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Figure 4: Performance of various algorithms with heavy tailed noise

A Additional Experiments

Based on the feedback from the reviewers, we perform the following additional experiments which
explore the robustness of the choice of buffer size in SGD — RER, choice of step sizes for GLMtron
and the behavior of the said algorithms with heavy tailed noise with a similar setup as in Section[7}

We first perform an experimental study about the robustness of SGD — RER to the choice of buffer
size in Figure[3al Notice that the performance remains the same for a large range of buffer sizes (
100 from to 2000). However the performance degrades when the buffer size is too large ( =~ 10000).
We believe this is the case since the number of buffers decreases as the buffer size increases and the
output is averaged over too few number of iterates (In the case of B = 10000, the final output is just
an average of 10 iterates).

Next, we consider the range of step sizes which allow GLMtron to converge in Figure [3b]in order to
supplement the discussion in Sections [7]and 3]regarding GLMtron requiring smaller step-sizes. In
smooth convex optimization, it is typically the case that the iterates diverge to infinity if the step size
is chosen to be too large. Theoretically, this largest step-size is % where L is the largest eigenvalue of
the Hessian. In the case of GLMtron, it was experimentally observed that if the step size was chosen
to be about 1.5 times the step size reported in Section [7] the iterates diverged. Quasi Newton method
essentially normalizes the gradient with the inverse of the Hessian (or rather an approximation of the
Hessian) in order to let it converge faster with large step sizes.

In Figure ] we consider the same system as in Section [7|but with heavy tailed noise given by the
student t distribution (scale ¥ = 4.1) so that the 4-th moment exists but higher moments do not. The
typical behavior of Forward SGD, SGD-ER, SGD-RER and Quasi Newton methods seems to be
similar to that observed in the Sub-Gaussian noise case. However, GLMtron requires much smaller
step sizes to ensure convergence and hence it takes much longer. We believe that the reason for
this is related to the explanation given above for GLMtron step sizes. The largest eigenvalue of the
Hessian depends on the quantity X;X,", which can be much larger than in the sub-gaussian case and
hence we need to pick much smaller step sizes. However, further research is needed to confirm this
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phenomenon. We also note that we did not provide theoretical guarantees for SGD-RER in the heavy
tailed noise case. But it is still seen to typically perform very well.

B Analysis of the Quasi Newton Method

In this Section, we give the proofs of Theorems|[T]and[2] Let e, . .., e4 be the standard basis vectors
for R?. We will analyze the Quasi Newton method row by row.
Definiton 1. Given a matrix A = [a1, a2, ,a4)", let R(A) = {ay,--- ,aq} denote the set of

vectors that are (transposes of) rows of the matrix A. We use a ' to represent a generic row of A.

Follow Defintion (I} we will consider the estimation of the i-th row a;. Consider the gradient
VL, RY — RY given by:

1 T-1
v‘C;()rox( ) = f (¢(<a7Xt>) - <6i;Xt+l>)Xt .
t=0
We can write
1 T—1
V‘Cprox( ) T (¢(<aaXt>) - ¢(<a:<>Xt>)) Xt - <77t7 ei>Xt
=0
=
=7 ' (Be){a — aj, Xe)) Xy — (e, €)Xy
t=0
= Ka,i(a — af) — Ni (8)

Where f3; exist because of the mean value theorem. We can make sense of (3; even when
(;5 is only weakly differentiable and check that the proof below still follows. Here, K, ; =

T LS T o (B) X X, and N; - =7 7= (ne, €;) X;. In the first step we have used the dynamics
in Equatlon (T to write down Xt+1 in terms of X and ;.

We now define G € R4 by G := %S " X, X,” . From the fact that ¢ < ¢/(3;) < 1, we note
that for every a € R%:
Gr Ko = (G ©)

Now consider the Quasi Newton Step given in Algorithm

a7(l + 1) = G’?( ) - 27G 1vﬁprox( ( ))
Denoting K, as(1),i DY K, 1,; we use Equation () to conclude:

a;(l+1) —af = a;(1) — af —29G7 Ky (a;(1 +1) — a}) + 29G7IN;
— VG(a:(1+1) = a}) = (I - 290G~ 2K,,G7 V)V G ai(l) — af) + 29G7V2K; (10)
Picking v < %, we conclude from Equation (9) that:
(1—=29)1 =21 —29G72K,G7V? 2 (1 - 290)1
We use the equation above in Equation (I0) along with triangle inequality to conclude:
IVG(ailt+1) = ) £ (1= 2001V E (@) - ap)l| + 291G/

Unrolling the recursion above, we obtain that:

m—1
IV G(ai(m) — a)l| < (1 — 24¢)™ |V G (ai(0) 0) —ap)| + > 29(1 =29 |G|

=0

< (1= 290)™ [V (as(0) n+mwwu
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Letting A,,, be the matrix with rows a;(m), we conclude:

* maxG m *
A — 47 < 25208 (1 = 290 40 — A7) + 2 ZHG VNP an

Proof of Theorems [I] and [2] follow once we provide high probability bounds for various terms in

Equation (TT). We will first define some notation. Let S(p,T) := ZtT:O pT~=t. For R,k > 0, we
define the following events

L. Dr(R) = {supocy<r | X¢e|” < R}
2. Er(r) = {G = =L}
3. DT(R, I€) = DT(R) N 5T(I€)

Lemma 1. Under the Assumptions of Theorem [I} suppose 6 € (0,1/2) and take R =
CgCn(S(p, T))%do?log(2F), k =2, and T > Cj (dlog( L) +log 1)

1

~ 2
(Z G2 N;|% < CTU [d*log (1+ &) + dlog(3)] N Dr(R, fs)) >1-2d6

Where C, C3 are constants depending only on Cy.

We refer to Section[F for the proof.

Lemma 2. Suppose the Assumptions of Theorem [2] hold. There exist universal con-
1 4TdC20?

stants C,Cy,co > 0 such that whenever 6 € (0,3), R := ﬁ and T >
RC\C,
Cdlog(%)log(£ acpa B o2 have with probability at-least 1 — 5
og(5) log(-3) max R Errs 1og(l) , we have with probability at-leas :
1.
GECOG.
2.

Amax (G) <R

Where G := EX; X,

We give the proof of this lemma in Section[H]

B.1 Proof of Theorem[Il

Proof. Note that R in Lemmal[I]is the same as R* in the statement of Theorem[I] We combine the

. . max (G
result of Lemma |1| with the Equation (]'l;fl) Under the event Dr(R*, k), we have i : (( G)) < i—};

almost surely. Hence the result follows.

B.2 Proof of Theorem 2|

Proof. We again begin with Equation (TT).

* Amax (G m *
I = 4°[ < 2528 1 = 290 4 - A7) + ZHG VAP
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Let the event described in Lemmabe W. Under this event, A\pin (G‘) > coAmin (G)s Amax (G) <
Rand G~ < éG —1. Therefore, we conclude:

d
[Am — A1 < 255ty (1= 290%™ | Ao — A™[IF + m Y NTGTN,
i=1
O

Now, consider E||A,,, — A*||21(W). To conclude the result of the Theorem, we will show that
EN, G 'N;1(W) < %. Indeed:

EN,'GIN;1(W) <EN;G'N;

=75 Z (i, e3) (ns, ) X, G X, (12)

t,s=0

Observe that whenever ¢ > s, 1; has mean zero and is 1ndependent of Xy, X and 7. Therefore,
E{n:, ;) (ns, €;) X,] G71 X, = 0. When t = s, we conclude using the fact that EX; X,” = G that
E(n:, e;)2X,” G71X; = do?. Using the calculations above and Equation (T2), we conclude that:

2d%c?

E||A4,, — A*||21 <
|| m HR (W) — C(Q)C2T)\min (G)

+ 2 (1= 290" Ao — A7

C Analysis of SGD-RER

In this section we consider the following (X, X;,...,X7) to be a stationary sequence from
NLDS(A*, i1, ¢). We make Assumptions [1} and [S| We aim to analyze Algorithm [2] and
then prove Theorem 3]

The data is divided into buffers of size B and the buffers have a gap of size u in between them. Let
S = B + u. The algorithm runs SGD with respect to the proxy loss L in the order described
in Section @ Formally, let X; = Xis+; denote the the j-th sample in buffer ¢. We denote, for

0<i<B-1X! = st’fl)fi i.e., the ¢-th processed sample in buffer t. We use similar notation
for noise samples i.e., 7 = 545 and 0’ ; = 77?5—1)—3"
The algorithm iterates are denoted by the sequence (Aﬁ :0<t<N-1,0<i< B-—1)where A§

denotes the iterate obtained after processing i-th (reversed) sample in buffer t and N = T'/S is the
total number of buffers. Note that we enumerate buffers from 0,1, - - - N — 1. Formally

Af-& AE_l -2y (‘ZS(AE_lX:‘l) X! (11 1)

for1 <t < N,0<i<B—1andweset A, = AL;" with A} = Aj.

)Xt 1,T (13)

The algorithm outputs the tail-averaged iterate at the end of each buffer t: flto,t =

t -1
i Yoretor1 Ap T where 1 <t < Nand0<to<t—1

C.1 Proof Strategy

The proof of Theorem [3]involves many intricate steps. Therefore, we give a detailed overview about
the proof below.

1. In Sectionwe first construct a ﬁctitious coupled process X, such that for every data point
within a buffer ¢, | X, — X, || < 7= for some fixed & > 0 chosen arbitrarily beforehand. We
then show that the iterates A’; which are generated with SGD — RER is run with the coupled

process X, is very close to the actual iterate A%. The coupled process has the advantage
that the data in the successive buffers are independent. We then only deal with the coupled
iterates A! and appeal to Lemma to obtain bounds for Af.
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2. In Section[C.5] we give the bias variance decomposition as is standard in the linear regression
literature. We extend it to the non-linear case using the mean value theorem and treat the
buffers as independent data samples. Here, the matrices ng, 51 defined on the data in buffer
s ‘contracts’ the norm of A — A* giving the ‘bias term’ whereas the noise 7; presents the
‘variance’ term which is due to the inherent uncertaintly in the estimation problem.

3. We refer to Section [E] where we develop the contraction properties of the matrices
T, H 5, where we show that || Mo H g1l S (1 = ¢yBAmin (G))* in Theo-
rem |10|after developing some probabilistic results regarding NLDS(A*, i1, ¢). This allows
us show exponential decay of the bias.

