
A Additional preliminaries for Section 2

Complexity measures. The capacity measures, VCU , RSU and VC, play an important role in our
results. See Definitions 1.1 and 1.2 for the VCU and RSU dimensions. It holds that VCU (H) 
RSU (H)  VC(H), in Proposition 3.2 we demonstrate an arbitrary gap between VCU and RSU , the
key parameters controlling the sample complexity of robust learnability.

Denote the projection of a hypothesis class H on set S = {x1, . . . , xk} by H|S = {(h(x1), . . . ,

h(xk)) : h 2 H}. We say that a set S ✓ X is shattered by H if {0, 1}S = H|S , the VC-dimension
[53] of H is defined as the maximal size of a shattered set S. The dual hypothesis class H⇤ ✓ {0, 1}H
is defined as the set of all functions fx : H ! {0, 1} where fx(h) = h(x). We denote the VC-
dimension of the dual class by VC⇤(H). It is known that VC⇤(H) < 2VC(H)+1 [5].
Definition A.1 (Sample compression scheme) A pair of functions (, ⇢) is a sample compression
scheme of size ` for class H if for any n 2 N, h 2 H and sample S = {(xi, h(xi))}ni=1, it holds
for the compression function that  (S) ✓ S and | (S) |  `, and the reconstruction function
⇢ ( (S)) = ĥ satisfies ĥ(xi) = h(xi) for any i 2 [n].

Partial concept classes - [2]. Let a partial concept class H ✓ {0, 1, ?}X . For h 2 H and input
x such that h(x) = ?, we say that h is undefined on x. The support of a partial hypothesis
h : X ! {0, 1, ?} is the preimage of {0, 1}, formally, h�1({0, 1}) = {x 2 X : h(x) 6= ?}. The
main motivation for introducing partial concept classes is that data-dependent assumptions can be
modeled in a natural way that extends the classic theory of total concepts.

The VC-dimension of a partial class H is defined as the maximum size of a shattered set S ✓ X , where
S is shattered by H if the projection of H on S contains all possible binary patterns, {0, 1}S ✓ H|S .
The VC-dimension also characterizes verbatim the PAC learnability of partial concept classes.
However, the uniform convergence argument does not hold, and the ERM principle does not ensure
learning. The proof hinges on a combination of sample compression scheme and a variant of the
one-Inclusion-Graph algorithm [33]. In Section 4 we elaborate on the sample complexity of partial
concept classes, and in Appendix F we elaborate on the learning algorithms. The definitions of
realizability and agnostic learning in the sense of partial concepts generalize the classic definitions
for total concept classes. See [2, Section 2 and Appendix C] for more details.

B Proofs for Section 3

Proof of Proposition 3.2 We overview the construction by Montasser et al. [40], which exemplifies
an arbitrarily large gap between VCU and RSU . In this example VCU (H) = 0, RSU (H) = 1, and
VC(H) = 1.

Define the Euclidean ball of radius r perturbation function U(x) = Br(x). Consider infinite
sequences (xn)n2N and (zn)n2N of points such that 8i 6= j, U(xi) \ U(xj) = U(xi) \ U(zj) =
U(xj) \ U(zi) = ;, and 8i,

��U(xi) \ U(zi)
�� = 1.

For a bit string b 2 {0, 1}N, define a hypothesis hb : {U(xi) [ U(zi)}i2N ! {0, 1} as follows.

hb =

8
<

:
hb

⇣
U(xi)

⌘
= 1 ^ hb

⇣
U(zi) \ U(xi)

⌘
= �1, bi = 0

hb

⇣
U(zi)

⌘
= 1 ^ hb

⇣
U(xi) \ U(zi)

⌘
= �1, bi = 1.

Define the hypothesis class H =
n
hb : b 2 {0, 1}N

o
. It holds that VCU (H) = 0 and RSU = 1. ⌅

C Proofs for Section 4

Before proceeding to the proof, we present the following result on learning partial concept classes.
Recall the definition of VC is in the context of partial concepts (see Appendix A).
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Theorem C.1 ([2], Theorem 34) Any partial concept class H with VC(H) < 1 is PAC learnable

in the realizable setting with sample complexity,

• ⇤RE (✏, �,H) = O
⇣
min

n
VC(H)

✏ log 1
� ,

VC(H)
✏ log2

⇣
VC(H)

✏

⌘
+ 1

✏ log
1
�

o⌘

• ⇤RE (✏, �,H) = ⌦
⇣

VC(H)
✏ + 1

✏ log
1
�

⌘
.

