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Abstract

In many scientific studies, it becomes increasingly important to delineate the pathways through a 

large number of mediators, such as genetic and brain mediators. Structural equation modeling 

(SEM) is a popular technique to estimate the pathway effects, commonly expressed as the 

product of coefficients. However, it becomes unstable and computationally challenging to fit 

such models with high-dimensional mediators. This paper proposes a sparse mediation model 

using a regularized SEM approach, where sparsity means that a small number of mediators 

have a nonzero mediation effect between a treatment and an outcome. To address the model 

selection challenge, we innovate by introducing a new penalty called Pathway Lasso. This penalty 

function is a convex relaxation of the non-convex product function for the mediation effects, and 

it enables a computationally tractable optimization criterion to estimate and select pathway effects 

simultaneously. We develop a fast ADMM-type algorithm to compute the model parameters, and 

we show that the iterative updates can be expressed in closed form. We also prove the asymptotic 

consistency of our Pathway Lasso estimator for the mediation effect. On both simulated data and 

an fMRI data set, the proposed approach yields higher pathway selection accuracy and lower 

estimation bias than competing methods.
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1. INTRODUCTION

Mediation analysis is widely applied in social, economic, and biological sciences to assess 

the effect of a treatment or exposure on an outcome of interest passing through intermediate 

variables (mediators). Recently, it becomes increasingly popular to study the decomposition 

of the total treatment effect on the outcome through multiple mediation pathways. This 
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paper studies the problem of pathway selection and effect estimation under the setting of a 

large number of pathways.

Classical mediation analysis usually involves one mediator [for example, 4, 16, 31]. Recent 

extensions studied the multiple mediator setting [17, 12, 19, 32], though most of the 

methods are designed for relatively low-dimensional data. For the setting with more than 

two mediators, structural equation models (SEMs) are commonly employed where all the 

mediators are entered as predictors in regression-type models [24, 40]. This paper focuses 

on the estimation and computational problems under the SEM framework, and extends to the 

setting of high-dimensional mediators where the number of mediators is close to or larger 

than the sample size.

To improve estimation stability, reducing high-dimensional mediators into linear 

combinations has been studied. Huang and Pan [15] employed principal component analysis 

(PCA) to reduce the multivariate mediation model into multiple independent single-mediator 

models. Chén et al. [11] employed a matrix decomposition method, where the linear 

projection is optimized by maximizing the joint likelihood of the SEMs. Zhao et al. [41] 

recently extended the proposal in Huang and Pan [15] with sparse PCA to improve the 

interpretability of the mediator PCs. As linear combinations of the original mediators are 

used in these methods, they provided limited interpretability for each mediation pathway.

Besides dimension reduction, regularization is another general approach for high 

dimensional problems. In a related problem, Shojaie and Michailidis [27] employed Lasso 

[30] to penalize each connection in directed acyclic graphs. In another related problem 

on latent factor structural equation models, various regularization penalty choices were 

considered, including Lasso [18] and Bayesian Lasso [14]. Zhang et al. [38] utilized 

the MCP [13] regularization criterion to estimate and test the mediator to outcome path 

effect under the high-dimensional mediator setting in epigenetic studies. These approaches, 

however, do not address the problem of regularizing the effects of mediation pathways, 

which are commonly represented as products of two parameters [31]. The product of two 

parameters is a non-convex function that is not considered by existing convex regularization 

methods including various Lasso-type penalties. In this study, we will introduce a new 

convex penalty, named Pathway Lasso, to directly regularize the pathway effects.

We motivate our method by studying brain pathways using task-related functional magnetic 

resonance imaging (fMRI). In the early attempts of modeling neurological images as 

mediators between experimental stimuli and psychological outcomes, univariate mediation 

analysis is a widely employed approach, where univariate summaries were extracted from 

the multivariate images fitted separately in univariate mediator models under the assumption 

that the summaries are independent [8, 33, 3]. In recent studies, Chén et al. [11] and 

Zhao et al. [41] proposed orthogonalization approaches to transform the high-dimensional 

mediator candidates into independent directions/components as mediators with limited 

interpretability. In this study, we propose a regularized approach to perform mediation 

analysis with high-dimensional mediators. This paper circumvents the following limitations. 

First, it allows modeling correlated mediators directly, which is the setting where analyzing 

multiple brain regions as mediators. Second, it allows direct and more straightforward 
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interpretation of each mediator pathway whereas linear combinations (e.g. via principal 

component analysis) can be less interpretable.

