
Published in Transactions on Machine Learning Research (MM/YYYY)

A Proofs for Lemma 4.1, Theorem 4.2

The proof associated with Lemma 4.1 follows.

Proof of Lemma 4.1. We now use the continuity of the likelihood, the finite sample analysis of multivariate
kernel density estimators in Wand & Jones (1994)[Section 4.4, Equation 4.16](Appendix B), which defines
the Mean Integrated Square Error (MISE) of the density function, and Theorem 1 of Chacón & Duong
(2018)[Section 2.6-2.9](Appendix C), which asserts that as the sample size increases, the mean of the den-
sity estimator converges and variance prevents the mean from exploding. We can use Theorem 1 because
we assume that the density function is square-integrable and twice di�erentiable and that the bandwidth
approaches 0 as the dataset size increases. Then, up to a constant, for a given state-action pair (s, a),

1
m

mÿ

j=1
e

≠ds((s,a),(sj ,aj))2/(2h)
e

≠dr(R,Rj)2/(2hÕ) P≠≠≠≠æ
mæŒ

p(s, a, R).

The same holds true for dr, 1
m

qm
¸=1 e

≠dr(R,R¸)2/(2hÕ) P≠≠≠≠æ
mæŒ

p(R). By the Continuous Mapping Theo-
rem (Mann & Wald, 1943), we conclude that

‚pm(s, a|R) =
1
m

qm
j=1 e

≠ds((s,a),(sj ,aj))2/(2h)
e

≠dr(R,Rj)2/(2hÕ)

1
m

qm
¸=1 e≠dr(R,R¸)2/(2hÕ)

P≠≠≠≠æ
mæŒ

p(s, a, R)
p(R) = p(s, a|R).

Now we prove Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.1, as m æ Œ, ‚pm converges to the true likelihood, so we can adopt
existing tools from Bayesian asymptotic theory.

We first define an equivalence relation on R, denoted by ƒ:

R1 ƒ R2 i� p(·|R1) = p(·|R2), a.e.

Note that ƒ satisfies reflexivity, symmetry, and transitivity and is, therefore an equivalence relation. We
denote the equivalence class by [·], that is, [R] = {R

Õ : R
Õ ƒ R}, and the quotient space is defined as

ÂR := R/ƒ = {[R] : R œ R}. The corresponding canonical projection is denoted by ⇡ : R æ ÂR, R ‘æ [R].
Then, the projection ⇡ induces a prior distribution on ÂR denoted by ÂP: ÂP(A) := P(⇡≠1(A)). Moreover, ÂR
admits a metric Âd:

Âd([R1], [R2]) := Îp(·|R1) ≠ p(·|R2)ÎL1 .

Because this metric uses the L
1 norm, it satisfies symmetry and triangular inequality. Additionally, it is true

that
Âd([R1], [R2]) = 0 ≈∆ p(·|R1) = p(·|R2), a.e. ≈∆ R1 ƒ R2 ≈∆ [R1] = [R2],

so Âd fulfills the Identity of Indiscernibles principle. As a result, Âd is a valid distance metric on ÂR.

Then consider the following Bayesian model:

(s, a)|[R] ƒ p(s, a|[R]), [R] œ ÂR, [R] ƒ ÂP.

This model is well-defined since p(s, a|[R]) is independent of the representative of [R] by the definition of
the equivalence class. Observe that KL(R, R

ú) = KL([R], [Rú]) by the definition of the equivalence class.
Then, let A = {[R] : KL([R], [Rú]) < ‘} µ ÂR. We can define ⇡≠1(A) = {R œ R : KL(R, R

ú) < ‘} µ R.
As a result, ÂP({[R] : KL([R], [Rú]) < ‘}) = P({R : KL(R, R

ú) < ‘}) > 0 for any ‘ > 0, that is, the KL
support condition is satisfied . Moreover, the mapping [R] æ p(·|R) is one-to-one. Because the Bayesian
model is parameterized by [R] and we assume that R is a compact set, by van der Vaart (2000)[Lemma

