
R3DS: Reality-linked 3D Scenes for Panoramic Scene Understanding
Supplemental Materials

In this supplement, we provide related works (Ap-
pendix A), additional examples and statistics for our R3DS
dataset (Appendix B), dataset construction (Appendix C),
details on our annotation interface (Appendix D), PanoSun
task (Appendix E) and additional results (Appendix F).

A. Related Work

3D scene datasets. A spectrum of scene datasets have been
used for scene understanding tasks. One type provides an-
notated 3D reconstructions of real scenes based on RGB-
D videos [2, 5, 9, 14, 18, 24]. These datasets are usually
subject to the limitations of RGB-D reconstruction, typ-
ically containing noise, artifacts such as holes, and poor
reconstructions of thin structures, shiny objects, or light
sources. Another type of 3D datasets is authored by man-
ually designing 3D object assets [4, 8] and inserting them
into synthetic 3D scenes [7]. However, such datasets lack
the realism of real-world reconstructions and demand ex-
pert knowledge, making them expensive to create. A third,
hybrid approach which is closest to our work creates 3D
scene datasets by aligning existing object CAD models to
real world data.
Datasets that align CAD models to real world. There
have been a number of recent efforts in aligning CAD mod-
els with real-world data. Prior work [12, 20, 23] has anno-
tated object images with 3D models, typically using key-
point correspondences to perspective images. These per-
spective images usually do not depict a complete scene;
they typically focus on one or two objects and are limited in
field of view, resulting in a sparse proxy of the real scene.

Another line of work aligns 3D CAD models to RGB-
D scans either through annotation as in Scan2CAD [1], or
automated heuristics as in iGibson [17]. OpenRooms [11]
extends Scan2CAD [1] with photorealistic material anno-
tations and focuses on inverse rendering tasks. Conceptu-
ally, these allow for more complete synthetic scene proxies.
However, statistics from these datasets show that they are
still relatively sparse (see ??). In addition, the poor quality
of reconstruction makes aligning CAD models challenging
without referring to the original RGB images. A promi-
nent exception is Replica [18] which has fairly high-quality
reconstructions and the artist-created Replica-CAD [21].

However, creating such high quality “replicas” is labor in-
tensive and costly. Szot et al. [21] report 900+ work hours
required to model approximately 90 objects, resulting in a
dataset of limited scale with 105 different layouts of what is
effectively a single room.

More recently, Maninis et al. [13] introduced CAD-
Estate, which aligns CAD models to RGB videos for over
19K spaces. Because the data is based on monocular video,
the coverage of the spaces is incomplete. In addition, the
annotation is relatively sparse, with an average of only 6
objects per scene.
Datasets for panoramic scene understanding. There
have been relatively few datasets introduced for Panoramic
Scene Understanding [6, 25, 26]. In the initial PanoCon-
text dataset [26], the data did not have aligned CAD models
and only included object cuboids. The ground truth data
was collected on 2D panorama images by annotating vis-
ible cuboid vertices; 3D cuboids were obtained by mini-
mizing the re-projection error from the annotated 2D ver-
tices. Moreover, these 3D cuboids and the room layout
are obtained with the assumption that the room layout is a
cuboid and that the objects are vertically aligned. Thus, the
resulting object layout may deviate from the real arrange-
ment of objects. More recently, datasets for Panoramic
Scene Understanding have been built by taking 3D scans,
aligning CAD objects to them, and then generating panora-
mas [6, 25]. Compared to these datasets, our R3DS is man-
ually curated for a larger number of distinct regions and
provides support hierarchy and matching object set anno-
tations.

B. R3DS dataset examples and statistics

We show a histogram of the region types covered by our
dataset (Figure 1), and histograms of the object categories
(Figures 2 and 4 to 7). We first show a histogram of the 20
most commonly occurring coarse object categories in Fig-
ure 2 and then fine-grained category distributions for some
broader object categories such as ‘Chair’, ‘Sofa’, ‘Table’
and ‘Lighting’ in Figures 4 to 7. We also present a box
plot of the physical size distribution (measured by volume
in m3) per category in Figure 3.