The contributions of this paper are the following: (1) this is among the first attempts to 

model high-dimensional mediation pathways jointly; (2) we propose a general multiple 

mediator model under the SEM framework, which relaxes the ordering assumption of 

the mediators; (3) we introduce a novel convex penalty, Pathway Lasso penalty, for the 

non-convex function of the product, and this penalty enables simultaneous pathway selection 

and pathway effect estimation; (4) we propose an alternating direction method of multipliers 

(ADMM) type algorithm and study the solutions in closed form; (5) theoretical analysis 

shows that the proposed Pathway Lasso estimators consistently estimate the total mediation 

effect; (6) we demonstrate the robustness and advantages of the proposed methods through 

simulation studies and a publicly available fMRI data set.

This paper is organized as follows. In Section 2, we present the model with multiple 

dependent mediators. We introduce an ℓ1-regularization on the mediation pathways to select 

the mechanisms in Section 3. To estimate the parameters, an ADMM combined with 

augmented Lagrangian algorithm is developed. In Section 4, we compare the performance of 

our approaches with the marginal SEM approach through simulation studies. The proposed 

methods are applied to an open-source fMRI data set in Section 5. Section 6 summarizes 

this paper with discussions. The supplementary materials collect the technical proofs and 

additional results.

2. MODEL

2.1 A marginal model with multiple mediators

In this section, we first introduce a marginal model with multiple mediators which does not 

require identifying the temporal ordering of the mediators. In many scientific studies, the 

ordering of the mediators is usually unknown. In fMRI experiments, the ordering of brain 

mediators is generally hard to determine due to the low temporal resolution of the technique.

Let Z = Z1, …, Zn
⊤ ∈ ℝn, Mj = Mij, …, Mnj

⊤ ∈ ℝn (for j = 1, . . . ,K) and 

R = R1, …, Rn
⊤ ∈ ℝn denote the observational data of treatment assignment (Z), K 

mediators (Mj’s) and the outcome (Y ) of n subjects, respectively. Under the linear SEM 

(LSEM) framework, we propose the following

M1 = ZA1 + E11, ⋯, MK = ZAK + E1K,
R = ZC + M1B1 + ⋯ + MKBk + E2, (1)

where A1, . . . ,AK, B1, . . . ,BK and C are model coefficients; E11, . . . ,E1K are model errors 

in the mediator models E1j = E11j, …, E1nj
⊤ ∈ ℝn for j = 1, …, K , which are assumed to be 

normally distributed with mean zero and covariance matrix Σ1, and E1j’s are independent 

of Z; and E2 = E21, …, E2n
⊤ ∈ ℝn is the model error in the outcome model normally 

distributed with mean zero and variance σ2
2, and E2 is independent of Z,M1, . . . ,MK. E2 is 

assumed to be independent of {E11, . . . ,E1K}. Here, for simplicity, the data are assumed 
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to be centered, and thus, the intercept terms are dropped. Under model (1), we allow the 

mediators to be dependent of each other, as long as their dependence structure is captured by 

the error correlation matrix.

In this study, we are interested in estimating and identifying nonzero path effects. The 

product, AjBj, is interpreted as the path effect of mediator Mj (as shown in Figure 1(b)), 

for j = 1, . . . ,K, and ∑j = 1
K AjBj is the overall path effect of the treatment on the outcome 

through the mediators. C denotes the treatment effect not through the mediators. These 

interpretations build on a strong and potentially unrealistic assumption that all mediators 

are sequentially ignorable [17]. Formal interpretations of these individual coefficients are 

beyond the scope of this paper, as it involves studying theoretical assumptions for a 

large number of potential outcomes under various combinations of treatment and mediator 

assignments, which grows exponentially with the number of mediators. A special case of 

the model when K = 2 coincides with the most common two-mediator model in practice 

[17]. When K < n and the mediators are conditionally independent given Z (Σ1 is a diagonal 

matrix), model (1) is equivalent to the marginal mediation analysis [31]. However, the 

proposed method scales well with general K, even for K > n. In the next section, we link this 

model to a special scenario where the sequential ordering of the mediators is known.

2.2 A special model with sequential mediators

In this section, we consider a scenario that the sequential ordering or dependence of the 

mediators is fully specified. That is, M1 → M2 → · · · → MK. Though it is unlikely that 

the ordering is known in most experimental data with many mediators, such as the fMRI 

data application, we use it to demonstrate that the model parameters still provide meaningful 

insight. Suppose the underlying mechanism is represented using a diagram as in Figure 

1(a). In the figure, the mediators are related in such a way that “earlier” M’s (with smaller 

subscript) may affect “later” ones. The LSEM representation of this diagram is

M1 = Za1 + ϵ11, M2 = Za2 + M1d12 + ϵ12, ⋯,
MK = ZaK + M1d1K + ⋯ + MK − 1dK − 1, K + ϵ1K,
R = Zc + M1b1 + M2b2 + ⋯ + MKbK + ϵ2,

(2)

where a1, . . . , aK, b1, . . . , bK, c, d12, . . . , dK−1,K are the model coefficients; and ϵ11, . . . , 

ϵ1K and ϵ2 are the model errors, which are assumed to be mutually independent.