17

Published in Transactions on Machine Learning Research (MM/YYYY)

10.6](Appendix D) there exist consistent tests as required in Schwartz’s Theorem (Ghosal & van der Vaart,
2017)[Example 6.19](Appendix E). Then, by Schwartz (1965), the posterior ÂPn

m on ÂR is consistent. That is,
for any ‘ > 0, ÂPn

m({[R] : Âd([R], [Rú]) < ‘}) mæŒ≠≠≠≠æ
næŒ

1. Put in terms of the original parameter space,

Pn
m({R : Îp(·|R) ≠ p(·|Rı)ÎL1 < ‘)}) = ÂPn

m({[R] : Âd([R], [Rú]) < ‘}) mæŒ≠≠≠≠æ
næŒ

1, ’‘ > 0.

B Wand and Jones, Equation 4.16

The mean integrated squared error (MISE) of a multivariate kernel density estimator is defined as:

MISE{f̂(·; H)} = n
≠1(4fi)

≠d
2 |H|

≠1
2 + w

€{(1 ≠ n
≠1)�2 ≠ 2�1 + �0}w

where H is a matrix of bandwidth values, n is the size of the dataset, �a denotes the k ◊k matrix with (l, l
Õ)

entry equal to „aH + �l + �lÕ(µl ≠ µlÕ), „d is a d-variate Normal kernel, w = (w1, . . . , wk)€ is a vector of
positive numbers summing to 1, and for each l = 1, . . . , k, µl is a d ◊ 1 vector and �l is a d ◊ d covariance
matrix.

C Asymptotic expansion of the mean integrated squared error Theorem 1

Theorem C.1. (i) The integrated squared bias of the kernel density estimator can be expanded as

ISB{f̂(·; H)} = 1
4c2(K)2

vec
€

R(D¢2
f)(vec H)¢2 + o(||vec H||2). (10)

(ii) The integrated variance of the kernel density estimator can be expanded as

IV {f̂(·; H)} = m
≠1|H|≠1/2

R(K) + o(m≠1|H|≠1/2). (11)

Here, f̂ is the estimated density function, H is a matrix of bandwidth values, c2(K) =
s

Rd z
2
i K(z)dz for all

i = 1, . . . , d is the variance of the kernel function K, and m is the size of the training dataset. In our work,
H is a diagonal matrix where every element on the diagonal is the same bandwidth hm. In this work, we
assume that f is square-integrable and twice di�erentiable and that the bandwidth matrix H æ 0 as m æ Œ.
Because we use a Gaussian kernel for K, we know that it is square integrable, spherically symmetric, and
has a finite second-order moment.

D Asymptotic Statistics, Lemma 10.6

Lemma D.1. Suppose that � is ‡-compact, P◊ ”= P◊Õ for every pair ◊ ”= ◊
Õ
, and the maps ◊ æ P◊

are continuous for the total variation norm. Then there exists a sequence of estimators that is uniformly

consistent on every compact subset of �.

Here, � is the space of parameters, P is the probability density function, and ◊ œ � is a parameter.

E Schwartz’s Theorem

If p0 œ KL(P) and for every neighborhood U of p0 there exist tests „n such that P
n
0 „n æ 0 and

suppœUcP
n(1 ≠ „n) æ 0, then the posterior distribution Pn(·|X1, . . . , Xn) in the model X1, . . . , Xn|p ≥iid

p

and p ≥ P is strongly consistent at p0.