Proof of Theorem 4.2 At first, we convert the hypothesis class H to H?
U

as described in Definition
4.1. Then, we employ the learning algorithm A for partial concepts on the partial concept class H?

U

and Sl, denote the resulting hypothesis by h1. Note that we reduced the complexity of the class, since
VC(H?

U
) = VCU (H). Theorem C.1 implies that whenever ml = |Sl| � Õ

⇣
VCU (H)

✏ + 1
✏ log

1
�

⌘
,

the hypothesis h1 has a non-robust error at most ✏
3 with probability 1� �

2 , with respect to the 0-1 loss.
Note that there exists h 2 H that classifies correctly any point in D with respect to the robust loss
function. So when we convert H to H?

U
, the "partial version" of h still classifies correctly any point

in Sl, and does not return any ?, which always counts as a mistake. Algorithm A guarantees to return
a hypothesis that is ✏-optimal with respect to the 0-1 loss, with high probability. Observe that after
these two steps, we obtain the following intermediate result. Whenever a distribution D is robustly
realizable by a hypothesis class H, i.e., RU (H;D) = 0, we have an algorithm that learns this class
with respect to the 0-1 loss, with sample complexity of

⌥(✏, �,H,U) = O (⇤RE(✏, �,H)) = O
✓
VCU (H)

✏
log2

VCU (H)

✏
+

1

✏
log

1

�

◆
. (1)

The sample complexity of this model is defined formally in Definition E.1. See Section 6 for more
results for this model.

In the third step, we label an independent unlabeled sample Su
X

⇠ Dmu
X

with h1, denote this labeled
sample by Su. Define a distribution D̃ over X ⇥ Y by

D̃(x, h1(x)) = DX (x),

and so Su is an i.i.d. sample from D̃. We argue that the robust error of H with respect to D̃ is at most
✏
3 , i.e., RU (H; D̃)  ✏

3 . Indeed, we show that hopt 2 argminh2H
RU (h;D) has a robust error of at

most ✏
3 on D̃. Note that,

RU (H; D̃)  E(x,y)⇠D [`U (hopt;x, h1(x))] = E(x,y)⇠D̃
[`U (hopt;x, y)] . (2)

Observe that the following holds for any (x, y),

`U (hopt;x, h1(x))  `U (hopt;x, y) + `0-1(h1;x, y). (3)

Indeed, the right-hand side is 0, whenever h1 classifies (x, y) correctly, and hopt robustly classifies
(x, y) correctly, which implies that the left-hand side is 0 as well.

By taking the expectation on Eq. (3) we have,

E(x,y)⇠D[`U (hopt;x, h1(x))]  E(x,y)⇠D[`U (hopt;x, y)] + E(x,y)⇠D[`0-1(h1;x, y)]. (4)

We have

RU (H; D̃)  E(x,y)⇠D̃
[`U (hopt;x, y)]

(i)
= E(x,y)⇠D[`U (hopt;x, h1(x))]

(ii)
 E(x,y)⇠D[`U (hopt;x, y)] + E(x,y)⇠D[`0-1(h1;x, y)]

 ✏

3

where (i) follows from Eq. (2) and (ii) follows from Eq. (4).
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Finally, we employ an agnostic adversarially robust supervised PAC learner B for the class H on
Su ⇠ D̃mu , that should be of a size of the sample complexity of agnostically robust learn H with
respect to U , when the optimal robust error of hypothesis from H on D̃ is at most ✏

3 . We are
guaranteed that the resulting hypothesis h2 has a robust error of at most ✏

3 + ✏
3 = 2✏

3 on D̃, with
probability 1� �

2 . We observe that the total variation distance between D and D̃ is at most ✏
3 , and as

a result, h2 has a robust error of at most 2✏
3 + ✏

3 = ✏ on D, with probability 1� �.