We show that the model coefficients and errors in the proposed marginal model (1) have the 

following relationship with the ones in model (2):

A = a IK − Δ −1, B = b, C = c,

E1 = ϵ1 IK − Δ −1, E2 = ϵ2,
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where A = A1, …, AK ∈ ℝ1 × K, a = a1, …, aK ∈ ℝ1 × K, B = B1, …, BK
⊤ ∈ ℝK, 

b = b1, …, bK
⊤ ∈ ℝK; E1 = E11, …, E1K ∈ ℝn × K, ϵ1 = ϵ11, …, ϵ1K ∈ ℝn × K;

Δ =

0 d12 d13 ⋯ d1K
0 d23 ⋯ d2K

⋱ ⋮
⋱ dK − 1, K

0 0

∈ ℝK × K

is the weighted adjacency matrix of the mediators in model (2), which is an upper-triangular 

matrix; and IK is the K-dimensional identity matrix. Matrix (IK − Δ)−1 is called the influence 

matrix [27], where the (l, j) element represents the influence of mediator Ml on mediator Mj 

(for l < j) with a self-influence of one when l = j. In model (2), aj denotes the direct effect 

of Z on Mj. Multiplying the aj’s with the influence matrix, Aj accounts the total effect of Z 
on Mj; and thus AjBj is the path effects of Z on R through Mj, for j = 1, . . . ,K. Under model 

(2), ϵ11, . . . , ϵ1K and ϵ2 are mutually independent, and thus E1j is independent of E2 for 

each j = 1, . . . ,K. Assume Var ϵ1j = ξ1j
2 In, then

Cov vec ϵ1 = diag ξ11
2 , …, ξ1K

2 ⊗ In ≜ Ξ ⊗ In,

Cov vec E1 = IK − Δ⊤ −1Ξ IK − Δ −1 ⊗ In ≜ Σ1 ⊗ In,

where vec(·) is the vectorization operator of a matrix and ⊗ is the Kronecker product 

operator. Thus, Σ1 = (IK − Δ>)−1Ξ(IK −Δ)−1. Under the Gaussian error assumption, 

model (1) therefore accounts for the dependence between the mediators through the error 

correlations. A special case is that all the mediators are independent [17], where Δ is a zero 

matrix. Under this case, the derivation above shows that the errors in model (1) are also 

mutually independent.

3. METHOD

In this section, we introduced a regularized estimator of the path effects. Let 

M = M1, …, MK ∈ ℝn × K, model (1) can be written in matrix form as

M = ZA + E1,
R = ZC + MB + E2 . (3)

We consider continuous outcome and mediators with normally distributed errors as

vec E1 Nn × K 0, Σ1 ⊗ In , E2 Nn 0, σ2
2In ,

and E1 and E2 are independent.

3.1 A Pathway Lasso method

Using the likelihood formulation, we first define a convex loss function of (A,B,C) as
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ℓ (A, B, C) = tr Ω1(M − ZA)⊤(M − ZA)
+ w2 R − ZC − MB ⊤(R − ZC − MB),

(4)

where Ω1 = Σ1
−1 ≻ 0 (positive-definite) is the inverse covariance matrix of the mediator 

errors, and w2 = σ2
−2 > 0 is the inverse variance of the outcome error. In this paper, we are 

not interested in estimating Ω1 or w2 for the purpose of point estimation. Replacing them 

with unit variance will not affect the consistency of the least-squares type estimators, as long 

as all the variables are standardized to the unit scale [35]. Though the statistical inference 

(e.g. efficiency) of the estimates will be affected, this paper focuses on the problems of point 

estimation and model selection. Thus, we do not treat them as parameters to be estimated 

simultaneously with (A,B,C), but rather we replace them with any reasonable covariance 

estimates before running the optimization algorithm to be introduced below. In practice, one 

can replace Ω1 and w2 with an identity matrix and one, respectively, by standardizing the 

data to unit scale. This choice corresponds to a special case of banded covariance matrix 

estimation [6]. Other choices can be used depending on different structural assumptions (see 

a review on covariance matrix estimation by Cai et al. [9] and a finite sample study of the 

Lasso error variance by Reid et al. [25]). In the simulation study in Section 4, the robustness 

of this simplification is examined.