4. We then turn to the squared variance term in Section|C.6] We decompose it into ‘diagonal
terms’ with non-zero expectation and ‘cross terms’ with a vanishing expectation. Bounding
the diagonal term is straight forward using standard recursive arguments and we give the
bound in Claim[Il

5. The ‘cross terms’ which vanish in expectation in the linear case, do not because of the
coupling introduced by the non-linearities through the iterates (see Section [6]for a short
description). However, we establish ‘algorithmic stability’ in Section [C.7| where we show
that the iterates depend only weakly on each of the noise vectors and hence the cross terms
have expectation very close to zero. More specifically, we use the novel idea of re-sampling
the whole trajectory (X ;) by re-sampling one noise vector only and show that the iterates of
SGD — RER are not affected much.

6. We use the ‘algorithmic stability’ bounds to bound the cross terms in Sections|C.8] We then
combine the bounds to obtain the bound on the ‘variance term’

7. Finally, we analyze the tail averaged output in Sections [C.10} [C.11] and [C.12] and then
combine these ingredients to prove Theorem 3]

C.2 Basic Notations and Coupled Process

Definiton 2 (Coupled process). Given the co-variates {X;:7=0,1,.---T} and noise {n, : 7 =
1,2,---, T}, wedefine {X, : 7=0,1,--- , T} as follows:

1. For each buffer t generate, independently of everything else, Xé ~ T, the stationary distri-
bution of the NLDS(A*, i, ¢) model.

2. Then, each buffer has the same recursion as eq (I)):
Xip = oA X +nf,i=0,1--5-1, (14)
where the noise vectors as same as in the actual process { X }.

Lemma 3 (Coupling Lemma). Under Assumption {4} for any buffer t, we have || X! — Xf <
Cop" || X§ — Xé” , a.s. Hence
| XX = RERET|| < 26sup 1) | X1 - K| < asup XA P Gt a9)
T<T T<T

. . . . . t—1,T t—1
With the above notation, we can write (I3) in terms of a generic row (say row r) a; ;" of A; ;| as

follows. Let "' denote the element of *~;" in row r. Similarly let a* T = (a*)—r denote the row r
of A*. Then

alet T = a2y (o5 el — a(x 5 Tan) ) X5 4 20X N )

7 3

Now, by the mean value theorem we can write
S(X5 M el —o(X5 M an) = ¢f(€5 ) (@l - an) X! (17)
t—1

t—1,T .
, and X, a*. Hence we obtain

where £~ lies between X' a
(ai1 = a")" = (7" = ) (1 = 299 (€GH XX T) + 205X 50T 1)
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Definiton 3 (Coupled SGD Iteration). Consider the process described in Defintion 2] We define
SGD — RER iterates run with the coupled process (X} ) as follows:

A = A)

qt— qt— qt—1t— ot t—1,T
ATt = A7t =2y (p(AT XY - XL ) X5 (19)
Using Lemma we can show that flﬁ ~ A!. Note that successive buffers for the iterates flﬁ are
actually independent. We state the following lemma which shows that we can indeed just analyze A!
and then from this obtain error bounds for Af. We refer to Section for the the proof.

Lemma 4. Suppose v < 2R,1na . we have for every t € [N] and i € [B.

Hag - &f” < (1672Rr2naxT2 + S’YRmaxT)pu

We note that we can just analyze the iterates flf and then use Lemma@to infer error bounds for Af.
Henceforth, we will only consider Af.

Before proceeding, we will set up some notation.

C.3 Notations and Events

We define the following notations. Let R > 0 to be decided later.

¢(at; Xt;) = ¢(a~TXL))
(at, — a*)—r Xt,

Xt = X€S—1)—i7 0<i<S-1, ¢/(f~iz) =

J Dt : .
s=ip—s 1<

Pli=(1-20 (&) XLXY), B = {1 P>

- ~ 2
=t-am, o= {IxF<r}, =[x < v},

B-1
Dt_7:{HXt_ZH2SR jSiSB—l}: ﬂct
i=j

t r
pat:{gr—sp—o = @t].:{Hx-z

2 ~
<R:j<i<B—1}: (.

. -

~ D" < ~ ~ N ~

Ds’tz{g’”—s - S;i, D', =D.,nD";, D =D"ND>".
S

To execute algorithmic stability arguments, we will need to independently resample individual noise
co-ordinates. To that end, define (7, ), drawn i.i.d from the noise distribution x and independent of
everything else defined so far. We denote their generic rows by £. We use the following events which
correspond to a generic row

g ={lle < Bl 4I? < B: i <k <j}

C.4 Setting the Parameter Values:

We make Assumptions and [3]throughout. We set the parameters for SGD — RER as follows
for the rest of the analysis. We note that some of these parameter values were set in Section [4]

I. «>10
2. B=4C,0%*(a+ 2)log2T.

16(a+2)dC, 0% log T
3. R Z #

20



4.5 =1/(2T°+)

5. 4> 20doe T — (7 1 log T)

= o)

6. B > max (Clm, 10u) where C depends only on Cy(see Theorem

7. v < min (m, 1/2R> (see Theorem

From Assumption [3|and Theorem we conclude that for this choice of R and 3, we must have:

< 372 (20)

N c
P [(DO’N_l N ﬂy:0156’371> } <
C.5 Bias-variance decomposition

Using the above notation we can unroll the recursion in (T8) as follows. We will only focus on the
algorithmic iterated at the end of each buffer, i.e., we set i = B — 1 in (I8).

t B-—1
(&tBil_a*)T (ap —a*) HHSB 1+2’7225t TX TTHtJr;B 1 H(t)BS 1
r=1 j=0 s=r—1
21
We call the above the bias-variance decomposition where
@5 —a*)" = (ag — a* H HS g, (22)
is the bias, and
t B-1
T = Y S T T A (23)
r=1 j=0 s=r—1
is the variance. We have the following simple lemma on bias-variance decomposition.
Lemma 5.
2
H~t 1a*{|252<’~§31b o +‘~t 10 ) 24)

C.6 Variance of last iterate - Diagonal Terms

t—1,v

In this section our goal is to decompose Ha B mto diagonal terms and cross terms. We will then

proceed to bound the diagonal terms. First, we have a preliminary lemma, which can be shown via a
simple recursion.

Lemma 6. For k < t define S as

t
Sk=>Y_
r=k

=k j=

B—

1 r—1 1
~t—r rrt—s, T t T r~vt—r, T r rrt—s
(b/(é—ij ) <H HO,B—I) Hj-‘y—I B— 1Xt X " H;-‘rl B-1 ( H é,B_1>25)
0 s=1

Then, on the event @O7t_1, we have

1 L L
st} (r- (M) () 0
s=1 s=t

where 4 = 4v(1 — vR)
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Proof. The proof is similar to that of [19} Claim 1]. O

2
~t—1,v
apg as

where the second sum is over (r1, j1) # (r2, j2) and

1 r—1
. 2| t—r12 wt—r, T rpt— rrt— rrt—s, T rrt—r, T vt—
Dg(t,r,j) = 4y ‘E—jr| 'X—jT Hj+§,371 < H 0,151) < O,le> HJ+IB 1 X2 gr

Next, we write H

B-1

t _
Z ZDg (t,r,7) + Z Z Cr(t,r1,72, j1,J2) 27)

r=1 j=0 71,72 j1,j2

~t 1,v

s=r—1 s=1
(28)
and
1
L. r ro, T T rrt—s
Cr(t,T‘l,T’g,jl,jg) :472 75-]22‘)(15—&2 Hjtz+iB 1 ( H HS,B—1> .
s=ro—1
7"1—1
rrt—s, t—ry, T t—ry _t—r
(H HO,B ) H]1+i B— 1X—]11 _]11 (29)
s=1
Finally, we bound the diagonal term:
Claim 1.
t B-1 ~d
De(t, r, j)1 [ﬁovH} < LB+ 16C,0° RT (30)
22 -7 o

Proof. Notice that we can write

Dg(t,r.j) < 47 (B + 5 P15 * > 6]) -

1 r—1
ot—r, T rrt—r rrt—s rrt— t—r, T T
X—j H;+1,Bfl ( H é,Bl) ( 0,B ) H j+1,B— lXt (31)

s=r—1 s=1
Further
1 r—1
t— 7 T r rrt—s rrt—s, T rrt—r, T r
X Hf+1B 1( H Hé,B—l) ( o,B—1> Hi g 1Xt 1 [DOt 1} <R (32)
s=r—1 s=1
Combining the above two we obtain
t B-1 Tr St t B-1
>3 Deltr )1 [P <4428 ORI RSP P> 8 (9
r=1 j=0 r=1 j=0

where S} is defined in (25). Now taking expectation, and using lemma E] and Caucy-Schwarz
inequality for the first and second terms, respectively, in (33) we obtain the claim. Here we use the
fact that E [\5t T| ] < 160204 from [48] Theorem 2.1] O

C.7 Algorithmic stability

In order to bound the cross terms in the variance, we need the notion of algorithmic stability. Here the
idea is that if ¢ was identity, then E [Cr(¢, r1, 72, j1, j2)] would vanish. But in the non-linear setting,
i:r_l H(t),iégq) through
the algorithmic iterates. We can still show that E [Cr(t 7"1, T9,j1,J2)] = 0 by showing that the iterates
depend very weakly on each of the noise co-ordinates * JT So our idea is to use algorithmic stability:
we re-sample the whole trajectory of X by re-sampling a single noise co-ordinate independently. We

this does not happen due to dependencies between Et " and Hjt T1.B-1 (H
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then show that the iterates are not affected much by such a re-sampling, which shows that the iterates
are only weakly coupled to each individual noise vector.

To that end, we need some additional notation. We have the data (X ), and the coupled process
(X;),. Let the corresponding (coupled) algorithmic iterates be (@5 : 0 < s < N—1,0 <i < B—1).
Now a; are functions of X and noise vectors {nii :0<s<N-1,0<i<S5—1}. Suppose we
re-sample the noise 7)” ; independently of everything else to get 77" ;. So the new noise samples are:

0 T r =T r
(77877717 Moy s—1)—(G+1) Ns—1) =50 N(s—1)—(j—1)> "~ ) .

We then run the dynamics in Equation () with the new noise samples to obtain (X ), and the new

coupled process (X ), obtained through the new noise sequence (but same stationary renewal given
in Definition [2), and they satisfy the following:
s X2, s<r,0<i<S-1
X7, s=rj<i<S—1
. X, se{l,,r—1r+1,--- ,N-1},0<i<S—1
- X s=r,j<i<S5—-1

s

We obtain the iterates @ by running the update Equation (T3) with the data )E'T instead of X .
Accordingly, the algorithmic iterates change to (af : 0 < s < N — 1, 0 < i < B — 1) that satisfy

ai=a; fors<r,0<i<B-1
This is because, resampling 7, does note change the value of data X, for 7' < 7. Under the setting
we have the following lemma:

Lemma 7. Let A'~! be the following event
t—1 B—1

— ~r * * o Rﬁ
A”ﬂﬂ{l\%aHSIIaoaluch _ (34)
r=0 =0 min
For some constant C' depending only on Cy, we have forany 1 <t < N
A 1
— — N—-1ler
P {DO’N LA AN-1n ﬂr:&Eo,B_l} >1- (35)
Further more, on the event Sg’j ND"N=1 N A" we have:
al=a,0<s<r,0<i<B-1 (36)
ag = ag 37)

and for s > r we have

Vs +8YRB|lag — a*|| < CoyRB~ LE

ad —a’l| < CovRB
Hal aZH _C2fYR C)‘min CAmin

(38)

We give the proof in Section [H]

Remark 3. In expression (38), we have suppressed the dependence of ||ag — a*|| for the ease of
exposition with the rationale being that since ag = 0, it sould be lower order compared to \/R[5.