We show additional qualitative examples of scenes in our
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Figure 1. Histogram of all region (i.e. room) types in our R3DS
dataset. The three most common region types are bedroom, bath-
room and hallway, but there is a long-tail distribution with many
other region types.
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Figure 2. Coarse Object Categories. Histogram of the 20 most
common object categories in R3DS. We see that the scenes in our
dataset exhibit a long-tail distribution over common object cate-
gories occurring in real-world scenes.

Figure 3. Box plot of the physical size distribution (measured by
volume in m3) per category, showing a broad spectrum of sizes
with several small categories (right side).
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Figure 4. Histogram of the fine-grained categories for ‘Chair’. We
see a variety of types of chair instances present in scenes from our
dataset.

R3DS dataset in Figures 8 and 9.
We also provide statistics of object support relations to

architecture elements (Figure 10) and other objects (Fig-
ure 11). As expected, we see that chairs typically go on
floors, while curtains are supported by walls. From Fig-
ure 11, we see that cushions are typically found on beds,
chairs, and couches while towels are typically found on
shelves. Similarly, in Figure 12 we show the object-to-
region statistics. We see that some object categories tend
to appear more frequently in a particular region (i.e. room)
type. For example, couches are more frequently found in
living rooms than in bedrooms.



0 100 200 300 400
count

sofa

sectional

love seat

recliner

chaise longue

l-shaped couch

lounging area

Fin
e-

gr
ai

ne
d 

Ca
te

go
ry

Figure 5. Histogram of the fine-grained categories for ‘Sofa’.
There are a variety of sofas in our scenes.
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Figure 6. Histogram of the fine-grained categories for ‘Table’. A
variety of tables are present in our dataset scenes.
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Figure 7. Histogram of the fine-grained categories for ‘Lighting’.
Like chairs, there are a variety of types of lighting fixtures in our
scenes. Note that these types of lights are also found in dramat-
ically different support relations with the architecture and other
objects (e.g., table lamp vs ceiling lamp vs floor lamp).



Figure 8. Top-down overviews of various annotated scenes with objects colored by instances. Our dataset covers several region types
including kitchen, bedroom, bathroom, office, lounge room and more. The object arrangements are dense, with objects supported by other
objects (e.g., pillows on beds and couches) and by architectural elements (e.g., paintings on walls and curtains on windows).



Real Panorama Synthetic Perspective viewsSynthetic Panorama

Figure 9. Examples of real-world panoramas and corresponded synthetic panoramas. The synthetic scenes are rendered using the annotated
textured 3D architecture and all placed synthetic objects, from the same camera pose as the original panorama. The rightmost two columns
show additional sampled perspective views within each scene. Objects are colored according to semantic category label. The scenes are
densely populated with objects plausibly arranging on other objects and with respect to the architecture.
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Figure 10. Object-to-architecture support. The plot shows sup-
port between objects and architecture elements (floor, wall, ceil-
ing). The circle radius indicates the average number of the ob-
ject type (ranges from 5 to 24) supported by a given arch type per
panorama, whereas the color indicates the number of times the ob-
ject type is supported by that arch type out of the total number of
times the object type appears. For example, we see that on aver-
age, same number of shelves can be found on the floor and the wall
in a panorama (circle radius), but overall shelves appear more on
the wall than on the floor (color).
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Figure 11. Object-to-object support. The plot shows support be-
tween various objects in R3DS. The circle radius indicates the av-
erage number of the object type (ranges from 1 to 10) supported by
the parent object type per panorama, whereas the color indicates
the number of times the object type is supported by the parent ob-
ject type out of the total number of times the object type appears in
the dataset. For example, we see that on average, more pillows are
found on a couch than on a bed in a panorama (circle radius), but
overall pillows appear more frequently on the bed in the dataset
(color).

Objects

living room

porch/terrace/deck

familyroom/lounge

closet

dining room

bathroom

kitchen

entryway/foyer/lobby

hallway

bedroom

rec/game

Re
gi

on
s

0.1

0.2

0.3

0.4

0.5

Figure 12. Object-to-region. The plot shows objects found in
various regions in R3DS. The circle radius indicates the average
number of the object type (ranges from 7 to 24) found in a region
per panorama, whereas the color indicates the number of times the
object type occurs in that region out of the total number of times
the object type appears in the dataset. For example, we see that
on average, similar number of chairs are found in dining room and
lobby (circle radius), but overall chairs appear more frequently in
the dining room in the dataset (color).
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Figure 13. R3DS annotation pipeline. Annotators see an empty
scene (architecture only). They then insert and manipulate 3D ob-
ject models from a panorama viewpoint to create a populated 3D
scene proxy corresponding to the panorama.
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Figure 14. Architecture comparison. Compared to Scan2CAD
(no architecture) and CAD-Estate (partial architecture), R3DS
provides complete architecture with door/window portals.