To estimate and select the pathway effects AjBj, for j = 1, . . . ,K, we propose to minimize 

the following penalized criterion

f(A, B, C)

= 1
2 ℓ + λ ∑

j = 1

K
AjBj + ϕ Aj

2 + Bj
2 + |C|

+ ω ∑
j = 1

K
Aj + Bj

(5)

= 1
2 ℓ + λP1(A, B, C) + ωP2(A, B), (6)

where λ, ϕ, ω ≥ 0 are the tuning parameters. The first penalty term P1 aims to stabilize and 

shrink the estimates for the pathway effects AjBj and C, and the second term P2 aims to 

provide additional shrinkage to the individual Aj and Bj. In particular, P1 aims to provide a 

convex penalty for the parameter of interest, AjBj. The combination of P1 and P2 is similar 

in spirit to the elastic net [42]. It should be noted that the method will also work if the tuning 

parameters vary with j. We here use the same parameters for simplicity as all the variables in 

the data are standardized to unit scale across j.

When ϕ = 0, P1 intuitively shrinks the pathway effect |AjBj| and |C| towards zero via 

a Lasso-type regularization. However, P1 is not convex under this setting. The following 

theorem shows that that P1 is convex if and only if ϕ ≥ 1/2.

Theorem 3.1.—For a, b ∈ ℝ, if and only if when ϕ ≥ 1/2,

Zhao and Luo Page 6

Stat Interface. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



v(a, b) = ab + ϕ a2 + b2
(7)

is a convex function. When ϕ > 1/2, it is strictly convex.

Figure 2 shows the 3D plot of three different penalty functions and the contour plot of 

penalty function (7) with different choices of ϕ. From the figures, we can see that |ab| is not 

a convex function while |ab| + (a2 + b2)/2 is, and it is very different from the ℓ1 penalty |a| + 

|b|. The contour plot indicates that ϕ determines the convexity of the penalty function. The 

penalty P1 is non-differentiable at the points where ab = 0. The contour of P1 approaches the 

ℓ2 (or ridge) penalty when ϕ → ∞, and it approaches the ℓ1 penalty when ϕ = 1/2. In Section 

4, we will examine the choice of ϕ through simulation studies.

The proposed Pathway Lasso penalty P1 also differs from the Group Lasso penalty Aj
2 + Bj

2

[37]. In the mediation model, the study interest is in shrinking AjBj towards zero for each 

j. There are four possible scenarios for Aj and Bj: (i) Aj = Bj = 0; (ii) Aj = 0 and Bj ≠ 06; 

(iii) Aj ≠ 0 and Bj = 0; (iv) Aj ≠ 0 and Bj ≠ 0. The indirect effect AjBi for the jth pathway 

is zero under scenarios (i)–(iii) and is nonzero under scenario (iv). The pathway penalty 

estimates allow all the four possible scenarios, and the penalty P1 encourages scenarios (i)–

(iii) because under such it is not differentiable. On the contrary, the Group Lasso only allows 

two scenarios (i) and (iv). Ignoring the other two scenarios in the Group Lasso may lead to 

model misspecification and biased estimation. For example, suppose the true model of Aj 

and Bj falls under scenario (ii), and thus Mj is a potential mediator-outcome confounding 

factor with no mediation effect. The Group Lasso estimate would either yield an incorrect 

nonzero mediation effect or introduce model bias by dropping the confounder Mj for the 

outcome model.

To illustrate the difference in shrinkage effects between the Pathway Lasso penalty P1 and 

other popular choices, we plot the solution (a, b) to the following toy optimization problem

min
a, b

a* − a 2 + b* − b 2 + λpen(a, b), (8)

where pen(·,·) is a penalty function that is set to the Pathway Lasso, Lasso, or Group 

Lasso. Figure 3 compares the estimated product ab  as λ varies. To compare across different 

penalties, we fix the magnitude of the estimates ( |a | + |b | ) on the x-axis. This figure shows 

that the Lasso shrinks ab aggressively towards zero because ab  goes to zero faster under the 

Lasso than under the Pathway Lasso as the magnitude a  + b  decreases and the resulting 

product estimate is nonzero only when a  + b  is relatively large. On the other hand, the 

Group Lasso provides gradual shrinkage to the product but can yield a zero product value 

only when a  = b  = 0. The Pathway Lasso shrinks ab less aggressively than the Lasso, and 

can yield a zero product even when a  = b  ≠ 0.
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3.2 An alternating direction method of multipliers

To estimate the model parameters, we observe that the objective function f consists of two 

parts, i) the differentiable loss function ℓ/2, and ii) the non-differentiable penalty function. 