Hence we see from the above lemma that changing a particular noise sample in a particular buffer

perturbs the algorithmic iterates by O(ypoly(RB)).

Let R” ; denote the re-sampling operator corresponding to re-sampling 7" ;. That is, for any function

f((ar), (X7), (X;)) we have
sz (f((ar)v (ar), (X-), (XT))) = f((a,), (a,), (X.r)7 (XT)) (39)

We will drop the subscripts and superscripts on R when there is no ambiguity on which noise is
re-sampled. First we will prove a lemma that bounds the effect of re-sampling.
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Lemma 8. On the event &j ; N D11 AL for some constant C depending only on Cy:

1 1
it (I ) =i T1 =i )|
s=r—1 s=r—1
Bt ||¢"||v*R*B VB
CAmm

<C (40)

Proof. First, note that since we are re-sampling 77’17, the only difference between
t—r ryt—r 1 t—r r7t—s rrt—r 1 [rt—s . . .
RZH gy (Hs:rq RZ; HO,Bfl) and H;\ {54 (Hs:rq HO,Bfl) is that the algorithmic
iteratgs a; that appear in the latter (through ¢’(-)) are replaced by c:zj in the former, but the covariates

remain the same in both.

Now, the matrix H' i1B-1 (Hl, ‘H-STBS71> is of the form [[)_, A; where ||A;|| < 1 under

s=r—1

the conditioned events and is of the form I — 2vy¢' (ét_;“))? t__JgX' t_;s’T. Similarly, we write:

R TH;+’1"B 1 (Hl Ri_jrflégg‘g_l) = Hle A; where A; = Rt:j’"Al. Now consider the

s=r—1

simple inequality under the condition that || 4; ||, || 4;|| < 1

k
<>l A - Al (41)
=1

k —
114
=1

Therefore, we will just bound each of the component differences HA; A H To this end, consider a
typical term I — 2v¢/ (€% “’)Xt SX'5T . We have

(1 =290/ (E5)X T X5T) = R (1= 290/(€5) X5 X5T)
=2y(¢/(£3°) - RI ¢/ (&) XX T 42)

Now

pzteey i mey S@ X = 0@ TXITY) g(@ T XG) = ¢lanTXT)
P TR e CREra

(43)

Now we can use the following simple result from calculus. Suppose f is a real valued twice
continuously differentiable function with bounded second derivative (denoted by || f”'|]). Fix 2 € R.

Let g(x) = f(@)=/(20) By the mean value theorem, there exists ¢ such that:

T—Io

o) = LU+ =) ) 1

(x — x0)?

Now for any z, y, we have

l9(x) — g(y)| = lg'(&1) (= —y)| < % 1"z =yl

for some £; between x and y. Here again we use the mean value theorem in the equality above. Now
we will apply this result to ¢ with z = a!~* " X35, y = al > X17°

T Yi—
;Sand zp = a™ ' X% to get

¢'(€5%) - RT¢(E5%)| < (44)

1 _ ~
5 ol lai— — @ | x5
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Now we appeal to lemma [7] In particular, using equation (38) we see that, on the event &N
POt—1 nAt-1,

s ) Ti—s 1 VR
¢'(E5) — REW(E50)] < 5 19 1128CYRB = ° VR
= 64C ||¢" || yRZBC;\/? (45)
— |Pr(@ €5 - R ¢ ETNXT R | < 1280 )| vQRSBQ“B_ 46)
We now use Equation with k < Bt along with Equation to conclude the statement of the
lemma. O
C.8 Bound Cr(t,ry,72,71,72)
Next we will bound ) . Zn#h v(t,r,r, 1, 72)
Claim 2.
t 2,2 1| ~AT2 P4 B2 52
- - RB T°R*B
Z Z Cr(t v, 41, o)1 [Do,tq} <C [0’ ’72 . 19" 1| v o*\/B @7
r=1j1#j2 T2 CAmin

Where C is a constant depending only on Cy

Proof. Let j1 < jo. We will Suppress the arguments of Cr for brevity First, we re-sample the noise
which is ahead in the time, i.e., ]T (and hence the entry e " in the row under consideration).

Let Cr’ denote the resampled version of Cr as defined below

1
/ S 2trtrtr t—r, T rt—r rrt—s
Cr'(t,r,r, 1, j2) = 4y €€ *]zR*h [XJ2 H32+1 B-1 ( H 073—1> ’
s 1

=r—
r—1

rrt—s, T rrt—r, T t—r
15 ) Hi s X5,

s=1
1
= 4yl et X TRijj (sz T 1) RE ;( H Ziya )
r—1 B B
[ (H HS,BS’T1> R (H i) X5 (48)
s=1

where we have used the fact that R . has no effect on the items from the process (X )+ that appear
in the expression above. Note the thls is not Rt " Cr, since in RE f Cr we would have €t7 instead.
Now, since the new algorithmic iterates (a?) depend on n_ ~" but not on =" J,» it is immediate that

E [CI’ (t,?", Ta]17]2)] =0

For convenience, we introduce some notation which is only used in this proof. Cr’(¢,r, r j1 ,J2) can
be written in the form 4~y et ret ~» K1 for some random variable K independent of e'". Under

the event D%, we can easﬂy show that | K| < R almost surely. Let Fx = o(K1,¢e _Jz) Let
.= {|K| < R}. Clearly, D%'~1 C M and st_j: 1 Fg. We conclude:

e o1 [0 ]| e [or 1[5 ] Lim]

= 4’)/2

E [k [ [P0 7] a1 M]] \

—J2

< 4R [[E [ [P0 ||| 1wl e )] @)
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We note that: ‘]E [st:j:l [7507“1} ]]—"K} ‘ :’E [5’5:]:1 [ﬁo’t_lvc} |]-'K} ‘ <

o? \/IE” (1 [f)oxt—lac} |]-'K). Using this in Equation (#9), and that under event M, |K;| < R we

apply Cauchy-Schwarz inequality again to conclude:

‘]E [ [bovtlm < 4202 R\ P(DV4-1.C) < 4}(3/23 (50)
Using similar technique as lemma we have that on the event £ ; N DOt AL
1 1
it [ T0 A ) -z T Rz )
<t |I¢”212R3B\f 1)
Therefore, on the event £ ; N &f;, N DO=1 n A=1 we have
|Cr—Cr'| <A*CR* [T | T ¢ B — ‘/B
—E[[cr—cr|1]g, g, NP0 AHH < Cll¢"| 74TR4BZi:n/E (52)

We note that over the event D%, we must have | Cr — Cr’ | < 2R|e""7="""|. Combining this with

Equation (52)) and noting that P (56 L NES NDMI N AL~ 1) > 1 — -, we conclude:

W3

t
Z Z Cr(t,r, T7j17j2) - Cr/(t,r, T7j17j2) 1 |:b0’t71i|

r=1j17#j2
my Am2 pdp2? \/B 2
<C [||¢ I TR B T RTBTQ/J (53)
Hence combining (30) and (33) we conclude the statement of the claim. O

Next we want to bound Cr(¢,ry,79,j1,52) for ro > r; and arbitrary j; and j,. Recall
the definition of Ezt_l’” from (23). Via simple rearrangement of summation, we can express
Do ijz Cr(t,r1,72,j1, J2) in terms of at "1=1Y a5 follows.

Lemma 9.

Z ZCr(t,m,Tz,jl,Jé)

T2>T1 j1,]2

t—1 B—1 1 r—1
~t—r1—1,v [7t—s rrt—s, T 1,1 T r
-0 Z Z(a% r 1)T (H Hé,B_l) (H HS’B_1> HJtHTl B— 1X1t ' ijll 54
s=1

r1=17j1=0 s=r1
Claim 3.
~ = 1
E Z ZCr(t,m,T‘z,jl,]é)l[Do’tfl} SC’YQR(Bt)202m+
r1#r2 j1,j2
C(II¢”|I73T2R3 CR/B +72TRB F\/ sup E |~$“ [fpo,sH

(55)

The proof of the claim essentially proceeds similar to that of Claim 2]but with additional complications.
We refer to Section [H]for the proof.

Combining everything in this section we have the following proposition.
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Proposition 1. Let
- 2
Vi_1 =E U‘dgl’” 1

[ﬁovt—ﬂ (56)

Then for some constant C which depends only on Cy:

2vd o?\/B

sup Vy < ————B+C||¢"| V*T*R* B> ZYE + Co4*RT? +
SSNpl C( )/B Hd) ||’y C)\mln Ta/2
CvRO_Q (||¢//|2 ’YGT4RGB2 sz ’)/4T2R2B2) (57)

Proof. In the whole proof, we will denote any large enough constant depending on C,, by C. From
claims|[I] 2] and 3] along with equation (27) we have

EUatB” 1[1507HH
vd a2 pa 20 VB | A
< ————B+C T°R"B + Co? 1+B+1T)+
C( 7R 16" o VRT 7 / S )
(@I<b”llv‘°’T2R3 C;/B +72TRB F\/ sup E lag”|1? 1[90 H
(58)
Thus
¥ vd 1| A2 pd 20 \/B 2.2 72
sup Vi < ———B+C T?’R*B + Co?+2RT +
s;%lil C(]-_ )ﬂ H(b || g)\mm T /2
o " ~372 PR3 \/B 2 \/7
C ||¢ ”’YTRB*‘F’YTRB sup V
CAmin s<N—1
(59

Finally, we need to solve the above recursive relation. We note a simple fact: Let ¢1,co > 0 be
constants and let z > 0 satisfy
22 < ¢+ cox (60)

2
1
2? < 1 <02 +1/c3 +4C1> <c3+ 2 (61)

where in the last inequality above we used the fact that (a + b)? < 2(a? + b?).
Thus,

then

2vd o?\/B
sup Vs < 75 +C |||V T?R*B? —= + Co®4?RT? +
sng ) A-R) 16"l o Ta/Q
CYRO,Q <||¢//|2 ’YGT4RGB2 <2)\ﬁ ’}/4T2R2B2) (62)
O]
C.9 Bias of last iterate
2
In this part, we will bound the expectation of the bias term H T
Theorem 5. For some universal constant cy:
~t—1,b * 2 ~NO,t—1 * (2 t
E ‘aB a1 [D= } < llao — a*[|* (1 = coCYBAmin) (63)

where a'~1* — a* is defined in (22)
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Proof. Define x,, = Hg;é H; 7;71((10 — a*). Here, we consider the event G,, considered in Claim|§|
in the proof of Theorem@ and show that for some universal constant ¢y > 0,

rrv, T -t —
P(|Hy g1 20[? > (1 = CyAmin (G))[|2o] [P, 20) > qo (64)
From Theorem we also note that conditioned on 750’“1, almost surely:
rrv, T
HHO,B—1IU||2 <1

We let G, be the event lower bounded in Equation (64).