18

Published in Transactions on Machine Learning Research (MM/YYYY)

Algorithm 1 Kernel Density Bayesian IRL
Input: m training task demonstrations, n test task demonstrations, # sampling iterations c, bandwidth
hyperparameters h, h

Õ

for l = 1, . . . , c do
Sample a reward function R̂l

Calculate the likelihood ‚pn
m of R̂l with m training demonstrations and n expert demonstrations. Use

can use Equation 5 or Equation 8 if using a featurized reward function.
Update the posterior using Equation 6 or Equation 9 if using a featurized reward function.

end for
Output: all sampled reward functions {Rl}c

l=1

F Code and Experiments

Our experiments were run on an internally-hosted cluster using a 320 NVIDIA P100 GPU whose processor
core has 16 GB of memory hosted. Our experiments used a total of approximately 150 hours of compute
time. Our code uses the MIT License.

To fit KD-BIRL we use Stan (Team, 2011), which uses a Hamiltonian Monte Carlo algorithm. To fit the
BIRL and AVRIL posteriors, we first generate the same number of expert demonstration trajectories as
used for KD-BIRL. BIRL and AVRIL use an inverse temperature hyperparameter, –; we set – = 1 for all
methods. AVRIL uses two additional hyperparameters “, ”, which we set to 1. Unless otherwise specified,
KD-BIRL uses a uniform prior for the reward rs ≥ Unif(0, 1) for s = 1, . . . , g ◊ g and Euclidean distance for
ds, dr. For the 2◊2 and 5◊5 Gridworld environments, we specify the domain of each of these parameters to
be the unit interval. For the 10 ◊ 10 Gridworld, the domain of w is [≠1, 1], and we use a Normal prior with
mean 0 and variance 1 for w

ı = [≠1, 1], and a Normal prior with mean 0.5 and variance 0.5 for w
ı = [1, 1].

For the sepsis treatment simulator, we use a VAE to learn „, a function that transforms the original state
representation to a lower dimensional feature representation. The VAE uses 4 linear layers, and is trained
using a loss function that minimizes reconstruction error and an Adam optimizer (Kingma & Ba, 2017).
To train this VAE, we use samples generated randomly from the original simulator. Once „ is known,
we can choose w

ı to generate the required dataset. Then we learn an optimal policy for R
ı(s, a) where

R
ı(s, a) = „(s, a) ◊ w

ı. The associated expert demonstrations are the rollouts from this policy. We repeat
this procedure for several sets of weights w0, · · · , wc to generate the training dataset.

G KD-BIRL Algorithm

For clarity, we include an algorithm box that summarizes how to fit a KD-BIRL posterior (Algorithm 1).

H Calculating Expected Value Di�erence (EVD)

The procedure to calculate EVD varies depending on the method. Recall that EVD is defined as |V fiı,Rı ≠
V

fi(rL),Rı | where R
ı is the data-generating reward function and r

L is the learned reward function. Because
KD-BIRL and BIRL both use MCMC sampling, we can use the reward samples generated from each iteration
of MCMC. However, AVRIL does not use MCMC, so to sample reward functions from the posterior in this
setting, we use the AVRIL agent to estimate the variational mean and standard deviation of the reward in
each state of the state space. Using these statistics, we then follow the AVRIL assumption, which states
that the reward samples arise from a multivariate normal distribution and generate samples according to
the mean and standard deviation.

Once we have samples of the reward function, we can then calculate EVD and 95% confidence intervals. For
a given method, we calculate standard error across all sampled rewards from the method. To determine the
value of the policy optimizing for a particular reward function, we train an optimal agent for that reward
function, and generate demonstrations characterizing its behavior; the value of the policy is then the expected

19

Published in Transactions on Machine Learning Research (MM/YYYY)

discounted reward across these demonstrations. Finally, we calculate the di�erence between the value of the
policy for R

ı and r
L.

In the sepsis environment, because the state space is not discrete, the above approach will not work for
AVRIL. To calculate EVD, we used the trained AVRIL agent to generate behavior trajectories using agent-
recommended actions starting from an initial state; the EVD here is the di�erence between the value of these
trajectories and the value of trajectories generated using w

ı (independent of AVRIL).