We propose to employ the alternating direction method of multipliers (ADMM), which is 

well suited to large-scale statistical problems [7]. The ADMM form of minimizing (5) is

minimize u(A, B, C) + v(α, β, γ),
subject to A = α, B = β, C = γ, (9)

where

u(A, B, C) = 1
2tr Ω1(M − ZA)⊤(M − ZA)

+ 1
2w2(R − ZC − MB)⊤(R − ZC − MB)

(10)

is the differentiable loss function, and

v(α, β, γ) = λ ∑
j = 1

K
αjβj + ∑

j = 1

K
ϕj αj2 + βj

2 + |γ|

+ ω ∑
j = 1

K
αj + ∑

j = 1

K
βj

(11)

is the non-differentiable regularization function, in which α = α1, …, αK ∈ ℝ1 × K, 

β = β1, …, βK
⊤ ∈ ℝK and γ ∈ ℝ.

Following the ADMM approach, we introduce the augmented Lagrange function, ℒ, to 

enforce the constraints in the following optimization

ℒ A, B, C, α, β, γ, ρ, νr
= u(A, B, C) + v(α, β, γ)

+ ∑
r = 1

3
νrℎr(A, B, C, α, β, γ) + ρℎr

2(A, B, C, α, β, γ) ,
(12)

where h1(A,B,C,α, β, γ) = A − α, h2(A,B,C,α, β, γ) = B − β, and h3(A,B,C,α, β, γ) 

= C − γ. We summarize the algorithm in Algorithm 1, where the parameters are updated 

iteratively. The solution for the updates of A, B, and C are provided in explicit forms 

in Section A.2 of the supplementary materials. The subproblem for updating (α, β) is 

decomposed into K optimization problems for each coordinate. Each optimization problem 

is of the same form and has explicit solutions presented in Lemma A1 in the supplementary 

materials. In the lemma, ϕ1 and ϕ2 are required to be greater than λ to ensure the convexity 

of the objective function as demonstrated in Theorem 3.1. The solutions show that the 

shrinkage effect towards ab = 0, including cases where only one of the (a, b) parameters is 

zero (conditions (5) and (6) in Lemma A1).
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Algorithm 1

An algorithm of solving problem (9) using augmented Lagrangian method.

Given the results from the sth step, for the (s + 1)th step,

A(s + 1) = arg min
A

ℒ A, B(s), C(s), α(s), β(s), γ(s), ρ, νr(s) ;

B(s + 1) = arg min
B

ℒ A(s + 1), B, C(s), α(s), β(s), γ(s), ρ, νr(s) ;

C(s + 1) = arg min
C

ℒ A(s + 1), B(s + 1), C, α(s), β(s), γ(s), ρ, νr(s) ;

α(s + 1)

β(s + 1) = arg min
α, β

ℒ A(s + 1), B(s + 1), C(s + 1), α, β, γ(s), ρ, νr(s) ;

γ(s + 1) = arg min
γ

ℒ A(s + 1), B(s + 1), C(s + 1), α(s + 1), β(s + 1), γ, ρ, νr(s) ;

νr(s + 1) = νr(s) + 2ρℎr A(s + 1), B(s + 1), C(s + 1), α(s + 1), β(s + 1), γ(s + 1) , for r = 1; 2; 3.

The Lasso penalty (P2) has been studied extensively in the literature. We here thus focus 

on analyzing the behavior of the penalty P1. Table A2 in the supplementary materials lists 

the solutions with the penalty P1 alone, which corresponds to setting ω = 0 in Table A1. 

As shown in Section A.2 of the supplementary materials, ϕ1 = ϕ2 = 2λϕ+2ρ in Algorithm 

1, where ϕ ≥ 1/2 by Theorem 3.1 and ρ is the Lagrangian multiplier in the algorithm. In 

ADMM algorithms, ρ can be either fixed or increasing. The following proposition shows 

that the solutions by Algorithm 1 converge to zero when λ → ∞, as long as ρ/λ → 0. We 

use fixed ρ = 1 for simplicity.

Proposition 3.1.—When ϕi = κiλ + θi, where κi ≥ 1 is a constant, θi > 0 and θi/λ → 0 as 
λ → ∞ (i = 1, 2), the following problem is minimized at a = b = 0 when λ → ∞:

minimize
a, b ∈ ℝ

λ|ab | + 1
2ϕ1a2 + 1

2ϕ2b2 − μ1a − μ2b . (13)

3.3 Consistency of the Pathway Lasso estimator

In this section, we prove that the proposed P1 and P2 penalties are prediction consistent 

under regularity conditions. The models in (2) include equations with the mediator Mj’s 

serving as the response as well as equations serving as the explanatory variables. To simplify 

the presentation and focus on the path effect of the mediators, we assume that the direct 

effect, C, is known, and define the prediction loss based on the indirect pathways. We use 

(A*,B*) to denote the true coefficients. Let W = R − ZC. We first introduce the following 

definition.