C. Dataset construction process
We developed a 3D annotation interface (Fig. 13) show-
ing a panorama of a room from Matterport3D and allow-
ing users to insert 3D CAD objects into a 3D scene which
is visually overlaid on the panorama. The 3D scene is ini-
tially empty, consisting only of 3D architectural geometry
which specifies the walls, floor, ceiling as well as the place-
ment of openings (e.g. doors, windows, and other open-
ings) on the walls. We create this 3D architecture by taking
20 houses from Matterport3D, constructing an initial archi-
tecture based on the region and object annotations for the
windows and doors, and manually refining the placement
of walls and openings. By combining panoramas and 3D
architectures, users can see through openings and annotate
objects located in other rooms.

We ask annotators to select and place 3D object models
to best match the panoramic image. We use CAD models
from Wayfair [15] and ShapeNet [3] models collected from
3D Trimble warehouse. Wayfair provides a large collec-

tion of furniture CAD models that match real-world prod-
ucts and are sized based on real-world dimensions. How-
ever, it does not include bathroom fittings, electronic equip-
ment and kitchen appliances, for which we manually scale
and align CAD models from ShapeNet. Compared with
ShapeNetCore, the CAD models we use are already sized
to real-world sizes (instead of normalized to a unit cube).

To assist the annotators, we provide segmented masks of
objects visible in the panorama. Since Matterport3D has
annotated 3D object masks on the scans we use those an-
notations, but it is also possible to run an instance segmen-
tation on the panorama. When the user clicks one of these
masks, a search panel automatically opens and shows ob-
jects matching the clicked mask category label. For each
mask, the annotator selects a matching object and positions
and aligns it to match the mask. Annotators are instructed
to choose objects which match the shape of the correspond-
ing object in the panorama (rather than its color or texture).
To help annotators focus on shape, we render all 3D ob-
jects in a neutral gray color. Annotators are also explicitly
asked to select the same 3D asset for objects that should be
the same; our interface provides a list of recently selected
assets to make this process easier. In addition, annotators
are instructed to add annotations for any objects that are not
segmented (due to errors in Matterport3D) through simple
clicks. These additional objects provide a more complete
annotation that covers poorly reconstructed objects such as
glass tables, lamps, and other small objects. The interface
enforces that each object is placed on a support surface (ei-
ther an architecture element or another object). The annota-
tor can review their work by toggling off the panorama over-
lay or by switching to a perspective view of the 3D scene.

D. Annotation interface details
Our annotation interface consists of a web interface devel-
oped using three.js that allows users to insert 3D as-
sets into the scene while visually overlaid on the panorama.
To achieve this, our interface assumes that there is a set of
panoramas with corresponding camera poses, and an 3D ar-
chitecture on which the objects can be placed. We imple-
ment two viewing modes, panorama mode and architecture
mode, to let users switch between overlaid panorama and
underlying 3D scene.
Data Assets. We construct a parametric 3D architecture for
20 Matterport3D scenes. We take the region annotations
that specify wall segments to create the initial 3D architec-
ture. We then project annotations for the labels relating to
windows and doors to get an initial estimate for the place-
ment of doors and windows on the architecture. Next, we
create a textured architecture by rendering the reconstructed
scene onto the estimated surfaces of each architecture el-
ement plane (wall, floor, ceiling). Using a 3D interface
that shows the architecture, we manually refining the wall

https://threejs.org


Figure 15. The R3DS interface allows users to select 3D CAD models and place them in the scene. Users can see the alignment of the
object against the panorama. Camera controls allows the user to rotate the camera and to see different perspective views of the scene. The
user can also toggle the overlaid panorama on (left) or off (right), to get a better view of the underlying 3D architecture and all objects
placed into the scene thus far using the interface.

Figure 16. The user sees a list of candidate CAD models that is
filtered depending on the semantic object category of the mask
that was clicked in the panorama view. The list is hierarchical, al-
lowing the user to refine the category into finer-grained categories
such as the examples of chair types on the left side, and then select
an appropriate instance of a chair within the finer category.