We conclude that a size of |Su
X
| = mu = ⇤AG

�
1, ✏

3 ,
�
2 ,H,U , ⌘ = ✏

3

�
unlabeled samples suffices, in

addition to ml = Õ
⇣

VCU (H)
✏ + 1

✏ log
1
�

⌘
labeled samples which are required in the first 2 steps. ⌅

We now prove Theorem 4.4. The following data-dependent compression-based generalization bound
is a variation of the classic bound by Graepel et al. [28]. It follows the same arguments while using
the empirical Bernstein bound instead of Hoeffding’s inequality. A variation of this bound, with
respect to the 0-1 loss, appears in [2, Lemma 42], and [38, Section 5]. The exact same arguments
follow for the robust loss as well.

This bound includes the empirical error factor, and as soon as we call the compression-based learner
on a sample that is "nearly" realizable (Step 4 in the algorithm), we can improve the sample complexity
of the agnostic robust supervised learner, such that the dependence on ✏2 is reduced to ✏, for the
unlabeled sample size.

Lemma C.2 (Agnostic sample compression generalization bound) For any sample compression

scheme (, ⇢), for any m 2 N and � 2 (0, 1), for any distribution D over X ⇥ {0, 1}, for S ⇠ Dm
,

with probability 1� �,

���RU (⇢((S));D)� bRU (⇢((S));S)
���  O

0

@

s

bRU (⇢((S));S)

�
|(S)| log(m) + log 1

�

�

m
+

|(S)| log(m) + log 1
�

m

1

A .

Proof of Theorem 4.4 Montasser et al. [40, Theorem 6] introduced an agnostic robust supervised
learner that requires the following labeled sample size,

⇤AG (1, ✏, �,H,U , ⌘) = Õ
✓
VC(H)VC⇤(H)

✏2
+

log 1
�

✏2

◆
.

Their argument for generalization is based on classic compression generalization bound by Graepel
et al. [28], adapted to the robust loss. See Montasser et al. [40, Lemma 11].

We show that in our use case, we can deduce a stronger bound. We employ the agnostic learner on a
distribution that is "close" to realizable, the error of the optimal h 2 H is at most ⌘ = ✏

3 , and so we
need ⇤AG

�
1, ✏

3 ,
�
2 ,H,U , ⌘ = ✏

3

�
unlabeled examples. As a result, we obtain an improved bound by

using a data-dependant generalization bound described in Lemma C.2.

This improves the unlabeled sample size (denoted by mu) and reduces its dependence on ✏2 to ✏.
Overall we obtain a sample complexity of

mu = Õ
✓
VC(H)VC⇤(H)

✏
+

log 1
�

✏

◆
, ml = O

✓
VCU (H)

✏
log2

VCU (H)

✏
+

log 1
�

✏

◆
.

⌅

Proof of Theorem 4.6 This proof is identical to [40, Lemma 3], We overview the idea of the proof.
If the proof is true for a labeled sample, it remains true when some of the labels are missing.

Define the following hypothesis class Hm ✓ [0, 1]X . Define the instance space X = {x1, . . . , xm} ✓
R and a perturbation function U : X ! 2X , such that the perturbation sets of the instances do not
intersect, that is, 8i, j 2 [m] : U (xi) \ U (xj). We can simply take the perturbations sets to be `2
unit balls, U(x) = {z 2 R : kz � xk2  1} such that 8i, j 2 [m] : kxi � xjk2 > 2. Now, each
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hb 2 Hm is represented by a bit string b = {0, 1}m, such that if bi = 1, then there exist an adversarial
example in U (xi) that is unique for each hb, and otherwise, the function is consistent on U(xi).

Formally, for each i 2 [m] define a bijection  i : xi ⇥ Hm ! U (xi) \ {xi}. Define Hm =
{hb : b 2 {0, 1}m}, such that for any xi 2 X , hb is defined by

hb(xi) =

8
<

:
hb

⇣
U(xi) \  i(xi, hb)

⌘
= 0 ^ hb

⇣
 i(xi, hb)

⌘
= 1, bi = 1,

hb

⇣
U(xi)

⌘
= 0, bi = 0.