E (e P[00 = E 1855 wol2150]
=E _||ﬁgy’;71xv||21 (G.] + ||ﬁg:;ﬁlxvu21 €] |250,t71}
<E :(1 — Y Amin ()20 [°1[Go] + ||z [1*1 [GS] |750,t71:|

=FE [||a?v||2 [1 — Y Amin (G) p(gv|@o,t—1 xv)} ’@O’t_l]

<E [l ]2 [1 = 7Chmin (G) o) DO (65)

,b

Unrolling the recursion given by Equation (63)), and noting that dgl —a* = x4, we conclude

2 ~
RS e B

Hence we have the theorem.

O
C.10 Average iterate: bias-variance decomposition
In the part, we will consider the tail-averaged iterate where a generic row is given by
1 N
2 _ ~t—1
g, N = N — ¢, Z g (66)
t=to+1
where to € {0,1,--- , N — 1}.
Thus we can write a;,, vy — a™ as
agy,N — a* = (étvo,N) + (égo,N —a*) (67)
where
1 N
2 ~t—1,
iy = »_ (@5 ") (68)
N —ty
t=to+1
1 N
2 * ~t—1,b
Gty — 0" = > (@5 —a) (69)
N —to
t=to+1

C.11 Variance of average iterate

Remark 4. From now on we will use the following notation:

EDS

t t=to+1
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v
Next we expand Hato, N H

Claim 4. Forito >ty

E

ay

Se oy

t1,t2 t1,t2=to+1

N
t1#t2 t1,to=to+1
t1#£t2

to>t1 ti1=to+1ta=t1+1

1 ~t—1,v 2
fiu| = o D o I
~tog— 1’U t
s Y
t1#t2

1 1’[})

< CyPoly(R, B, B,1/C, 1/ Awins 6" ) (77/2T2 + 4°T% 4 4°T*)

Proof. From (23)) we can write

(ag 1’0)T _( ~t1— l’U ( H H32391>

Hence

(a5~ (@

to—ty B—

1

Stz t1

to—ty B—1
?YE: E:sh XE TTHﬁ4E 1

r=1 75=0

gil’v):(tl ) ( H H(fizB§1

étz tl

1
11 Hé?BL)

s=r—1

> ~t1— lv)+

1
r —r, T r [7to—s ~t1—1,v
2y S 3 R T e, 1(11 H) -t

r=1 j=

0

s=r—1

Now recall the noise re-sampling operator Rtfjr from (39). It is easy to see that

to—t1 B—1

E 272 Zetz TRtQ 7‘[ t2 rTH;ier 1< H HO

r=1 35=0

(Note that R*2 ;Tf(tfj‘”

-1

= Xty

J

Thus, using the decomposition

ﬁ(),Nfl

— D(),tgfrfl ) DtgfrJrl,Nfl N ,thj_T N

29

Yo

j—1Ats—r
Mi=oC2;

[(dtél,v)T <(at1 lv _< H H(I‘)ZB§1> _ti— 1v)>11{@0,1v—1}H

(70)

(71)

(72)

(73)

(74)



we get

to—ty B—1

B2y & > R

r=1 j=0
1
R [ff;-izf‘gl ( 11 ﬁfé?gﬂ) <a§;1’”>] 1 [ﬁOﬂN-l]H
s=r—1

1
< 4y*R(Bt1)(B(t2 — tl))CnC’QW

< 44*RC,0*T? (75)

To/2

Next we need to bound the effect due to noise re-sampling. On the event DON—1 0 AN~-1
ﬁivz_()1€573_1, we have

1 1
H;fil,’”B_1< II H5?3i1> — R [H51173_1< 11 Hé?Bilﬂ H

s=r—1 =r—1
<Cl| TR (76)
Thus
to—t1 B—-1 B B
29| | Y0 3 et R T [DON
r=1 35=0
~ 1 ~ ~ 1 ~
<H51173_1< II Hé?Bi1> - RET H51173_1< 11 HS?BL)D (a%‘l’%H
s=r—1 s=r—1
~ "2 3 \/B \/72 ~t1—1v ~0,t1—1
<Cy||¢o |MTRB</\ : B(ty — t1)VRo2E |||(ap )1 |D
_ 1
+ Cv*(2R)o*(Bty)(B(ty — t1))m (77
Now from proposition|[T] there is a constant Cy such that
- 2
(el o)’
vd (A2 pd 20V B 2,2 p2
Ci| ——— T“R*B RT
g+ 191 PV R
2 p
RO_Q (¢//|| '}/GT4R6B2 C2>\2 : + ’Y4T2R2B2>> (78)
So
to—t; B—1
to—r ta—r,T1 [750,N—1
2 [E| D D XY 1[7) }
r=1 j=0
~ 1 ~ ~ 1 ~
(o ( T0 ) - [ (T ) |) )]
s=r—1 s=r—1
< Poly(R, B, 8,1/¢,1/Amin, [|¢”]) (77/2T2 +7°T% + 76T4) (79)
where we absorbed terms involving % since « is taken to be large.
O
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Claim 5.

el s (1 g, )t 0]

to>t) s=to—1t1
1
v . 2 22 L
<V, -1 B + 16(N — t1)y°"RCyo°T Tar2 (80)
where Vi, _1 is defined in (56).
Proof. Note that
1 to—1
r7to—s [ S
H HO,QB—l = H HO,B—I
s=to—11 s=ty
From theorem|11| there is a universal constant C' such that with § = QT—Q we have
to 1
N 1 ~ 1
H;, Cld+1 DN < — 81
D B e e Ll EE =
to>t1 s=t;
Since P [ﬁtl’N’l} < 57+ we obtain
to—1
N 1 1
[ S I fsoa| >0 (a0 + o) | < ®2
to >t s=t1
Choosing v such that
d—+1 N < 1
0 — < —
& 6 o CWBAmin
we get
to—1
C 1
S T i > | = s
[ to>t1 s=t; ’YB)\mm T
Thus conditioning on the event
to—1
> I Hpa| <
to>t1 s=t1 C’YBAIHII]

we obtain

V’*“ﬂ CL + (N = t1)492R(4C,02) (Bt )?

E[(agl"’f > ( 11 Héfgz) (g~ [P

to>t1 s=to—11

2
<E U(ag—l’” 1

'YB)\min Ta/2
<V _¢ +16(N — t1)v*RC, 2T2L (84)
=t C’YB)‘min Y g To/2
O
Thus combining everything we have the following theorem
Theorem 6. Suppose v 2 % Then
E ||a H2 1D <o a5 + P (YPT2 1 45TY) 89)
ol = A BN — o)

P = Poly(R, B, 3,1/¢,1/Amin, ||¢" || , Cyy) and C1 > 0 is some constant.
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C.12 Bias of average iterate

Theorem 7. There are constants C, c1, co such that :

. 2 . 1
E |:Hd?O,N —a* 1 |:D0’N_1:|:| < C ||a0 _ CL||2 e*C2C’YB)\mint0 min {17 (N — t())C,\/BA : }:|

The proof follows from an application of Theorem 5}

C.13 Proof of Theorem 3]

Proof. Let P denote the polynomial in Theorem@ Theorems 7| and El, imply for every row of the
coupled iterate:

E |llas,n — a*lP1 | D"V < 2 [lldg, w21 DV | + 2B 11,  — 7?1 [DOV]

ap =5 (7
< P (A7?T% 4057
< B GBIV —t0) T (’V T )

1
C _ 2 —c2(yBAminto 1 1
+ ||a0 a’H |:€ min ’ (N — to)C’YB)\min
87

Thus for the actual process we can use the following decomposition
E [||dt07N — a*H2 1 [fDO,N—l]} <E [Hdto,N B a*“2 1 [ﬁo,N—lH n
E |:||CALtO,N - a*||2 1 [DovN—l] 1 [ﬁO,N—LcH

A 1
< [lagy — @71 [P0V ] + CPTRC 0
+2]lag — a*||* ==
where we used the fact on the event D%V 1

N t B-1

. 1 .
o —al? < = D0 [ 2llao P +2BOUPRDI D) | 69)

t=to+1 r=1 j=0

and then used Cauchy-Schwarz inequality for the expectation over DN —1.C

i

. Using DON=1 € DO, N — 1 we get

Now using lemma[4] we get
E |l — a*|P 1 [D*¥ 1] <
since we are choosing u such that p* <

B [l — 0’1 (")) <]

*
ato, —a

) 1
1 [D‘“HH +OVRT . (89)

(90)

. 2 oon 1
Aty, N _G*H 1 |:DO7N 1i|:| +C'72R0'2W

where we absorbed all terms of order i (including those depending on [|ag — a*||) to the last term
in the above display.

Thus

. - dp .
) oN-1]] < (L T/2m2 6
B [y~ [P2] <Oy GBI o) (77 +2°7)

1 Collay — alf [

1
Ta/2-2

e—c2¢YBAminto
(N - tO)C7B)‘min:|

+ C37?Ro? 91)
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Summing over all the rows we get a bound on the Frobenius norm. Lastly if the event DON=1 does
not occur, the A, x is the zero matrix and hence

p 1
E [l Ar,.v — A*|R1 [PV | < 14 ©2)

Therefore:

d?s
CQAInin (G) B(N - tO)
e—CQC’YB)\minto }

N - tO)CPyB)‘min

E Il i~ - 4%J] < C +Pd (T2 40T

+W%—Nﬁh

- 1
2p 2
+ C~y*Ro“d o723 93)

D Concentration Under Stationary Measure

In this section, we will consider the process NLDS(A*, 11, ¢) and the concentration of measure under
its stationary distribution. In what follows, we will use the fact that ¢ is 1-Lipschitz as in the definition
of NLDS, even when we don’t explicitly use Assumption I}

PropOSItlon 2. Under Assumptlon Hlwith p < 1, the process is exponentially Ergodic and has a
< Q.