Figure 17. The interface allows annotators to attach objects to
either architecture or other objects. The manipulator is oriented
on the attached surface and allows for rotating the object whereas
the arrows allow for scaling.

boundaries and the placement of doors and windows on the
walls to correct any prominent errors. The projection of
door and window annotations onto the walls is often noisy
due to open doors, inaccurate windows, and noises in the
annotation. We obtain each RGB panorama by stitching 6
skybox images from the same camera viewpoint. During



the data preprocessing stage, we also parse panoramas into
semantic object instance masks to provide reference objects
during annotation. We get these instance masks by render-
ing segmentations from Matterport3D’s annotated object in-
stance house meshes.
Annotation process. We describe a typical annotation
workflow starting with an empty scene (see Figure 15). A
user freely pans the camera to explore the whole scene while
the overlay is kept in sync. After clicking an object to be an-
notated in the panorama, a list of candidate 3D shapes of the
same category is shown in a side panel (see Figure 16). The
user is instructed to identify the best matching 3D shape
(see Figure 19). The inserted 3D shape is automatically
placed at the location in the scene where the user initially
clicked. The user can further manipulate the position, scale,
and orientation of objects so that the object is aligned to
the image (see Figure 17). The placement is attached to a
specific surface already in the scene, thus creating a scene
support hierarchy by construction.

We recruited annotators and instructed them to follow
these guidelines: 1) Completeness: each mask should be
annotated with a 3D model of an object. Some masks may
be divided into parts for different objects and some masks
may be merged into one (see detailed discussion of “mask-
to-object assignment”). If an important object does not have
a mask, it can still be added (see discussion of “custom
masks”). 2) Object match: the categories, shapes and sizes
of the placed objects match those observed (see “object se-
lection” criteria) 3) Spatial accuracy: object placements
and orientations should be as close to those observed in the
panorama (see “object selection” criteria). There should be
no collisions or floating objects.
Mask-to-Object Assignment. In some cases, it is overly
restrictive to assume that there is a one-to-one correspon-
dence between masks and objects. For example, an object
may need to be assigned to multiple masks because the two
masks correspond to parts of the same object, separated by
occlusion. In other cases, we have masks that include multi-
ple objects (see Figure 18). Our system supports these cases
such that a user can place multiple models for the same
mask by re-selecting a mask that already has a model as-
signed and inserting an additional model. For cases where
a model is shared among multiple masks, the user first in-
serts the model having selected one of the masks. Then, the
user can assign other relevant masks to the already inserted
model. Handling of these cases enables us to correctly an-
notate densely cluttered arrangements such as kitchen cabi-
netry, sink units, and pillows on couches.
Object Selection. We decompose the requirement on
semantically-matching objects into 4 sub-aspects (see Fig-
ure 19): category, shape, structural, and functional similar-
ity. For example, a category mismatch constitutes a ‘chair’
being annotated with a ‘table’, a shape mismatch consti-

(a) Single object mapped to multiple masks

(b) Single mask containing multiple objects

Pillow

Pillow

Setty

Figure 18. Mask-to-object assignment. Our annotation strategy
allows for objects that need to be assigned to multiple instance
masks (e.g., sink at top), and multiple masks needing to be as-
signed to the same object (e.g., couch and pillows at bottom).
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Figure 19. Object selection in R3DS. Annotators are instructed to
select objects to insert in to a scene based on how well they match
with the object observed in the panoramic image. Top: shows
good object matches that an annotator would select following our
instructions. Bottom: shows different types of mismatching ob-
jects that annotators are instructed to avoid.

tutes ‘high-back armchair’ being annotated with a ‘dining-
chair’ model, a structural mismatch constitutes a ‘single-
seater chair’ being annotated with a ‘double-seater chair’
and a functional mismatch constitutes a ‘an armchair with
no wheels’ being annotated with a ‘swivel chair with wheels
and no arms’ (Figure 19). We exclude door and window
objects for annotations since they are represented as holes
on the walls of the architecture and their placement can be
largely automated.
Object alignment and support. Additionally, the objects
can have two types of support structure: i) object-to-object
support; and ii) object-to-architecture support. Object-to-
object support ensures that two objects are supported by
each other properly. For example, a microwave placed on a
counter is by construction constrained to be on the counter
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Figure 20. Object alignment in R3DS. (Left) Objects are closely
aligned to the image. (Middle) Objects are properly supported by
other objects. (Right) Objects are supported by appropriate archi-
tecture elements. In each column, the top is a cropped view from
the panorama, the middle highlighted in green is a correctly placed
object, while the bottom is an example of an error that annotators
avoid using our annotation interface.
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Figure 21. Scene object support hierarchy. Objects in a scene
are supported by either architecture elements or other objects.

