parameter settings for our classifier. We973

use publicly available ABIDES framework to simulate real-life networking situations. For our class974

group operations, we take the BICYCL framework that is open-source and bind it to Python.975

Guidelines:976

• The answer NA means that the paper does not include experiments.977

• If the paper includes experiments, a No answer to this question will not be perceived well by the978

reviewers: Making the paper reproducible is important, regardless of whether the code and data979

are provided or not.980

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make981

their results reproducible or verifiable.982
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• Depending on the contribution, reproducibility can be accomplished in various ways. For983

example, if the contribution is a novel architecture, describing the architecture fully might suffice,984

or if the contribution is a specific model and empirical evaluation, it may be necessary to either985

make it possible for others to replicate the model with the same dataset, or provide access to986

the model. In general. releasing code and data is often one good way to accomplish this, but987

reproducibility can also be provided via detailed instructions for how to replicate the results,988

access to a hosted model (e.g., in the case of a large language model), releasing of a model989

checkpoint, or other means that are appropriate to the research performed.990

• While NeurIPS does not require releasing code, the conference does require all submissions991

to provide some reasonable avenue for reproducibility, which may depend on the nature of the992

contribution. For example993

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to994

reproduce that algorithm.995

(b) If the contribution is primarily a new model architecture, the paper should describe the996

architecture clearly and fully.997

(c) If the contribution is a new model (e.g., a large language model), then there should either be998

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,999

with an open-source dataset or instructions for how to construct the dataset).1000

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are1001

welcome to describe the particular way they provide for reproducibility. In the case of1002

closed-source models, it may be that access to the model is limited in some way (e.g.,1003

to registered users), but it should be possible for other researchers to have some path to1004

reproducing or verifying the results.1005

5. Open access to data and code1006

Question: Does the paper provide open access to the data and code, with sufficient instructions to1007

faithfully reproduce the main experimental results, as described in supplemental material?1008

Answer: [NA]1009

Justification: Unfortunately, there was no support for supplementary material upload. However, we1010

are happy to furnish the anonymized code for interested reviewers.1011

Guidelines:1012

• The answer NA means that paper does not include experiments requiring code.1013

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/1014

guides/CodeSubmissionPolicy) for more details.1015

• While we encourage the release of code and data, we understand that this might not be possible,1016

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless1017

this is central to the contribution (e.g., for a new open-source benchmark).1018

• The instructions should contain the exact command and environment needed to run to reproduce1019

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/1020

guides/CodeSubmissionPolicy) for more details.1021

• The authors should provide instructions on data access and preparation, including how to access1022

the raw data, preprocessed data, intermediate data, and generated data, etc.1023

• The authors should provide scripts to reproduce all experimental results for the new proposed1024

method and baselines. If only a subset of experiments are reproducible, they should state which1025

ones are omitted from the script and why.1026

• At submission time, to preserve anonymity, the authors should release anonymized versions (if1027

applicable).1028

• Providing as much information as possible in supplemental material (appended to the paper) is1029

recommended, but including URLs to data and code is permitted.1030

6. Experimental Setting/Details1031

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,1032

how they were chosen, type of optimizer, etc.) necessary to understand the results?1033

Answer: [Yes]1034

Justification: We detail the quantization metrics along with the choice of datasets with the test-train1035

splits. Our choice of training algorithms are vanilla versions, with no customized hyperparameters.1036

Guidelines:1037

• The answer NA means that the paper does not include experiments.1038

• The experimental setting should be presented in the core of the paper to a level of detail that is1039

necessary to appreciate the results and make sense of them.1040
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• The full details can be provided either with the code, in appendix, or as supplemental material.1041

7. Experiment Statistical Significance1042

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-1043

tion about the statistical significance of the experiments?1044

Answer: [NA]1045

Justification: Our running time experiments report the mean of 30 iterations, for various choices of1046

number of clients. Meanwhile, we present the accuracy values, as a function of iterations for various1047

datasets. At each iteration, the data is randomly split.1048

Guidelines:1049

• The answer NA means that the paper does not include experiments.1050

• The authors should answer "Yes" if the results are accompanied by error bars, confidence1051

intervals, or statistical significance tests, at least for the experiments that support the main claims1052

of the paper.1053

• The factors of variability that the error bars are capturing should be clearly stated (for example,1054

train/test split, initialization, random drawing of some parameter, or overall run with given1055

experimental conditions).1056

• The method for calculating the error bars should be explained (closed form formula, call to a1057

library function, bootstrap, etc.)1058

• The assumptions made should be given (e.g., Normally distributed errors).1059

• It should be clear whether the error bar is the standard deviation or the standard error of the1060

mean.1061

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report1062

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is1063

not verified.1064

• For asymmetric distributions, the authors should be careful not to show in tables or figures1065

symmetric error bars that would yield results that are out of range (e.g. negative error rates).1066

• If error bars are reported in tables or plots, The authors should explain in the text how they were1067

calculated and reference the corresponding figures or tables in the text.1068

8. Experiments Compute Resources1069

Question: For each experiment, does the paper provide sufficient information on the computer1070

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?1071

Answer: [Yes]1072

Justification: We detail the system settings of the device on which experiments are performed.1073

Guidelines:1074

• The answer NA means that the paper does not include experiments.1075

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud1076

provider, including relevant memory and storage.1077

• The paper should provide the amount of compute required for each of the individual experimental1078

runs as well as estimate the total compute.1079

• The paper should disclose whether the full research project required more compute than the1080