The result follows from a technique similar to the one used for Proposition [49] by considering the
process in the space of measures endowed with the Wasserstein metric.

D.1 Sub-Gaussian Case: Stable Systems

We will first consider the process with Xy = 0 and prove concentration for X for arbitrary ¢, and
then use distributional convergence results to prove the concentration results at stationarity. First, we
prove some preparatory lemmas.

Lemma 10. Suppose Y is a v sub-Gaussian random variable with zero mean. Then, for any

A< ™ L we have:

Eexp(A\Y?) <1+ 8 /2.

We refer Section [H for the proof. Now, consider the random variable Z; 11 = || X;41]% —

ZZ:O p'=%|Ins||>. By assumption, we have X, = 0. Therefore we must have Z, = 0. We
have the following lemma:

Lemma 11. Suppose that Assumptions[3|and P hold and p be as given in Assumption[5] For any

suchthat 0 < A\ < 5% C ==L we have:

Eexp(AZi41) < 1.

Proof. First by mean value theorem, we must have: ¢(A*X;) = ¢(A*X;) — ¢(0) = DA*X, for
some diagonal matrix D with entries lying in [0, 1]. Therefore, ||¢(A*X)| < [|D||||A*|||| Xe]| <
p||X¢||- Using this in Equation (), we conclude:

[ X112 = [Imell® = lo(A* Xo)[I* + 2(ne, p(A* X))
< PPN % + 20, H(A* X)) (94)

Let Fs = o(Xo, 10, - - -, 7s)- It is clear that X € Fs_;. Using Equation (94), we conclude:
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E [exp(AZi11)| Fio1] = E [exp (A Xl = Allne1?) | Fies eXP( )\ZPt S||775||2>
< E [exp (A2[| X2 + 2\ (i, p(A* X)) [ Fima exp( AZpt S|n32>
< exp (A2 (| X¢]|* + 222 Co® || (A" X, )| exp( /\Zpt S||775||2>
< exp (Ap?|| Xe||? + 22202 C0? | X4 ||?) exp( Azpt S||775||2>

< exp (Ap] XilI?) exp( /\Zpt Sllnsll2>

= exp (\pZy) (95)
In the fourth step, we have used the fact that |¢(A* X:)|| < p|| X¢||- In the fifth step we have used
the assumption that A < 5~ to show A%+ 20%p?C, 0% < pA. In the last step, we have used the

definition of Z;. We 1terate over Equation (93)) and use the fact that Z; = 0 almost surely to conclude
that whenever )\ < % C —=2 we must have:

Eexp(AZi41) < Eexp(AZy) =
O

Now, let Yiy1 = S 0_o p'%||n:]|2. We will now use Lemmato bound E exp(AYiy1) for A > 0
small enough.

Lemma 12. Suppose that Assumptions[3|and B hold and p be as given in Assumption[3} For any A

suchthat 0 < A < 4dC —=—=, we have:

2
Eexp(AYi41) < exp (8%)

Proof. Let N(B) := Eexp(B]|ns]|?) By independence of the noise sequence, we have:
Eexp(AY;q1) = H N(p™5\) (96)

For 5 < 4dc e
d

N(B) =Eexp(Bllns]*) = Eexp(B ) _(eins)?)

=1
1 d
<= Z:]Eexp(ﬂd@i, 16)2) < 1+ 8BdC, 0> ©o7)

In the last step, we have used Jensen’s inequality for the function  — exp(z) and then invoked the
Lemma|[I0} Plugging this into Equation (96)), we conclude:

t t
Eexp(AYiq1) < H (1+ 8Xdp'*dC,y0%) < exp(D) _ 8Adp'*Cyyo?)
s=0 s=0

exp (8 )‘dlcl”pa2 ) (98)

IA
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Based on Lemmas [I2]and [T} we will now state the following concentration inequality:

Theorem 8. Suppose Assumptions[3|and | hold and p be as given in Assumption 5] Let X be
distributed according , the stationary distribution of NLDS(A*, u, ¢). Then, for any 0 < A <

A* = min(ﬁ, 4;(7%), we have:
Eexp (| X|?) < exp(w) .
We conclude:

1. Applying Chernoff bound with A\ = \*, we conclude:

(117 > HET 1 5) <exp(-1'5),

8dC, 0?

E|X|? < =2~
1-p
The conclusions still hold when X is replaced by X; for any t € N for the process started at (.
Proof. We first note that || X; 1|2 = Z;11 + Yiy1. Therefore, by Cauchy-Schwarz inequality, we
must have:
Eexp (A Xe1]*) = Eexp (A(Ze41 + Yer))
< VEexp(2AZy41)V/Eexp(2\Yi 1)

< exp(M) (99)

Here we have used Lemmas [I2]and [IT]and the appropriate bounds on \. Recall that we started the
chain (X;) with X, = 0. Denote the law of X, by m;. By proposmonl we show that 7; converges
weakly to the stationary distribution 7. We invoke Skhorokhod representation theorem to show that
there exist random variables X; ~ m; and X ~ 7 fort € N, defined on a common probability space
such that X; — X almost surely. Now, we have shown that:

o MG,
Eexp (A Xi11]%) < exp(24Car)
Now, applying Fatou’s Lemma to the equation above as ¢ — oo, we conclude:

Eexp (A X|?) < exp(M). (100)

The concentration inequality follows from an application of Chernoff bound and the second moment
bound follows from Jensen’s inequality to Equation (T00) (i.e, Eexp(Y') > exp(EY)). O

D.2 Sub-Gaussian Case: Possibly Unstable Systems

We consider the case with (C),, p) regularity, but we allow p > 1.

Lemma 13. Under Assumption{d] we have:
t—1

Xl < Cp > o' imsll - (101)
s=0

No suppose Assumptionalso holds. Let 0 € (0,1/2). Then with probability atleast 1 — 6, we must

have:
szWNSC%vGﬁmTMVM%§%

Where S(p,T) = ZtT 01 pT ==Y and C is some universal constant.
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Proof. We consider the notations established in Assumption @ We will define the process Xt(s) by
xW = =x¥=0and Xfi)l = ¢(A* X))+, fort > s, where 7, is the same noise sequence
driving the process X, X1, ..., X7. Note that Xt(s) = hi—s(0,Ms, Nst1s -« Me—1)-

Xe—0=X, =X+ X - XV o+ X0 -0

t—1
s s+1
= IXll < xS - x5
s=0
t—1
= Z Nht—s—1(Mss s Me—1) = Pp—s—1(0, o1, - - s 1—1) ||
s=0

t—1
<Y Cop ™ i (102)
s=0

In the last step, we have used Assumption @ To prove the high probability bound, we note that
P(supgcs<r_1 < [Insll > C/Cyolog(%)) < 6 for some universal constant C. O

D.3 Heavy Tailed Case: Stable Systems

Theorem 9. Suppose Assumption|holds with p < 1. Suppose that X is distributed as the stationary
distribution 7 of the system NLDS(A*, i, ¢). Then, we have:

1.
CiM
EIX|* < 55
(1=p)
Where we recall My = E||n||%.
2.
C2do?
E|X|]* < —F—;.
(1=p)

Proof. We use Equation (TOI) to conclude the desired bound for X1 when the process is started
with Xy = 0. We then use Fatou’s lemma along with Skhorokhod Representation theorem like in
Theorem [§]to conclude the bound at stationarity. O

E Well Conditioned Second Moment Matrices

In this section we will consider a stationary sequence Xy,..., X7 derived from the process
NLDS(A*, i, ¢), with the corresponding noise sequence 7y, ...,nr. We want to show that the

matrix % Zf: Bl X, X,” behaves similar to G := EX; X,". To do this, we will first to control the
quantity: E(X;, x)2(X, x)? for arbitrary fixed vector x € R?. Clearly, E(X;, )% = x T G.

Lemma 14. Without loss of generality, we suppose that t > s. Suppose Xy, ..., X1 be a stationary
sequence from NLDS(A*, p, ¢).

1. Suppose Assumptions[3|andP|hold. Then we have:
2 2 T 2 | A 2(t—s) do® d

Where C depends only on Cy.
2. Suppose Assumptionholds with p < 1. Recall that My = E||n;||%. We have:
My

E(Xe,2)* (X, ) < 2T Ga)? + 8llel*Cpp™' ™ 77
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We will give the proof of this lemma in Section [Hl l Now, consider the random matrix G :=

= t i ' X, X,”. Clearly, G > 0 and because of stationarity, EGp = G. We write down the

following lemma:

Lemma 15. Suppose Xy, ..., X1 be a stationary sequence from NLDS(A*, 11, ¢).

1 Suppose Assumptions Sand I 5| hold.  Let Cy be as in Lemma Suppose B >

ol W Then, for any fixed vector x € R,

log
TA 1 +
]P’(x GBx2§a: Gx)2p0>0.

Where pg is a universal constant which can be taken to be %. Furthermore, for any event A
such that P(A) > 1 — po, we must have:

TA L+
>
]P’(x Gpx > 5% Gz P(A)

_A>>q0-_po_(“4)>0.

6
2. Suppose Assumptionholds with p < 1. Whenever B > (1_546%71]\:[;%

A 1
P <xTGBa: > QxTGx) >po > 0.

Proof. Without loss of generality, take ||«|| = 1. We start with the Paley-Zygmund inequality. Let Z
be any random variable such that Z > 0 almost surely and EZ? < oo. For any 6 € [0, 1] we must
have:

EZ)?
P(Z > 0EZ) > (1 - 0)2 ‘
Now consider Z = 2T Gz and § = 1.
1. The simple calculation shows that:
R 1 1 2 T 2
P <xTGB:c > xTGx) > = Bz Gz)
2 400 E(X e 2) (X )
>1 2( TGl‘)2
T 4oB2(aTGr)? + ZS i Crp2lt—sl e 2T Gz log (ﬁ)
1 B(aT Gir)?
el 4232($TGI‘) +2Zt 0 Clwm G.’I;log( )
1 B?(2"Gx)?
49B2(2TGx)? + 2BCy %m—r(}x log (%)
1 1
== 103
81+ 7p ( )
Here, 75 := x%w B(1—i()7(21—p2) log (%). In the second step we have used item 1 of

Lemma In the third step, we have summed the infinite series Zs>t p?(t=%)_Using the
hypothesis that B > Clm log ( ) and G = 021, we conclude the result.

2. We proceed similarly as above, but use item 2 in Lemma|[T4]instead.
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We will now follow the method used to prove [19, Lemma 31]. We now consider the matrix 0.B-1
under the event 255_0 in order to prove Theorem |10, where the terms are as defined in Section
For the sake of clarity, we will drop the superscript s.