top, and not to float in midair. Similarly, in the object-to-
architecture support case, an object placed on an architec-
tural element (floor, wall or ceiling) is ensured to be sup-
ported by the planar surface of that element. This type of
annotation also helps to disambiguate some otherwise phys-
ically implausible scenarios. For example, a chest of draw-
ers is typically supported by the floor, and not by the ad-
jacent wall (Figure 20). In Figure 10, we show a concrete
example of how different objects are attached to architec-
tural elements and supported by other objects.
Custom Masks. We further allow annotators to insert ob-
jects for which there are no existing instance masks to en-
sure the scenes are densely populated and objects are prop-
erly supported. In some cases, the user may decide to leave
a mask unannotated. This could be because the mask is in-
valid or there are no viable models for the object. In this
case, the user can mark the object as ‘unannotated’ and

leave comments explaining the reason.

E. PanoSun task
Method. DeepPanoContext (DPC) [25] predicts the room
layout, detects objects in 3D and recovers object meshes
from a panorama image using a relation-based graph convo-
lutional network and a differentiable relation optimization
procedure. Since DPC has a publicly-available implementa-
tion, we use it to benchmark the R3DS data on the PanoSun
task. We keep all hyperparameters unchanged except low-
ering the relation optimization loss weight of 3D bounding
box back-projection from 10 to 1, since the ground truth 2D
masks are noisy.
Datasets. We train and evaluate DPC on the iGibson-
DPC (IG) [6, 16, 25], Structured3D (S3D) [27], and R3DS
datasets. Zhang et al. [25] render 1,500 panoramas from
15 iGibson houses composed of 500+ objects spanning 57
object categories. We use the same data and splits for
IG. Structured3D consists of 3500 houses and around 18K
photo-realistic rendered panoramas in total. We use 14K for
training and the remaining 4K for testing. Note that Struc-
tured3D does not provide ground truth object meshes.

To prepare R3DS for this task, we generate the ground
truth room layout from the 3D architecture based on the
camera viewpoint and obtain 3D oriented bounding boxes
(OBBs) from all objects. We use 2D object masks from
the Matterport3D mesh instance segmentation. We consider
three variants of R3DS based on the input panorama: R3DS-
real where we use the Matterport3D panoramas, R3DS-
syn where we use rendered panoramas (at the same camera
poses) from the annotated synthetic scenes, and R3DS-mix
where we combine the two types of panoramas and double
the available data. We follow the MP3D house split and
merge the train and val sets to obtain a disjoint split of 15
train and 5 test houses. Based on the split, we have 696
annotated panoramas for train and 146 for test. To fairly
evaluate methods trained on different datasets, we curate a
list of 25 object classes common to all datasets.
Metrics. Following Zhang et al. [25] we use separate met-
rics for room layout estimation, 3D object detection, and
scene relation prediction. For room layout estimation, we
use 2D IoU for predicted 2D floorplan, 3D IoU for lifted
3D room geometry, and dRMSE for predicted depth with
respect to the camera location. For 3D object detection, we
report bounding box-based class-agnostic 3D IoU as well as
mean average precision (mAP) across the 25 object classes,
where an IoU greater than 0.15 counts as a “true” result.
For scene relation prediction, we report F1 scores for rela-
tion classification. We also report the average number of
objects colliding with each other or with architectural struc-
tures (wall, floor, ceiling). Specifically, we follow Zhang
et al. [25] and measure collisions using the Separating Axis
Theorem (SAT) to test whether object bounding boxes over-



Train 2D IoU ↑ 3D IoU ↑ dRMSE ↓
DPC [25] 53.4 50.3 0.682
R3DS-real 55.1 53.1 0.610
R3DS-syn 59.0 56.1 0.629
R3DS-mix 59.6 57.0 0.572

Table 1. Room layout estimation on R3DS-real test set.
DPC [25] was pretrained on IG and S3D. For the last three rows,
we fine-tune the pretrained weights on variants of R3DS.

lap. Since bounding box-based collision is a poor proxy for
real-world physical collision, we also compute mesh-based
collision by checking if the meshes for object pairs have any
interpenetrating triangles [10, 22].