Note that since  i is a bijection, different functions with bi = 1 have a different perturbation for xi

that causes a misclassification.

For a function class H, define the robust loss class LU

H
=n

(x, y) 7! supz2U(x) I {h(z) 6= y} : h 2 H
o

. It holds that VC(Hm)  1 and VC
�
LU

Hm

�
= m

(see [40, Lemma 2]).

We define a function class H̃3m =
n
hb 2 H3m :

P3m
i=1 bi = m

o
. In words, we are keeping only

functions in H3m that are robustly correct on exactly 2m points. Note that the function h~0 (bit string
of all zeros) which is robustly correct on all 3m points, is not the class.

The idea is that we can construct a family of
�3m
2m

�
distributions, such that each distribution is

supported on 2m points from X = {x1, . . . , x3m}. Now, if we have a proper learning rule, observing
only m points, the algorithm has no information which is the remaining m points in the support (out
of 2m possible points in X ). For each such a distribution there exists h 2 H̃3m, with zero robust
error. We can follow a standard proof of the no-free-lunch theorem [e.g., 50, Section 5], showing via
the probabilistic method, that there exists a distribution on which the algorithm has a constant error,
although there is an optimal function in H̃3m. See [40, Lemma 3] for the full proof. ⌅

D Proofs for Section 5

Before proceeding to the proof, we present the following result on agnostically learning partial
concept classes. Recall the definition of VC is in the context of partial concepts (see Appendix A).

Theorem D.1 ([2], Theorem 41) Any partial concept class H with VC(H) < 1 is agnostically

PAC learnable with sample complexity,

• ⇤AG (✏, �,H) = O
⇣

VC(H)
✏2 log2

⇣
VC(H)

✏2

⌘
+ 1

✏2 log
1
�

⌘
.

• ⇤AG (✏, �,H) = ⌦
⇣

VC(H)
✏2 + 1

✏2 log
1
�

⌘
.

Proof of Theorem 5.1 We follow the same steps as in the proof of the realizable case, with the
following difference. In the first two steps of the algorithm, we learn with respect to the 0-1 loss, with
an error of ⌘ (the optimal robust error of a hypothesis in H) and not 0, which leads eventually to an
approximation of 3⌘ for learning with the robust loss.

At first, we convert the class H into H?
U

, on which we employ the learning algorithm A for partial con-
cepts with the sample Sl. Theorem D.1 implies that whenever ml = |Sl| � Õ

⇣
VCU (H)

✏2 + 1
✏2 log

1
�

⌘
,

the resulting hypothesis h1 returned by algorithm A has a non-robust error at most ⌘ + ✏
3 with

probability 1� �
2 , with respect to the 0-1 loss, where ⌘ = RU (H;D). Note that there exists h 2 H

with robust error of ⌘ on D. The "partial version" of h has an error of ⌘ on D with respect to the 0-1
loss. As a result, algorithm A guarantees to return a hypothesis that is ✏-optimal with respect to the
0-1 loss, with high probability.
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We label an independent unlabeled sample Su
X

⇠ Dmu
X

with h1, denote this labeled sample by Su.
Similarly to the realizable case, define a distribution D̃ over X ⇥ Y by

D̃(x, h1(x)) = DX (x),

and so Su is an i.i.d. sample from D̃. We argue that the robust error of H with respect to D̃ is at most
2⌘ + ✏

3 , i.e., RU (H; D̃) = 2⌘ + ✏
3 , by showing that hopt = argminh2H

RU (h;D) has a robust error
of at most 2⌘ + ✏

3 on D̃.

Eqs. (2) to (4) still hold as in the realizable case proof. Combining it together, we have

RU (H; D̃)  E(x,y)⇠D̃
[`U (hopt;x, y)]

(i)
= E(x,y)⇠D[`U (hopt;x, h1(x))]

(ii)
 E(x,y)⇠D[`U (hopt;x, y)] + E(x,y)⇠D[`0-1(h1;x, y)]

 ⌘ + ⌘ +
✏

3

= 2⌘ +
✏

3
,

where (i) follows from Eq. (2) and (ii) follows from Eq. (4).