Remark 5. We prove the results below for I:I& p_1 but they hold unchanged when the matrices

are all replaced with f{(‘j_’;_l given that we reverse the order of taking products whenever they are
encountered.

Lemma 16. Suppose Assumptionholds. Suppose that YRB < %. Then, for any buffer s, under the
event D* o we have:

~
|
=~
2
/N
=
+
| e
=)
o)
=
~—
o8
| @»
S
A

s, T 7 r7s, | 2vBR
X R Hfp Hyp 1 = 1_47( - 4713R) Z X

In particular, whenever we have YBR < we must have:

<
4(1+¢)’

B-1 B-1
C s sT s s, T vs v,
1—47<1+2 ZX XoT < Hg o 1H07Bfljl—2ﬂy(§X_iX_i

Proof. The proof follows from the proof of [[19, Lemma 28] with minor modifications to account for
the fact that ¢'(8) € [, 1]. O

Combining Lemmaw1th Lemma.we will show that Hf; p_1 contracts any given vector with
probability at-least pg > 0.

Theorem 10. Suppose Assumptions I E| and | hold. Assume that B and vy are such that: B >
A d d

Clm log <7) and "}/BR < 4(1+<)
that P(D>) > max(3,1 — B), where py is as given in Lemma Let a > b. Let Apin (G) denote
the smallest eigenvalue of G. Conditioned on the event Db,

where C1 is as given in Lemma We also assume

(1) |l Hg:a ﬁg:l—;fl || <1 almost surely

(2) Whenever b — a + 1 is larger than some universal constant C,

b
P (” TT A5 51l = 201 = ¢(YBAwmin (G))e(70FY

S=a

ﬁb’a> < exp(—cz(a—b+1)+cx5d)
Where c3, c4 and cs are universal constants.

Proof. The proof of (1) above follows from an application of Lemmaa@ So we will just prove (2).
We will prove this with an € net argument over the unit £2 sphere in R,

Suppose we have arbitrary = € R? such that ||z|| = 1. Let K, Hg v f[g:;_l. When v < b, we
take this product to be identity. Now, define CA}”jB =5 ZB ! X7 X

Consider the class of events indexed by v: G, := {||H§7’;_1KU_1Q:||2 < ||Kyp—12]2(1 —
Y¢BAmin (G)}. From Lemma we will prove the following claim:

Claim 6. Whenever v € [b,a] N Z:
P(GD™ Hyp 15 <v) <1—qo (104)

Where qo > 0 is as given in Lemma(I3]and can be taken to be a universal constant under the present
hypotheses.
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Proof. We will denote K,,_;x by z,, for the sake of convenience. We note that when conditioned on
Hg’;q for s < w, x, is fixed. Using Lemma we note that:

P(GS|D>, flg:;_l cs <) <Pz Gy, < 1z] Gz, D, Flg:;_l 18 <)
We note that G‘% is independent of H, S’g_l for s < v (eventhough ﬁé’ pg_1 1s not necessarily). Now

ville allsq note that G”é is independent of Ds for s = v. Therefore, we can apply Lemmato conclude
the claim.

Let D C {b,...,a} such that |D| = r. It is also clear from item 1 and the definitions above that
whenever the event N, pG, holds, we have:

b
I TT 6512 < (1= 4BAin (@))% (105)
S=a
Therefore, whenever Equation (I03) is violated, we must have a set D¢ C {b,...,a} such that
|D€| > b — a — r and the event N,e peG¢ holds. We will union bound all such events indexed by

D¢ to obtain an upper bound on the probability that Equation (103)) is violated. Therefore, using
Equation (T04) along with the union bound, we have:

b
- s |p a—b+1 a—ber
P (n [T Al = (1= 7B ()| D" ) (oo ty)u-wr

Whenever @ — b + 1 is larger than some universal constant, we can pick r = ¢o(b — a + 1) for some
constant co > 0 small enough such that:

b

75"’“) <exp(—cz(b—a+1))

Now, let AV be a 1/2-net of the sphere S?~. Using Corollary 4.2.13 in [50], we can choose |N| < 6.
By Lemma 4.4.1 in [50] we show that:

b b
rrs, | ) rrs, T
T bl <2 sup | | R (106)

s=a S=a

By union bounding Equation (T06)) for every = € A/, we conclude that:

b
P (” T o5ill = 200 = ¢YBAwmin (G))+ oY)

S=a

D> < [N exp(—csla— b+ 1))

=exp(—cs(a—b+ 1) + cs5d) (107)
O

We will now state the equivalent of [[19, Lemma 32]. The proof proceeds similarly, but using
Theorem [I0]instead. Consider the following operator:

N—1a+1

Fa,N := Z Hﬁg;g_l (108)

t=a s=t
Here we choose the convention that whenever s > t, then in any product involving f[&’;fl and
H} _. s appears to the right of . Hence, we use the take [, flg,’;fl =1
Theorem 11. Suppose all the conditions in Theoremhold. Then, for any § € (0, 1), we have:
N 1 -
P(||F,n||>C(d+log—~+ s || DN ) <6
(1= 0 (a+ioss + ) ’ )<

Where C is a universal constant.
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F Self Normalized Noise Concentration

We recall the events defined in Section[Bl:

1. DT(R) = {SupOStST ||Xt||2 < R}

2. Ep(k) :={G = %}

3. DT(R, IQ) = DT(R) N ST(I{)
From Lemma we conclude that taking R > C2C,(S(p,T))*c 21og(2L) ensures that
P(Dr(R)) > 1 — 3. Only in this section, we define the following:

1. Xt = ¢(A*Xt)

2. Kx = T t 0 tht + e X,

3.G =Ly XtXT

4. K th 0 77t77t

Lemma 17. Let § € (0,1) Take R = C2C,(S(p,T))?do? log(2F), k = 2 and suppose T >
Cs (dlog ( ) + log 5) for some constant C’3 depending only on C,. Then, we have:

(DT<R’ "Q)) >1-9

Proof. Consider G = T t 0 XtXT = T t 0 XILXT + X + e X,” + mem . For this
proof only, we will define, To show the result, we will prove that K x is not too negative with high
probability and that K, dominates identity with high probability. Let z € S%~! and A € R Note that

due to the sub-Gaussianity of 7, and the definition of the process,

M, = exp (Z /\<x7ns><I7XS> - 077(7 A <X87:C>2> :

s=0 2

is a super martingale with respect to the filtration F; := o(Xo,7n0,...,n:), we conclude that
EMp_; < 1. An application of Chernoff bound shows that for every A, 8 > 0, we must have:

P ((x Kxz)| > 2C,0° z " Gz + b ’DT(R)> < T 3 5 exp(—Ap) (109)

We will now invoke Theorem 5.39 in [51]] to conclude that for some constant Cs which depends only

on Cy:
1
P (1‘(,, < <1 - Cy ( £+ 1°§6>> o*I|Dr(R

Consider any € net /\/ over Sd 1. By Corollary 4.2.13 in [51], we can take |N;| < (1 + 2)%.
From Equations (T09) and (TT0), we conclude that conditioned on Dy-(R), with probability at-least

1-2 \N|Mwehave

)
)) <7 (110)

inf z'Gz > mf yTGy—2||G||e

(Eesd 1
> ylenf y Gy — IyTny\ + yTK,,y - 2||G||6
> inf y Gy — |yTKXy\ +y Kny —2Re
yEN.

Y

1
1nfyGy(1—2)\aC) 5+02<1—02<ﬁ+ 105;6))_2]%6

yE €
(111)
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In the third step, we have used the fact that under the event Dy (R), |G| < R. Take A = T Tom
and e = g and B = 202dC,log(16% + 1) + 202C, log 3. We conclude that whenever
T>Cs (d log (U—Rz) + log %) for some constant C'3 depending only on C),, with probability at-least

1-— % conditioned on Dr(R), we have: G = %2[. In the definition of Ep(k), we take Kk = 2.

Therefore, we must have:
P(&r(x) N Dr(R)) = P(Er(r)|[Dr(R)B(Dr(R) > (1 §) 21 -6

We conclude the result from the equation above. O
We now give the proof of Lemmal[T]

F.1 Proof of Lemmalll

Proof. We invoke Theorem 1 in [20] with S, = TN;, V = To2I, V;, = V + T'G. We know that
(n, e;) is Cyo? sub-Gaussian. So, we take ‘R’ in the reference to be ;0. Therefore, we conclude
that with probability at least 1 — ¢:

NTVIN; < 20,02 log (det(Vt)l/2 det(V)1/2> . 112
T2 )
Under the event Dr (R, k), we must have: V; < 02T + TRI. This implies:
det(V,) /2 det(V) ™12 < (14 B)% (113)
Now, observe that under the event Dy (R, k), G >~ % Therefore, V;, < 3T G. This implies:
L NTE R < NI, (114)

3T

Combining Equations (IT12), (IT3)) and (114) and using Lemma[T7] we conclude that with probability
at-least 1 — 26, we have:

6(77702

]\AfiTCAT'*l]\Afi < [dlog(l + (%) + log %]

Using union bound, we conclude the result. O

G Parameter Recovery Lower Bounds for ReLU-AR Model

We will show that in the case of non-expansive activation functions, parameter recovery can be
hard information theoretically. More specifically, even when ¢ = RelLU and n; ~ N(0, ), and
[|[A*||2 = p < 1, we will need exponentially many samples with respect to d in order restimate A*
upto any vanishing accuracy. We do this via the two point method. Henceforth, we will assume that
d > 2. Given € > 0, define with matrix A(e) € R%*? as:

1 if i=ji<d-1
0 if i#£75i<d-—1
Aij(e) -\ _ deil if Z#‘],Z —d (115)

0 if i=j=d

We will consider NLDS(A(€), N'(0, I), ReLU) and NLDS(A(0), N (0, I), ReLU) as the two points in
the two point method. As usual, we will consider X, = 0 almost surely for the sake of convenience.
But it will be shown that this process is rapidly mixing since we intend to pick € such that || A(e)|| < 1,
so all the results should easily extend to stationary sequences. We collect some useful results in the
following lemma:

Lemma 18. LA = /15 + €2
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2. Suppose € is small enough such that ||A(e)| < 1. Let Xo,X1,...,Xp ~
NLDS(A(e), N (0,1),ReLU) with Xo = 0. For some universal constant p1 > 0, we
have for every i < d, t > 0:

1
P (<Xt+1,€i> > Q‘Xt> > p1

Proof. 1. Proof follows from elementary calculations.