Definition 3.1.—For a treatment assignment Z, we define the intermediate prediction of W 
as
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W = ZAB = Z ∑
j = 1

K
AjBj , (14)

where A and B are estimates of A and B, respectively.

In this definition, the outcome is predicted by the effect through the mediators based on the 

model estimate (A, B). The estimated mean squared intermediate prediction error (MSIPE) is 

defined as

MSIPE[W (A, B)] = 1
n ∑

i = 1

n
W i − W i*

2, (15)

where W* = ZA*B* is the intermediate outcome under the true parameters. It is well known 

that the Lagrange formulation (5) is equivalent to

minimize
A, B, C

ℓ (A, B, C),

subject to P1(A, B, C) ≤ θ1,
P2(A, B) ≤ θ2,

where θ1 and θ2 are tuning parameters that have correspondence to the Lagrange multipliers 

λ and ω. We derive the theory using the above formulation with the tuning parameters 

θ1 and θ2, because they are easier to interpret and analyze with minimal assumptions 

[10]. Under the following assumptions, we prove prediction consistency using either the P1 

penalty alone or a linear combination of P1 and P2, hereafter referred to as P1 and P1 + P2, 

respectively.

Assumption (1)—The treatment vector Z is generated by a probability distribution with 

finite variance and the entries of Z are bounded so that |Zi| ≤ G, for i = 1, . . . , n, almost 

surely.

Assumption (2)—The tuning parameters are chosen such that

P1 A*, B* = ∑
j = 1

K
Aj*Bj* + ϕ Aj* 2 + Bj* 2 ≤ θ1;

P2 A*, B* = ∑
j = 1

K
Aj* + Bj* ≤ θ2 .

Assumption (3)—The model is correctly specified that

Zhao and Luo Page 10

Stat Interface. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



M = ZA* + E1, (16)

W = MB* + E2, (17)

where M = (M1, . . . ,MK), E1 = (E11, . . . ,E1K); and E1 and E2 are independent and 

normally distributed with mean zero and covariance matrix Σ1 and variance σ2
2, respectively, 

with max{σ11, . . . , σ1K,σ2} ≤ σ < ∞, where diag Σ1 = σ11
2 , …, σ1K

2 .

Theorem 3.2.—Under Assumptions (1)–(3), the estimated MSIPE is bounded, such that

i. under the penalty formulation P1,

E MSIPE(W (A, B)) ≤ 2θ1 1 + s2κ Gσ 2log(2K)
n , (18)

ii. under the penalty formulation P1 + P2,

E MSIPE(W (A, B)) ≤ 2θ1 1 + θ2 Gσ 2log(2K)
n , (19)

where s2 = S2  is the cardinality of set S2 = j:Bj* ≠ 0  which is the support of 

B*, and the true Bj* is bounded by κ such that Bj* ≤ κ (for ∀j ∈ S2).

The rates above are the same as the prediction loss bounds for standard Lasso regression 

without coherence-type assumptions on the design matrix [26, 10]. This prediction 

consistency result implies the consistency of estimating the mediation effect as stated in 

the following corollary.

Corollary 3.1.—Assume EZ2 = q > 0, then the estimate of the total mediation effect is 
consistent in the ℓ2-norm,

i. under the penalty formulation P1,

AB − A*B* 2
2 ≤ 1

q 8θ1
2G2 2log(2)

n
+2θ1 1 + s2κ Gσ 2log(2K)

n ,
(20)

ii. under the penalty formulation P1 + P2,

AB − A*B* 2
2 ≤ 1

q 8θ1
2G2 2log(2)

n
+2θ1 1 + θ2 Gσ 2log(2K)

n ,
(21)
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where AB = ∑j = 1
K AjBj is the estimate of the total mediation effect and 

A*B* = ∑j = 1
K Aj*Bj* is the true total mediation effect.

Corollary 3.1 shows that the Pathway Lasso estimator (under either P1 or P1+P2) of the 

mediation effect is consistent. Note the upper bound for P1 depends explicitly on s2κ, 

instead of the corresponding term θ2 for P1 + P2. Though the difference is minimal 

theoretically, this may explain the difference in numerical performance as we show in 

Section 4.

4. SIMULATION STUDY

In this section, we compare the proposed Pathway Lasso (PathLasso) method with a 

marginal SEM approach. In the marginal SEM approach, the Baron-Kenny (BK) [4] 

mediation analysis is applied to each mediator separately. When the mediators are 

orthogonal or independent [31], the parameters are equivalent to the proposed marginal 

model with multiple mediators (1). The BK estimators are biased under the setting with 

dependent mediators. The pathway effects or the product estimators are tested by the delta 

method [28] and significant pathways are selected by controlling the false discovery rate [5]. 