Finally, we employ an agnostic adversarially robust supervised PAC learner B for the class H on
Su ⇠ D̃mu , that should be of a size of the sample complexity of agnostically robust learn H with
respect to U , when the optimal robust error of hypothesis from H on D̃ is at most 2⌘ + ✏

3 . We are
guaranteed that the resulting hypothesis h2 has a robust error of at most 2⌘+ ✏

3 +
✏
3 = 2⌘+ 2✏

3 on D̃,
with probability 1� �

2 . We observe that the total variation distance between D and D̃ is at most ⌘+ ✏
3 ,

and as a result, h2 has a robust error of at most 2⌘ + 2✏
3 + ⌘ + ✏

3 = 3⌘ + ✏ on D, with probability
1� �.

We conclude that a size of |Su
X
| = mu = ⇤AG

�
1, ✏

3 ,
�
2 ,H,U , 2⌘ + ✏

3

�
unlabeled sample suf-

fices, in addition to the ml = O
⇣

VCU (H)
✏2 log2 VCU (H)

✏2 +
log 1

�
✏2

⌘
labeled samples which are re-

quired in the first 2 steps. We remark that the best known value of ⇤AG (1, ✏, �,H,U , ⌘) is
Õ
⇣

VC(H) VC⇤(H)
✏2 +

log 1
�

✏2

⌘
. ⌅

Proof of Theorem 5.2 We give a proof sketch, this is similar to [40, Theorem 10], knowing the
marginal distribution DX does not give more power to the learner. The argument is based on the
standard lower bound for VC classes (for example [39, Section 3]). Let S = {x1, . . . , xk} be a
maximal set that is U -robustly shattered by H.

Let z+1 , z
�

1 , . . . , z+k , z
�

k be as in Definition 1.2, and note that for i 6= j, z+i 6= z+j and z�i 6= z�j .
Define a distribution D� for any possible labeling � = (�1, . . . ,�k) 2 {0, 1}k of S.

8j 2 [k] :

(
D�(z

+
j , 1) =

1�↵
2k ^ D�(z

�

j , 0) = 1+↵
2k �j = 0,

D�(z
+
j , 1) =

1+↵
2k ^ D�(z

�

j , 0) = 1�↵
2k �j = 1.

We can now choose ↵ as a function of ✏, � in order to get a lower bound on the sample complexity
|S| & RSU

✏2 .

⌅

Proof of Theorem 5.3 We take the construction in Proposition 3.2, where there is an arbitrary gap
between VCU and RSU .

Recall that on every pair (x, z) in Proposition 3.2 the optimal error is ⌘ = 1/2. On such unlabeled
pairs, the learner can only randomly choose a prediction, and the error is 3/4. We have VCU = 0,
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and the labeled sample size is 1
✏2 log

1
� . As (RSU � 1

✏2 log
1
� ) grows, the gap between the learner and

the optimal classifier is approaching 3/2, which means that for any � > 0 we can pick RSU such that
error of ( 23 � �)⌘ is not possible.

In order to prove the case of any 0 < ⌘  1/2, we can just add points such that their perturbation set
does not intersect with any other perturbation set, and follow the same argument. ⌅

E Auxiliary definitions and proofs for Section 6

Definition of the model.

Definition E.1 ((non-robust) PAC learnability for robustly realizable distributions) For any
✏, � 2 (0, 1), the sample complexity of (✏, �)-PAC learning for a class H, denoted by ⌥(✏, �,H,U),
is the smallest integer m for which there exists a learning algorithm A : (X ⇥ Y)⇤ ! YX , such that
for every distribution D over X ⇥ Y robustly realizable by H with respect to a perturbation function
U : X ! 2X , namely RU (H;D) = 0, for a random sample S ⇠ Dm, it holds that

P (R (A(S);D)  ✏) > 1� �.

If no such m exists, define ⌥(✏, �,H,U) = 1, and H is not (✏, �)-PAC for distributions that are
robustly realizable by H with respect to U .