2. X¢+1 = ReLU(A(€)X:) + n:. Therefore, for every ¢ < d — 1, must have: (X;1,e;) >
(ne, €;). Therefore, we conclude that

1
P (<Xt+17€i> > 2’Xt) =P (<ntaei> >3 Xt> >p1>0.

O

We will now show that the last co-ordinate (X, 1, e4) is just noise with a large probability and hence,
we cannot estimate the last row of A(e) even with a large number of samples. Note that the event
(Xt+1,€d4) # (e, eq) is that same as the event {aq(e), X¢) > 0. Let aq(e) denote the last row of
A(e), in the form of a column vector.

Lemma 19. Suppose t > 2. Then, for some universal constants Cy,Cy > 0,
P ({aq(€), Xi) > 0) < Coexp(—Cid).
Proof. (a4, X;) > 0if and only if (a4, ReLU(A(€)X;_1)) + (aq,m—1) > 0. We first note that the

first d — 1 rows of X;_; are i.i.d. by the definition of A(e). Therefore, we conclude using Lemma
that:

P ((ad, ReLU(A(e)X¢—1)) > —coe\/a) < exp(—cid).

for some universal constants cg, c1. Now, (ag, ;1) is distributed as A/ (0, 62) and is independent of
Xt—1. Therefore, with a large probability, (a4, ReLU(A(€)X;_1)) takes a large negative value and
by Gaussian concentration, (a4, 1;—1) concentrates near 0 . Therefore, using elementary calculations
we conclude the result. O

In what follows, by X% = (Xg,...,X%) we denote the process such that X§ = 0 and
(X§, ..., X5) ~ NLDS(A(e), N (0, ) ReLU)

Lemma 20. When ¢ < %, for some universal constants cy,c1 > 0, we have:

TV(XS, X%) < ¢ <e + eﬁexp(—cld)> .

Proof. Following the proof of Lemma 36 in [[19], we conclude that:

KL(XS||XS) = Z E|[ReLU(A(€) Xf) — ReLU(A(0)X?)|? (116)

Note here that the expectation is Wlth respect to the randomness in the trajectory X¢. Applying the
definition of A(e) and ReLU to Equation (T16), we further simplify to show that:

1 T—1 1T—l
KLOKSIXS) = 5 S EIReLU({aale), X)) = 5 3 BIReLU((aa(e), XD (1)
t=0 t=1

In the equation above, we have used the fact that X§ = 0 almost surely. Now when t = 1, we have

X§ =mno ~ N(0,I) almost surely. Therefore, E|ReLU({a4(€), X§))|?> = &. For t > 2, we will use
Lemma|[19]and Theorem|8] In this proof only, define P; to be the event {(ad, X)) > 0} Therefore,
we conclude that:

42



E[ReLU((aa(e), X7))I* = EL(Py)[(aa(e), X7)|*
L(P)llaa(e)|*[1 X1
L(Po)e|| X1

< EVP(P)VE[ X |* (118)

From Lemma[19] we conclude that P(P;) < Cjexp(—C1d) and from Theorem [8] it is clear that

the concentration inequalities hold we show that /E|| X} ||* < Cad for some universal constant Cs.
Combining the results above with Equation (117)), we obtain that for universal constants C, C:

IA

E
E

KL(X%||X$) < Co (€2dT exp(—Cid) + €%) (119)

We then use Pinsker’s inequality to conclude the result. [

G.1 Proof of Theorem [

Proof. Let the notations below be as defined in the statement of the theorem. Since the
minimax loss upper bounds any Bayesian loss, we will consider the uniform prior over
{NLDS(A(¢e),N(0,1),ReLU), NLDS(A(0),N(0,I),ReLU)}. For any estimator .A with input
Xo, ..., X7, we denote A(X) as its output. We use the notation X¢ and X" as defined in Lemma
Therefore,

L(O(3).T) > inf LL(A T, AD) + 3L(AT, A(e)

1
= S InfEJACX) — AO)]} + EJAX) - A(e)|: (120)

Where the expectation is over the respective trajectories X¢ and X°. Now, from Lemma [20| and
the coupling calculation of TV distance, we can define the trajectories X¢ and X° on a common
probability space such that P(X? # X¢) < TV(X?, X¢). Picking ¢ to be small enough such that
TV(X%,X€) < L (which is true for a choice of €? = ¢ min(%;ld), 1) for universal constants
co, c1). Define the event S := {X° = X}, we conclude from Equation (T20) that:

L(O(;),T) = 5 nf EL(S7)[|AX?) = A(0)[ + EL(ST)[|AX) = A(€) || (121)

| —

Note that over the event S7, we must have A(X¢) = A(X?) in the case of a deterministic estimator.
In case of a random estimator, the proof is same once we observe that their distribution is same and
hence can be coupled almost surely. By convexity, we must have: |la — b||? + [|b — ¢||* > L||a — c[|*.
Combining these considerations into the equation above, we have:

P(S;)
cod). 1) > " a0 - A
> i (122)
iy 8 .
From the choice of €2 above, we conclude the result.
O
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H Proofs of Technical Lemmas

H.1 Proof of Lemmal[1(|

Proof. The proof follows from integrating the tails. Let Z := exp(\Y?). For any v € RT, we have
from the definition of sub-Gaussianity.

lify <1

P(Z>~)= P<|Y> Tgf”) > 1 (123)

Now,

EZ = / P(Z > ~)dy

/d7+/ <|Y> 1°g<7>dfy
§1+/ 2exp( 1‘2)55/\))617
1
o 1
:1+2/ Y22 N dry
1

402 )\
1— 202\
<1482 (124)

H.2 Proof of Lemma[14]

Proof. We draw X, ~ T, independent of X;. We obtain X s+ by running the markov chain with the
same noise sequence. i.e, Xg1x+1 = P(A* Xs1k) + Nstr. We then obtain X;. Then, it is clear that:

(X, 2)2(X,, 2)% = (Xy — Xy + Xy, )2 (X, 2)?
S 2<)~(t7 .T>2<Xs,1'>2 + 2<Xt - Xtv'T’>2<Xsax>2

Taking expectation on both sides and noting that X, is independent of X, we conclude:
E(X¢, 2)%(Xs,2)? < 2(z' Gz)? + 2B(X, — Xy, 2)% (X, z)? (125)
By Assumptlonl we have: || X, — X||? < <C’p 2(t=9)|| X, — X, |. Plugging this into Equation (123)),

we conclude:

E(Xy,2)%( X, 2)? < 2(z Gz)? + 2E||2]>C2p* 9 || X, — X,||*(X,, 2)?
< 227 G)? + 4o 222 TR (I1X )2 + 1K, )12) (X, 2)?
= 27 Ga)? + 4)jo| 222 [EI XXX, @)% + 2 GaB| X, |2] (126)

We can evaluate || X,||? from Theorems and@

1. First we consider the Sub-Gaussian setting with [|[A*|| = p < 1and C, = 1. Fix R > 0.
We will use the notation from Theorem [§|below. We can then write,
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E[| X (X5, 2)? = E|| X (X5, 2)*1(]| X || < R) + E[| X[*(Xs, 2)°1(| Xs]* > R)
< ER(X, 2)’1(|| X, |* < R) + E[ X, [I*1(| Xs]* > R)
< Rz Gz + E|| X,|*1(| Xs|* > R)
< Rz Gz + VE| X |BVP(| X:]2 > R) (127)

From Theoremland Proposition 2.7.1 in [50], we show that E|| X||® < C (dc"o ) for

Sana 210g5 24dC7,o log( )
+ <

1—p — 1—p

VP (|| Xs]|?2 > R) < §. We plug this into Equation (I27), take § = % after noting
that z T Gz > 02||x||? to show that:

some universal constant C. Again, taking R = , we have:

2
B|LX.|12(X,2)? < 02 Tamlog(ld ) (128)
- -

Where C is a constant which depends only on C,,. Using Equation (128} in Equation (T26)),
we conclude that:

_ do? d
E(X,,z)%(X,,x)% < 2(z' Gz)? + ClC§p2(t75)%xTGaz log <1_p) (129)

2. From Equation (126)), we directly conclude via Cauchy Schwarz inequality that:
E(X:,2)*(Xs,2)? < 2(2 T Ga)® + 8]z *CL > E | X!

We then use the bound on E|| X, ||* given in Theorem|§| to conclude the result.

H.3 Proof of Lemmalf2

Proof. Consider G = T ZT X, X! and consider the coupled process as in Defintion 2l We
will divide the times into buffers of size B, with gaps of size u and also consider related notation

as given in Section [Cl Now, G = = t LG, where G is the empirical second moment
matrix of the buffer ¢ given by GV = L ZB ' X5T X!, Now, consider the coupled second
moment matrix defined on buffer ¢ given by G = }3 f 01 X ¢ TX ! By Lemma we know that

[G® — GO < AN*C,p*. Where M* = SUp, <7 Max (HX 12, 1 X, ||2> Now, observe that by

definition of the cou%hng, we have that G are i.i.d. Combining the considerations above, and letting
B > u to conclude 2

N
G 2560 = LS G0 _anrc,p (130)

Before proceeding further, we will give a high probability bound on M*. By Markov’s inequality,
and Theorem
2TE|| X, [* _ 2TC)do”

R ~(1-p)2a

~ 2 2
Consider the event Dr(R) = {M* < R}. Letting R = (Tdc)z 5 only in this proof, we conclude

that:

P(M* > R) <

P(Dr(R)) > 1—
Recall that G = EX, X. Now, as shown by item 2 in Lemma (15} we have whenever B >
4CS My
(I-p)*(1-p)o?

N >

~ 1
P (xTG(t)x > 2xTGx) >po>0. (131)
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Now, consider any arbitrary, fixed vector x € R%. Using independence of G® and Equation (131),
we conclude that for some universal constants cg, ¢;, we must have:

N
1 T A T
P(N ;x Gz <cyxr’ Gz) <exp(—c1N). (132)

Rewriting the equation above by taking = = G—1/2y, we have:
1 & .
P(N ZyTGfl/ZG(t)Gfl/Zy < collyll*) < exp(—eiN). (133)
t=1

For simplicity of exposition, we will take .J := Zf;l G~1/2GG~1/2 in the calculations below.
Before proceeding with a bound on the operator norm, we will give a bound on ||.J||. Since G = 021,
we must have: ||.J]| < IZI; .