In the simulation study, we generate n = 50 samples and vary the number of mediators with 

K = 20,50,200. For the proposed method, we consider four approaches with a) λ = 0 (P2 

penalty only); b) ω = 0 (P1 penalty only); c) ω = 0.1λ; d) ω = λ.

In the simulation, Z is firstly generated following a Bernoulli distribution with a probability 

of 0.5 to be one. The Mj’s and R are then generated following model (1). In the models, 

for j = 1, . . . ,K, parameters {Aj,Bj} are generated as presented in Figure 4(a) to include 

four types of mediators, (1) mediator with nonzero mediation effect (AjBj ≠ 0, blue nodes 

in Figure 4(b)), (2) mediator with Aj ≠ 0 but Bj = 0 (yellow nodes in Figure 4(b)), (3) 

mediator with Aj = 0 but Bj ≠ 0 (green nodes in Figure 4(b)), and (4) mediator with Aj = 

Bj = 0 (j = 12, . . . ,K, not shown in the figure). C is set to be the maximum of AjBj. For 

all model errors, the standard deviation is set to be 200. In the Mj models, the covariance 

matrix Σ1 is set to be a sparse matrix with sparsity level (1−1/K) (i.e. 1/K of the off-diagonal 

entries are randomly chosen to be nonzero) and the off-diagonal entries, ρM, are chosen 

from {0,±0.4}. In the estimation, we set W1 to be an identity matrix and w2 to be one after 

standardizing the data. With the existence of nonzero off-diagonal elements, the goal is to 

examine the robustness of this choice. The tuning parameter, λ, is set to be a sequence of 

values between 10−5 and 104; and the tuning parameter, ϕ, which controls the convexity of 

the penalty function, is set to vary from {0.5, 1, 2, 5, 10}. To compare the performance of 

various methods without setting the tuning parameter or p-value thresholds, we first employ 

the following metrics: (1) receiver operating characteristic (ROC) curves, and (2) the mean 

squared error (MSE) of the total mediation effect AB estimates. For a fair comparison, we 

compare the MSE under the same ℓ1 norm of the estimated pathway effects for all methods.

In Section B.1 of the supplementary material, we show that the proposed method is not 

sensitive to the choice of ϕ in selecting mediation pathways or estimating the pathway 

effects. We fix ϕ = 2 for the following simulations as it yields slightly better performance 

than the rest. Figure 5 compares the performance of all the considered methods with/without 
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error correlations between the mediators. The ROC curves of the BK method are almost 

the same as the diagonal line, even when the number of mediators is less than the number 

of observations, indicating that this multiple testing for marginal mediation effect approach 

loses the power of identifying the significant mechanisms regardless of the dependencies 

between the mediators. From the figure, we notice that the P2 penalty, which adds ℓ1 penalty 

on each Aj and Bj, improves the performance in identifying the pathways, while the P1 

penalty significantly decreases the mean squared error in estimating the mediation effects, as 

expected from Corollary 3.1. All the PathLasso methods yield a higher area under the ROC 

curve than the BK method. This suggests that for this high dimensional mediator problem, 

the regularization approach attains more reliable and higher statistical power in selecting 

mediators that have significant mediation effects. From the discussion in Section 2.2, the 

proposed marginal model reparameterizes the dependency between the mediators into the 

correlations among model errors. From the figure, the PathLasso methods perform similarly 

under different values of ρM. This demonstrates that setting Ω1 and w2 to identity is robust 

under varying dependence between the mediators.

For tuning parameter selection, we propose to employ the variable selection stability 

criterion introduced in Sun et al. [29]. The performance is presented in Table B1 in the 

supplementary materials. It is also observed that the P1 penalty yields a lower mean squared 

error in estimating the mediation effects and adding P2 helps improve the selection accuracy.

5. AN FMRI STUDY

We apply the proposed method to a task-fMRI data set obtained from the OpenfMRI 

database (accession number is ds000002). The task is a probabilistic classification learning 

(PCL) task using “weather prediction” [2, 1]. The goal is to investigate the mechanisms 

of PCL in human and to examine how the memory systems interact during the task. The 

experiment was designed to effectively distinguish neural responses to stimuli, delay, and 

negative and positive feedback components. In this study, we focus on identifying the brain 

mechanism that is associated with response delay, which is measured by the time to react. 