Proof of Proposition 6.1 Define the uniform distribution D over the support {(x1, 1), . . . , (x2m, 1)},
such that

T2m
i=1 U(xi) 6= ;. Define H : X ! 2X to be all binary functions over X . Note that the D is

robustly realizable by H, the constant function that returns always 1 has no error. Moreover we have
VCU = 1, and VC = 2m, for any m 2 N. ⌅

Proof of Theorem 6.2 We follow only the first two steps of the generic Algorithm 1. Namely, take a
labeled sample S and a hypothesis class H and create the partial hypothesis class H?

U
. Assuming

that the distribution is robustly realizable by H, we end up in a realizable setting of learning a partial
concept class H?

U
.

In the second step of the algorithm, we call a learning algorithm for partial concept classes (Ap-
pendix F) in order to do so. The sample complexity is the same as Theorem C.1, ⌥(✏, �,H,U) =
O (⇤RE(✏, �,H)) . The Theorem follows from Eq. (1) in Theorem 4.2. ⌅

Proposition E.2 Consider the distribution D and the hypothesis class H in Proposition 6.1. There

exists a robust ERM algorithm returning a hypothesis hERM 2 H, such that R(hERM;D) � 1
4 with

probability 1 over S ⇠ Dm
.

Proof Consider the following robust ERM. For any sample of size m, return 1 on the sample points
and randomly choose a label for out-of-sample points. The error rate of such a robust ERM is at least
1/4 with probability 1. ⌅

Proof of Theorem 6.3 This follows from a similar no-free-lunch argument for VC classes [e.g., 50,
Section 5]. We briefly explain the proof idea.

Take the distribution D, and the class H from Proposition E.2 with VCU (H) = 1 and VC(H) = 3m.
Keep functions that are robustly self-consistent only on 2m points. Construct all distributions on 2m
points from the support of D. We have

�3m
2m

�
such distributions, and each one of them is robustly

realizable by different h 2 H. The idea is that a proper leaner observing only m points should guess
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the remaining m points in the support of the distribution. The rest of the proof follows from the
no-free-lunch proof. It can be shown formally via the probabilistic method, that for every proper rule,
there exists a distribution on which the error is constant with a fixed probability. ⌅

F Learning algorithms for partial concept classes

Here we overview the algorithmic techniques from Alon et al. [2, Theorem 34 and 41], for learning
partial concepts in realizable and agnostic settings. We use these algorithms in step 2 of our
Algorithm 1.

One-inclusion graph algorithm for partial concept classes. We briefly discuss the algorithm, for
the full picture, see [54, 33]. The one-inclusion algorithm for a class F ✓ {0, 1, ?}X gets an input
of unlabeled examples S = (x1, . . . , xm) and labels (y1, . . . , yi�1, yi+1, . . . , ym) that are consistent
with some f 2 F , that is, f(xk) = yk for all k 6= i. It guarantees an (✏, �)- PAC learner in the
realizable setting, with sample complexity of ⇤RE (✏, �,H) = O

⇣
VC(H)

✏ log 1
�

⌘
as mentioned in

Theorem C.1.

Here is a description of the algorithm. First, construct the one-inclusion graph. For any j 2 [m] and
f 2 F|S define Ej,f = {f 0 2 F|S : f 0(xk) = f(xk), 8k 6= j}, that is, all functions in F|S that are
consistent with f on S, except the point xj . Define the set of edges E = {Ej,f : j 2 [m], f 2 F|S},
and the set vertices V = F|S of the one-inclusion graph G = (V,E). An orientation function
 : E ! V for an undirected graph G is an assignment of a direction to each edge, turning G into a
directed graph. Find an orientation  that minimizes the out-degree of G. For prediction of xi, pick
f 2 V such that f(xk) = yk for all k 6= i, and output  (Ei,f )(xi).

Note that this algorithm is transductive, in the sense that in order to predict the label of a test point, it
uses the entire training sample to compute its prediction.

Boosting and compression schemes. Recall the well-known boosting algorithm, ↵-Boost [48,
pages 162-163], which is a simplified version of AdaBoost, where the returned function is a simple
majority over weak learners, instead of a weighted majority. For a hypothesis class H and a sample of
size m, the algorithm yields a compression scheme of size O (VC(H) log(m)). Recall the following
generalization bound based on a sample compression scheme.