Now, we will apply an epsilon net argument. Let A; be an e-net over S*~!. We can take |N;| <
1+ 2)~

inf y'Jy> inf y'Jy—2|J|e.
jJuf v Ty > inf oyt Ty = 2| 7]

We let e = % for some constant ¢ > 0 small enough and R as defined earlier in this proof. By
union bound over D5.(R) and the event given in Equation (I33), we conclude that for some universal
constant cg > 0 small enough:

IP( 1é1§ ) y' Jy>co,M* <R)>1—exp(Cdlog(Z)—ciN)—3 (134)
YyeESTT

Now, using Equation (T30), we conclude that:

G_1/2GG_1/2 - % _ 4M*CppuG—1

Using the fact that G < U—IQ and using Equation (134)), we conclude that whenever 7' >
tog [ BC1Ce
6
_ 4CMs and u > o\ )
(A=p) (1=p?)o" L)
P

for some constant ¢y > 0 small enough, with probability atleast 1 — J, we have:

Cdlog(§)Blog(R/o?), B > u, B > , we conclude that

GECOG

H.4 Proof of Lemmal7l

First, we will obtain a crude upper bound on H&;‘l —a* H using Theorem That is, we want to
show that HZL§-_1 —a* H does not grow too large with high probability.

Proposition 3. Let A\pin = Amin(G). Conditional on D**=1 N NL_LEY 5, with probability at
least1 — N6, forall1 <t < N, all 1 < j < B we have '

. N 1
@t —a*|| < llao — al| +2vBV/RBC (d+ log — + W) (135)

where C' is constant depending only on C,.
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Proof. Let us start with the expression for d;fl —a*

t—2 Jj—1

~t— * * 7 ¢ rrt— ct— SixtL Tt

(@ —a)" = (a—a*)" (H H5,31> Hyghy +2y ) ¢/ (€5 X T
s=0 =0

t B-—1 1
+2vZZ¢’(£if>siinf’THf+£B1< 1 H) (136
r=2 =0 s=r—1

We will work on the event D'~ N N!ZLEL ;. Itis clear from Equation (T36) that:
t 1
< llao — a*|| + 2yB\/RB + 2y\/RBB < 11 ng;_1> H
r=2 s=r—1

We use Theorem [TT] (with appropriate constant C' > 1 to account for minor differences in indexing)
to show that conditional on D%t~1 N ﬁi;%)é’g, g_1, for fixed ¢, with probability at least 1 — ¢, for all
1<j<B

i~

~t— * * N 1
lat~! — a*|| < llag —a ||+273m0<d+10g5+%)

Thus taking union bound we get that conditional on D%*~1 n NL_{ 0,5—1 With probability at least
1—No,foralll <t< N-—1landalll <j<B

a1 = o < llao — a*| + 2yB+/RAC (d tlog %+ 1)

C’VB)‘min
O
Proof of Lemmal[7] On the event &N D"N=1 we note the following inequalities
a=a0<s<r,0<i<B-1 (137)
ag = ag (138)
i/ RB + Yo R ag, — a*]), s=r1<i<j

a5 — a5l < § 4G + DywWRB + Yi—p WRllay —a*|,s =7, j+1<i<B—1 (139
A+ VWRB+ Yo 4R a; —a*||,r <s, 0<i<B-1

The result then follows from an application of Proposition 3] with & chosen as in[C.4] O

H.5 Proof of Lemmal

We first state and prove the following result:

2
X H ) and suppose y < For everyt € [N] and

Lemma 21. Let Ryax := sup, <7 (|| X- %,
i1 € [B] we have:

1
2Rmax "

”af” < 29RpaxT

Proof. Let the row under consideration be the k-th row and ey, be the standard basis vector. Consider
the SGD — RER iteration:

afr = af =2y (@(al, X)) - X' y)) XL
= (I - 27<t,iXt_iXE;r>a§ + 27<Xt,(i,1)); ek>Xt_l (140)
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tXt, . . .
Where (;; = % € [¢, 1] exists in a weak sense due to our assumptions on ¢. Observe

that for our choice of v, we have ||(I — 2v¢,; X", X"[)|| < 1 and (XL oy er) X" || € Ruax.
Therefore, triangle inequality implies:

”a§+1H < HafH + 29 Rmax
‘We conclude the bound in the Lemma.
O

Proof of LemmaM] Let the row under consideration be the k-th row and e, be the standard basis
vector.

a§+1 = a; — 2v(¢({aj, X1;)) — <ekaXt7(i71)>)Xt—i
= af — 29(¢({af, X1,)) — <ek7Xt—(i—1)>)Xt—i + A (141)
Where
Apii=2y (¢(<a;‘:’)~(t_i>))~(t_i — o({a;, Xii>)Xt—i)+27 (<th(i71)’ er) XL, — (X! (i—1) ek>Xii) .

Using Lemmas [2T]and 3] we conclude that:
Al < (1672Rr2naxT + 87 Rmax)p"
Using the recursion for ag, we conclude:

alpy —alyy = (I —29G i XIXPT)(af — al) + A

(1 = 209G XEXET)|| + (1692 B2, T + 87 R )"
= |lalyy —al || < ||lal — @l + (16v°R2,,, T + 8vRumax)p" (142)

= lofs =i ] < flai - aif

o((at, XL ) -0t XL,
(af X 5)—@t. Xt
under the conditions on -, we must have H (I —2vG  XEXT 7T) H < 1. We conclude the statement of
the lemma from Equation (T42). O

In the first step, <~t,i S ) € [¢, 1]. In the last step we have used the fact that

H.6 Proof of Claim[3]

Proof. Letry > r1. As in proof of Claim let Cr” denote the resampled version of Cr obtained by
re-sampling nt:j:l ie.,

1
! N Y 2 _t—ry _t—ropt—ry | vt—7r2, T ;pt—rs rrt—s .
Cr'(t,r1, 79, J1,J2) i= 4y €_j1 €4, Rfjl [ij Hj2+17B—1 ( H 0,B—1>
s=ro—1
r1—1
rrt—s, T rrt—r1, T vi—r1
H HO,Bfl Hj1+173*1X—Jl
s=1

r1+1
_ 2 _t—ry _t—ro wvt—ro, T [ frt—rs [rt—s
= dytelj et X, (Hj2+1,B—1> I @5 )

s=ro—1
1 r1—1
t—r rrt—s t—r1 rrt—s, T t—r1 rrt—r1, T ot—r
RZ (H H5,31> RZj (H Ho,Bl) RZi (Hj1+i371> X5
S=T1 s=1
(143)

Here we have used the fact that Rt:J’;l does not affect the buffers up to ¢t — r; — 1 and only X that
are affected are in the term ﬂé,_jfl_l. Like in Claim notice that

E| Y S ot | =0

r2>T1 j1,J2
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Applying Lemma[9] we conclude that:

Z Z Cr'(t, 71,72, 41, J2)

T2>71 1,72

t—1 B—1 1
~t—r;—1, v Tpt—ry rrt—r1 t—ry r7t—s
=2y Z Z ) RZ (Hopla ) RES Hyg 1)
r1=171=0 s=r1—1

Tlfl
t—rq rrt—s, T t—ry t r1, 1 t—ry t T1
R*Jl ( H H07B—1> R*Jl ( Jji+1,B— 1) X7]1 —J1 (144)

We cannot continue our analysis like in Claimbecause due to resampling of Et:j:l, fléj;il changes
not just because of the iterates a: " but also due to X — X.

Further

E| S S, ra i)l [ﬁovf—”—l}1[15t—"1+1=t—1}1[15:?1“1] —0 (145

r2>T1 j1,52

Next we have simple lemma

Lemma 22. Consider for each (r1, j1), the re-sampling operator Rt__j:l

- Bt)? 1
E Z Zcr(t,ﬁ,rz,jl,jz)l [Do’tfl] §4’Y2R( 2) Cho?—7 +

Te/2
| 72>71 J1,J2

E Z Z Cr(t, 11, 72, j1, jo)1 [ﬁo,t—l] Rt_—j:ll [’151—07“1} (146)

r2>T1 j1,52

Proof. We have
1 {ﬁo,tfl] -1 [DOt 1} Rt r11 {Dt rl} 41 [DOt 1} Rt rll |:Dt 1, C:| (147)

Hence

E Z Z Cr(t, 71,72, j1,J2)1 [ﬁo’t_l}

T2>71 j1,72

IN
&=

Z Z Cr(t’rl’TQ’jl’jQ)l [DOt 1] Rijzll [Dt T1:| +

| 72>71 J1,J2
1
Te/2

2
2R P00 (148)

where we used R’ ”1{ D', “’C} is identically distributed as 1 [ﬁt__oh’c} and hence
t—r t—ry, 1
{R*jlll [D—O H < 7w
O

So, based on the above lemma, we focus on bounding

Z Z Cr(t7r17r2aj17j2>1 [ﬁo’t_l] Ri;:11 |:115t_70711i|

r2>T1 j1,52
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Now notice that

E Z ZCr’(t,ﬁ,T’z,jl,jz)'

T2>T1 j1,)2

1 {@O,t—rl—l} 1 [ﬁt—rﬁ—l,t—l} 1 [@t_—]?} Rt_—j?l {f)t:onﬂ

—0 (149)
Hence
E| Y 3 ot gl [P RGP | =0
| 72>7T1 J1,J2
E Z Z Cr'(t,r1,72, j1,J2)1 [f)o’tﬂlfl] 1 {ﬁt*rlﬂ’kl} :
[ 72>7T1 J1.J2
1D 1 (uis et e R | Dt (150)
—J1 =0 Y—1 —J1 -0
Thus
N - Bt)? 1
E Z Z Cr/(tarlvr27j17j2)1 |:D07t_1:| Ri;:ll |:Dt_70r1:| S Q’YQR( 2) CT]OQTQ/2
T2>T1 j1,J2
(151)
Now, similar to lemma on the event £;; N DOt=1 N A1 we have:
o I VB
( 11 éﬁ_1> -RED ( 11 5,5_1> < OBt IV RBH (152
s=r1—1 s=r1—1 min
. . 2
Next, similar to lemmafor YR < 1, on the event D'j* N Nt {HR;TI x| < R} we
have
HHS;;; - R (Hgg; 1) H < 4vRB (153)

Finally we can bound the norm of the expected difference of sums of Cr and Cr’ using lemma@ and

(44 as
B| 30 > (-0 [P R B 1 b e (A
r2>T1 j1,j2

t—1
~t—r1—1,v

< 27E Z Z \/R|€t__jll H ag

ri=1 7
VB
C)\min * CWRB):l

< /1 3T2 3B \/B 2T B 2 ]E ~S,V
(CloTrs S+ crrs) rC,e | sw B[

]

(o 16" |2 TR B

]

(154)
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Thus

E Z Z (Cr— Cr/)l [@O,t—l] Rt,;? 1 [ﬁi?)rl}
T2>71 j1,j2
Y*RCyo <\/ P U5 Ut €0 + \/Wﬂ

<C <¢”II 73T2R3B<;/? + VZTRB) \/W\/ sup E [l 1 [5o<]
1

+C(BN)*y* RCyo” 7o

o]

+ C(Bt)?

(155)

Combining everything we conclude the claim.
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