F. Additional Results
Room layout estimation. For room layout estimation, DPC
uses HorizonNet [19] pretrained on iGibson (IG) and Struc-
tured3D (S3D) panoramas. This model achieves good per-
formance on IG data (91.0 3D IoU). When directly testing
the official pretrained model on R3DS-real panoramas, we
notice a significant performance drop compared to results
on the rendered panoramas from iGibson (Tab. 1 shows
that the 3D IoU drops to 50.3). By finetuning the pre-
trained model with R3DS-real, we can predict more precise
room layouts for real cluttered scenes. Even only trained
on R3DS-syn, we outperform the original DPC model by
5.6% and 5.8% on 2D and 3D IoU, respectively. This is
likely due to renderings from R3DS-syn reflecting more re-
alistic object arrangements in a room instead of pushing all
objects against walls. Best performance on 2D IoU (59.6),
3D IoU (57.0) and depth RMSE (0.572) is achieved by fine
tuning on R3DS-mix.
Error analysis. We conduct error analysis on 120 randomly
sampled panoramas using the model pretrained on S3D to
identify typical errors (see Fig. 23). Errors are categorized
into 4 groups: (a) 60% panoramas have 2D perception er-
rors due to the synthetic-to-real appearance gap; (b) 76.7%
panoramas show detection failures due to occlusions; (c)
65% panoramas exhibit correct 2D detections but fail to
correctly perform 3D predictions; and (d) 15.6% out of 45
panoramas with mirrors mistakenly predict virtual objects
in mirrors.
Is relation optimization (RO) effective on R3DS? Test-
time relation optimization (RO) was introduced by Zhang
et al. [25] to reduce physical violations, floating objects,
and misalignment between objects and architecture. The
original cost function based on bounding box collisions suc-
ceeds in optimizing object poses, since there are few such
collisions in the IG data originally used for evaluation (see
in Tab. 2). However, the same data assumption does not
hold for R3DS, which has more bounding-box-based colli-

Datasets Mesh Collisions Box Collisions

obj-obj obj-wall obj-floor obj-ceil

IG - 1.185 0.075 0.000 0.790
R3DS 0.0006 2.823 0.388 0.035 0.064

Table 2. Comparison of the average number of bounding box
and mesh-based object collisions per scene in IG and R3DS.
R3DS exhibits more bounding box-based collisions, but almost
none of these are actual physical collisions between object meshes.
Measuring collisions between bounding boxes is a poor collision
measure for fully-populated, real-world scenes.

Rel. Opt. 3D mAP ↑ Mesh Collisions ↓ Box Collisions ↓
obj-obj obj-arch

DPC 18.2 0.158 0.062 1.308
w/o obj col 18.9 1.342 1.130 1.301
w/o obj col+tch 19.6 1.219 1.062 1.295
w/ mesh col 19.7 1.027 0.856 1.394

Table 3. Ablation of relation optimization (RO) on R3DS-real.
The 2nd and 3rd row remove optimization terms in RO. The last
row replaces bounding-box collisions with mesh collisions.

sions but nearly zero mesh-based collisions. We ablate the
design of RO on R3DS-real in Table 3. By removing two
optimization terms (bounding-box-based object-wise colli-
sion and touching step-by-step), the model outperforms the
original one in 3D mAP (+1.4) but degrades in mesh-based
and box-based collisions. We show that using mesh-based
collision optimization leads to the best performance. The
increase in collisions is unsurprising as the R3DS data re-
flects more cluttered real interiors.
Limitations. Our dataset construction relied on 3D archi-
tectures for each Matterport3D scan which are simplifica-
tions of the geometry of the real environment. One issue
is imperfect wall positions, resulting in objects attached to
these virtual walls being offset from the true surface. In ad-
dition, objects in our 3D scenes were placed without regard
to the materials, meaning that the detailed surface appear-
ance does not match that of the observed object. Future
work can investigate transfer of surface appearance to the
synthetic objects by projecting textures from the RGB-D
data and 3D reconstructed meshes.
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