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into1081

the paper).1082

9. Code Of Ethics1083

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code1084

of Ethics https://neurips.cc/public/EthicsGuidelines?1085

Answer: [Yes]1086

Justification: The paper complies with the code of ethics.1087

Guidelines:1088

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1089

• If the authors answer No, they should explain the special circumstances that require a deviation1090

from the Code of Ethics.1091

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due1092

to laws or regulations in their jurisdiction).1093

10. Broader Impacts1094
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Question: Does the paper discuss both potential positive societal impacts and negative societal impacts1095

of the work performed?1096

Answer: [Yes]1097

Justification: The work focuses on privacy of client-held data. This is surveyed in the introduction and1098

motivates why privacy-preserving federated learning is important and its positive impact.1099

Guidelines:1100

• The answer NA means that there is no societal impact of the work performed.1101

• If the authors answer NA or No, they should explain why their work has no societal impact or1102

why the paper does not address societal impact.1103

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,1104

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-1105

ment of technologies that could make decisions that unfairly impact specific groups), privacy1106

considerations, and security considerations.1107

• The conference expects that many papers will be foundational research and not tied to particular1108

applications, let alone deployments. However, if there is a direct path to any negative applications,1109

the authors should point it out. For example, it is legitimate to point out that an improvement in1110

the quality of generative models could be used to generate deepfakes for disinformation. On the1111

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks1112

could enable people to train models that generate Deepfakes faster.1113

• The authors should consider possible harms that could arise when the technology is being used1114

as intended and functioning correctly, harms that could arise when the technology is being used1115

as intended but gives incorrect results, and harms following from (intentional or unintentional)1116

misuse of the technology.1117

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies1118

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-1119

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the1120

efficiency and accessibility of ML).1121

11. Safeguards1122

Question: Does the paper describe safeguards that have been put in place for responsible release of1123

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or1124

scraped datasets)?1125

Answer: [NA]1126

Justification: We do not use any of the stated models or data sources.1127

Guidelines:1128

• The answer NA means that the paper poses no such risks.1129

• Released models that have a high risk for misuse or dual-use should be released with necessary1130

safeguards to allow for controlled use of the model, for example by requiring that users adhere to1131

usage guidelines or restrictions to access the model or implementing safety filters.1132

• Datasets that have been scraped from the Internet could pose safety risks. The authors should1133

describe how they avoided releasing unsafe images.1134

• We recognize that providing effective safeguards is challenging, and many papers do not require1135

this, but we encourage authors to take this into account and make a best faith effort.1136

12. Licenses for existing assets1137

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,1138

properly credited and are the license and terms of use explicitly mentioned and properly respected?1139

Answer: [Yes]1140

Justification: The experiments have only used publicly available datasets with their license details1141

specified in a tabular column.1142

Guidelines:1143

• The answer NA means that the paper does not use existing assets.1144

• The authors should cite the original paper that produced the code package or dataset.1145

• The authors should state which version of the asset is used and, if possible, include a URL.1146

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1147

• For scraped data from a particular source (e.g., website), the copyright and terms of service of1148

that source should be provided.1149
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• If assets are released, the license, copyright information, and terms of use in the package should1150

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for1151

some datasets. Their licensing guide can help determine the license of a dataset.1152

• For existing datasets that are re-packaged, both the original license and the license of the derived1153

asset (if it has changed) should be provided.1154

• If this information is not available online, the authors are encouraged to reach out to the asset’s1155

creators.1156

13. New Assets1157

Question: Are new assets introduced in the paper well documented and is the documentation provided1158

alongside the assets?1159

Answer: [NA]1160

Justification: We are not releasing any new assets.1161

Guidelines:1162

• The answer NA means that the paper does not release new assets.1163

• Researchers should communicate the details of the dataset/code/model as part of their sub-1164

missions via structured templates. This includes details about training, license, limitations,1165

etc.1166

• The paper should discuss whether and how consent was obtained from people whose asset is1167

used.1168

• At submission time, remember to anonymize your assets (if applicable). You can either create an1169

anonymized URL or include an anonymized zip file.1170

14. Crowdsourcing and Research with Human Subjects1171

Question: For crowdsourcing experiments and research with human subjects, does the paper include1172

the full text of instructions given to participants and screenshots, if applicable, as well as details about1173

compensation (if any)?1174

Answer: [NA]1175

Justification: There were no human subjects involved in this project.1176

• The answer NA means that the paper does not involve crowdsourcing nor research with human1177

subjects.1178

• Including this information in the supplemental material is fine, but if the main contribution of the1179

paper involves human subjects, then as much detail as possible should be included in the main1180

paper.1181

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other1182

labor should be paid at least the minimum wage in the country of the data collector.1183

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects1184

Question: Does the paper describe potential risks incurred by study participants, whether such1185

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an1186

equivalent approval/review based on the requirements of your country or institution) were obtained?1187

Answer: [NA]1188

Justification: We do not have any research with human subjects that forms a part of this work.1189

Guidelines:1190

• The answer NA means that the paper does not involve crowdsourcing nor research with human1191

subjects.1192

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be1193

required for any human subjects research. If you obtained IRB approval, you should clearly state1194

this in the paper.1195

• We recognize that the procedures for this may vary significantly between institutions and1196

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for1197

their institution.1198

• For initial submissions, do not include any information that would break anonymity (if applica-1199

ble), such as the institution conducting the review.1200
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