We use the data from a right-handed English-speaking participant aged between 21 to 26 

in a healthy condition. The experiment was repeated for two scans (runs) to examine the 

test–retest reliability of fMRI. In this study, we also take the advantage of this two-scan 

design to evaluate the reliability of the proposed approach. Each scan consists of n = 80 

trials with fifty PCL trials and thirty baseline trials. In each PCL trial, a stimulus was 

presented at randomized locations. The participant would respond by pressing either the left 

button for a “sun” prediction or the right button for a “rain” prediction. Baseline trials were 

included to control for visual stimulation, button press, and computer response to the button 

press. We consider the reaction time as the outcome (R) and aim to further identify brain 

pathways that have an intermediate effect on the reaction time when comparing PCL (Z = 1) 

and baseline (Z = 0) trials. We consider the single-trial activation [20] from K = 128 brain 

regions of interest (ROIs) as the mediator candidates (Mj’s). These brain regions are grouped 

into eleven functional modules [23]. More details of fMRI data processing are presented 

in Section C of the supplementary materials. As the BK method cannot efficiently identify 

significant mediation pathways, we only present the results from the PahtLasso (with ϕ = 2) 

methods.
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A reliability study demonstrates that the PathLasso under P1 penalty obtains more stable 

results in both effect estimation and pathway selection (see Section C.2 of the supplementary 

materials). Using the tuning parameter selected by selection stability [29], six ROIs are 

selected by the PathLasso (ω = 0) in both runs (Table 1 and Figure 6). The total effect 

of PCL trials on the reaction time is estimated as 0.405 in run 1 and 0.571 in run 2 

compared to baseline trials. Compared to the button-pressing task, it takes a longer time 

during the PCL task as the brain is expected to take more time to process the stimuli and 

to make a prediction. From Table 1, all six regions have a positive mediation effect on the 

reaction time. The estimate of AB, A, and B are consistent between the two runs in terms 

of the direction (either both are positive or both are negative). Compared to the baseline 

trial, the two executive control regions, one in the prefrontal cortex and one in the medial 

temporal lobe, are less activated during the PCL trials. Existing studies have shown that 

the medial frontal and parietal cortex are deactivated when the task involves visual stimuli. 

The MTL, which is one of the major memory systems, was also identified to be deactivated 

during the classification learning task [22, 2]. The negative estimate of B suggests that the 

deactivation of these two regions increases the reaction time. The rest four ROIs are more 

activated during the PCL trials, and this activation further increases the time to respond. The 

classification learning task is a nondeclarative memory procedure. The opposite activation 

patterns in the striatum and the parietal regions support the competing role of two memory 

systems during learning [22]. It has been discovered that the activation in the visual cortex, 

which is involved in processing sensory feedback related to the motor response, is positively 

correlated with reaction time [36]. Applying the proposed method, we identify six potential 

mediation pathways that reveal the brain mechanisms of longer reaction time in the PCL 

task.

6. DISCUSSION

In this study, we propose a general marginal model for multiple dependent mediators 

under the SEM framework. A novel convex penalty is introduced for shrinkage estimation 

and pathway selection. We develop an ADMM algorithm to estimate the parameters and 

provide an explicit solution to the iterative updates. The simulation studies indicate that the 

Pathway Lasso method is robust and performs better than the marginal mediation approach 

in identifying significant pathway mechanisms. The numeric merits are further illustrated 

using a task-fMRI data set, on which the Pathway Lasso shows higher replicability in both 

effect estimation and pathway selection.

The new Pathway Lasso penalty is introduced to achieve the simultaneous pathway selection 

and pathway effect estimation purpose. The current study shows that the estimator is 

consistent in the ℓ2-norm. For a Lasso procedure, the consistency of variable selection 

usually requires the incoherence assumption in the design matrix [21, 34, 39]. This 

incoherence assumption may not hold in a mediation problem, as the mediators can be 

highly dependent. We will leave the study of sparsistency of the method to future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram of (a) the sequential model and (b) the proposed marginal model with multiple 

dependent mechanisms. Z is the treatment, R is the outcome, and Mj’s are the mediators.
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Figure 2. 
3D plot of different penalty functions and the contour plot of function (7) under different 

choices of ϕ.
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Figure 3. 
Comparing the shrinkage effect on the product, ab, under different penalty choices in (8) as 
λ varies. The true a* = 5 and b* = 1.
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Figure 4. 
Parameter setting and the true underlying causal mediation pathways in the simulation study.
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Figure 5. 
Performance comparison under each ρM in ROC curves ((a)-(c)) and mean squared errors 

(MSE) in estimating the total mediation effect ((d)-(f)) with various numbers of mediators 

(K).
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Figure 6. 
Six (out of 128) brain regions identified with significant brain pathway effects on the 

reaction time under the probabilistic classification learning task in both runs.
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