Lemma F.1 ([28]) Let a sample compression scheme (, ⇢), and a loss function ` : R⇥ R ! [0, 1].
In the agnostic case, for any (S) . m, any � 2 (0, 1), and any distribution D over X ⇥ {0, 1}, for

S ⇠ Dm
, with probability 1� �,

���R(⇢((S));D)� bR(⇢((S));S)
���  O

0

@

s�
|(S)| log(m) + log 1

�

�

m

1

A .

The learning algorithm for the realizable setting is ↵-Boost, where the weak learners are taken from
the one-inclusion graph algorithm. As mentioned in Theorem C.1, this obtains an upper bound of
⇤RE (✏, �,H) = O

⇣
VC(H)

✏ log2
⇣

VC(H)
✏

⌘
+ 1

✏ log
1
�

⌘
.

For the agnostic setting, follow a reduction to the realizable case suggested by David et al. [24],
which is based on a construction of a compression scheme. Roughly speaking, the reduction works
as follows. Denote ⇤RE = ⇤RE(1/3, 1/3,H), the sample complexity of (1/3, 1/3)-PAC learn H,
in the realizable case. Now, ⇤RE samples suffice for weak learning for any distribution D on a given
sample S.

Find the maximal subset S0 ✓ S such that infh2H
bR(h;S0) = 0. Now, ⇤RE samples suffice for weak

robust learning for any distribution D on S0. Execute the ↵-boost algorithm on S0, with parameters
↵ = 1

3 and number of boosting rounds T = O (log (|S0|)), where each weak learner is trained on

⇤RE samples. The returned hypothesis h̄ = Majority
⇣
ĥ1, . . . , ĥT

⌘
satisfies that bR

�
h̄;S0

�
= 0,
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and each hypothesis ĥt 2
n
ĥ1, . . . , ĥT

o
is representable as set of size O(⇤RE). This defines a

compression scheme of size ⇤RET , and h̄ can be reconstructed from a compression set of points
from S of size ⇤RET .

Recall that S0 ✓ S is a maximal subset such that infh2H
bR(h;S0) = 0 which implies that bR

�
h̄;S

�


infh2H
bR(h;S). Plugging it into a data-dependent compression generalization bound (Lemma

C.2), we obtain a sample complexity of ⇤AG (✏, �,H) = O
⇣

VC(H)
✏2 log2

⇣
VC(H)

✏2

⌘
+ 1

✏2 log
1
�

⌘
, as

mentioned in Theorem D.1.

G Supervised robust learning algorithms

We overview the algorithms of Montasser et al. [40, proofs of Theorems 4 and 8]. Their construction
is based on sample compression methods explored in [32, 45].

Let H ✓ {0, 1}X , fix a distribution D over the input space X⇥Y . Let S = {(x1, y1), . . . , (xm, ym)}
be an i.i.d. training sample from a robustly realizable distribution D by H , namely
infh2H RiskU (h;D) = 0. Denote d = VC(H), d⇤ = VC*(H) is the dual VC-dimension. Fix
✏, � 2 (0, 1).

1. Define the inflated training data set

SU =
[

i2[n]

�
(z, yI(z)) : z 2 U(xi)

 
,

where I(z) = min {i 2 [n] : z 2 U(xi)}. The goal is to construct a compression scheme that is
consistent with SU .

2. Discretize SU to a finite set S̄U . Define the class of hypotheses with zero robust error on every d
points in S,

Ĥ = {RERMH(S0) : S0 ✓ S, |S0| = d} ,

where RERMH maps any labeled set to a hypothesis in H with zero robust loss on this set. The
cardinality of this class is bounded as follows

|Ĥ| =
✓
n

d

◆

⇣en
d

⌘d
.