I Gridworld environment

The Gridworld environment’s MDP is defined by the grid’s g ◊ g discrete state space S where a given state
is represented as a one-hot encoded vector in Rg◊g, ei, where the i’th index is 1 and corresponds to the
state in which the agent is in, and g is the size of the grid; the action space contains 5 possible actions
{NO ACTION, UP, RIGHT, LEFT, DOWN}, each represented as a one-hot encoded vector. Here, a reward function
R is a vector of length g◊g, where each cell represents the scalar reward parameter in each possible state. We
use three variations of this environment, which are g = 2, 5, 10. Unless otherwise specified, we use Euclidean
distance for both ds and dr.

J Sepsis environment

The sepsis environment models the management of sepsis within simulated patients (Amirhossein Kiani,
2019). There are 24 possible actions, each corresponding to a di�erent combination of drugs and other
treatment options. The actions are represented as integers from 0-24. The state features (listed in Table 1)
consist of 46 physiological covariates. In the original environment, nonzero reward is only received in the
terminal states (+15 if the patient is discharged successfully, and -15 if the patient dies during treatment).
To adapt this environment to be more readily used within an IRL setting, we re-parameterize reward as a
linear combination of a weight vector and a low-dimensional feature vector. To generate trajectories from this
environment, we train an optimal policy for a given weight vector w

ı, and then use the policy to recommend
actions from an initialized instance of the environment.

20

Published in Transactions on Machine Learning Research (MM/YYYY)

Table 1: Features used in sepsis environment

Feature Description
Albumin Measured Albumin

Anion Gap Measured di�erence between the negatively and positively charged blood electrolytes
Bands Measuring band neutrophil concentration

Bicarbonate Measured arterial blood gas
Bilirubin Measured bilirubin

BUN Measured Blood Urea Nitrogen
Chloride Measured chloride

Creatinine Measured Creatinine
DiasBP Diastolic blood pressure
Glucose Administered glucose
Glucose Measured glucose

Heart Rate Measured Heart Rate
Hematocrit Measure of the proportion of red blood cells
Hemoglobin Measured hemoglobin

INR International normalized ratio
Lactate Measured lactate
MeanBP Mean Blood Pressure
PaCO2 Partial pressure of Carbon Dioxide
Platelet Measured platelet count

Potassium Measured potassium
PT Prothrombin time

PTT Partial thromboplastin time
RespRate Respiratory rate
Sodium Measured sodium
SpO2 Measured oxygen saturation
SysBP Measured systolic blood pressure
TempC Temperature in degrees Celsius
WBC White blood cell count
age Age in years

is male Gender, true or false
race Ethnicity (white, black, hispanic or other)

height Height in inches
Weight Weight in kgs
Vent Patient is on ventilator, true or false

SOFA Sepsis related organ failure score
LODS Logistic organ disfunction score
SIRS Systemic inflammatory response syndrome

qSOFA Quick SOFA score
qSOFA Sysbp Score Quick SOFA that incorporates systolic blood pressure measurement
qSOFA GCS Score Quick SOFA incorporating Glasgow Coma Scale

qSofa Respirate Score Quick SOFA incorporating respiratory rate
Elixhauser hospital Hospital uses Elixhauser comorbidity software

Blood culture positive Bacteria is present in the blood

21

	Introduction
	Related Work
	Preliminaries
	Single-task Bayesian IRL
	Problem Setting
	Conditional kernel density estimation

	Methods
	Kernel density Bayesian IRL
	Feature-based reward function

	Theoretical Guarantees
	Experiments
	Baselines
	Evaluation Metrics
	Original reward function parameterization
	Feature-based reward function

	Discussion
	Proofs for Lemma 4.1, Theorem 4.2
	Wand and Jones, Equation 4.16
	Asymptotic expansion of the mean integrated squared error Theorem 1
	Asymptotic Statistics, Lemma 10.6
	Schwartz's Theorem
	Code and Experiments
	KD-BIRL Algorithm
	Calculating Expected Value Difference (EVD)
	Gridworld environment
	Sepsis environment