Discretize SU to a finite set using the finite class Ĥ. Define the dual class H⇤ ✓ {0, 1}H of H as
the set of all functions f(x,y) : H ! {0, 1} defined by f(x,y)(h) = I [h(x) 6= y], for any h 2 H
and (x, y) 2 SU . If we think of a binary matrix where the rows consist of the distinct hypotheses
and the columns are points, then the dual class corresponds to the transposed matrix where the
distinct rows are points and the columns are hypotheses. A discretization S̄U will be defined by
the dual-class of Ĥ. Formally, S̄U ✓ SU consists of exactly one (x, y) 2 SU for each distinct
classification

�
f(x,y)(h)

 
h2Ĥ

. In other words, Ĥ induces a finite partition of SU into regions

where every ĥ 2 Ĥ suffers a constant loss I
h
ĥ(x) 6= y

i
in each region, and the discretization S̄U

takes one point per region. By Sauer’s lemma [53, 47], for n > 2d,

|S̄U | 
 
e|Ĥ|
d⇤

!d⇤


✓
e2n

dd⇤

◆dd⇤

,

3. Execute the following modified version of the algorithm ↵-boost [48, pages 162-163] on the
discretized set S̄U , with parameters ↵ = 1

3 and number of boosting rounds T = O
�
log
�
|S̄U |

��
=

O (dd⇤ log(n)).
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Algorithm 2 Modified ↵-boost
Input: H, S, S̄U , d,RERMH.
Parameters: ↵, T .
Initialize P1 = Uniform(S̄U ).
For t = 1, . . . , T :
(a) Find O(d) points St ✓ S̄U such that every h 2 H with bR(h;St) = 0 has R(h;Pt)  1/3.
(b) Let S0

t be the original O(d) points in S with St ✓
S

(x,y)2S0
t

S
{(z, y) : z 2 U(x)}.

(c) Let ĥt = RERMH(S0

t).
(d) For each (x, y) 2 S̄U :

Pt+1(x, y) / Pt(x, y)e
�↵I{ĥt(x)=y}

Output: classifiers ĥ1, . . . , ĥT and sets S0

1, . . . , S
0

T .

4. Output the majority vote h̄ = Majority
⇣
ĥ1, . . . , ĥT

⌘
.

We are guaranteed that bRU

�
h̄;S

�
= 0, and each hypothesis ĥt 2

n
ĥ1, . . . , ĥT

o
is representable

as set S0

t of size O(d). This defines a compression function (S) =
S

t2[T ] S
0

t. Thus, h̄ can be
reconstructed from a compression set of size

dT = O
�
d2d⇤ log(n)

�
.

This compression size can be further reduced to O (dd⇤), using a sparsification technique introduced
by Moran and Yehudayoff [45], Hanneke et al. [32], by randomly choosing O(d⇤) hypotheses fromn
ĥ1, . . . , ĥT

o
. The proof follows via a standard uniform convergence argument. Plugging it into

a compression generalization bound, we have a sample complexity of Õ
⇣

dd⇤

✏ +
log 1

�
✏

⌘
, in the

realizable robust case.

Agnostic case. The construction follows a reduction to the realizable case suggested by David et al.
[24]. Denote ⇤RE = ⇤RE(1/3, 1/3,H,U), the sample complexity of (1/3, 1/3)-PAC learn H with
respect to a perturbation function U , in the realizable robust case.

Using a robust ERM, find the maximal subset S0 ✓ S such that infh2H
bRU (h;S0) = 0. Now, ⇤RE

samples suffice for weak robust learning for any distribution D on S0.

Execute the ↵-boost algorithm [48, pages 162-163] on S0 for the robust loss function, with parameters
↵ = 1

3 and number of boosting rounds T = O (log (|S0|)), where each weak learner is trained on

⇤RE samples. The returned hypothesis h̄ = Majority
⇣
ĥ1, . . . , ĥT

⌘
satisfies that bRU

�
h̄;S0

�
= 0,

and each hypothesis ĥt 2
n
ĥ1, . . . , ĥT

o
is representable as set of size O(⇤RE). This defines a

compression scheme of size ⇤RET , and h̄ can be reconstructed from a compression set of points
from S of size ⇤RET .

Recall that S0 ✓ S is a maximal subset such that infh2H
bRU (h;S0) = 0 which implies that

bRU

�
h̄;S

�
 infh2H

bRU (h;S). Plugging it into a compression generalization bound (Lemma F.1

holds for the robust loss function as well), we have a sample complexity of Õ
⇣

⇤RE
✏2 +

log 1
�

✏2

⌘
, which

translates into Õ
⇣

dd⇤

✏2 +
log 1

�
✏2

⌘
, in the agnostic robust case.
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