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A RELATED WORK

Offline RL Many recent methods for offline RL (Fujimoto et al., 2018a; Kumar et al., 2019; Wu
et al., 2019; Jaques et al., 2019), where no interactive data collection is allowed during training,
mostly rely on constraining the learned policy to stay close to the data collection distribution. Fuji-
moto et al. (2018a) clip the maximum deviation from actions sampled from a base behavior policy,
while Kumar et al. (2019); Wu et al. (2019); Jaques et al. (2019) incorporate additional distribu-
tional penalties (such as KL divergence or MMD) for regularizing learned policies to remain close
to the base policy. Our work is an instance of this family of approaches for offline RL; however,
arguably our method is simpler as it does not involve learning an additional proposal-modifying
policy Fujimoto et al. (2018a), or modifying reward functions (Kumar et al., 2019; Jaques et al.,
2019).

Finding Maximizing Actions Naı̈vely, EMaQ can also be seen as just performing approxi-
mate search for maxaQ(s, a) in standard Q-learning operator, which has been studied in various
prior works for Q-learning in large scale spaces (e.g. continuous). NAF (Gu et al., 2016b) and
ICNN (Amos et al., 2017) directly constrain the function family of Q-functions such that the opti-
mization can be closed-form or tractable. QT-OPT (Kalashnikov et al., 2018b) makes use of two
iterations of the Cross-Entropy Method (Rubinstein & Kroese, 2013), while CAQL (Ryu et al., 2019)
uses Mixed-Integer Programming to find the exact maximizing action while also introducing faster
approximate alternatives. In (Van de Wiele et al., 2020) – the most similar approach to our pro-
posed method EMaQ – throughout training a mixture of uniform and learned proposal distributions
are used to sample actions. The sampled actions are then evaluated under the learned Q functions,
and the top K maximizing actions are distilled back into the proposal distribution. In contrast to
our work, these works assume these are approximate maximization procedures and do not provide
extensive analysis for the resulting TD operators. Our theoretical analysis on the family of TD oper-
ators described by EMaQ can therefore provide new perspectives on some of these highly successful
Q-learning algorithms (Kalashnikov et al., 2018a; Van de Wiele et al., 2020) – particularly on how
the proposal distribution affects convergence.

Modified Backup Operators Many prior works study modifications to standard backup opera-
tors to achieve different convergence properties for action-value functions or their induced optimal
policies. Ψ-learning (Rawlik et al., 2013) proposes a modified operator that corresponds to policy
iterations with KL-constrained updates (Kakade, 2002; Peters et al., 2010; Schulman et al., 2015)
where the action-value function converges to negative infinity for all sub-optimal actions. Similarly
but distinctly, Fox et al. (2015); Jaques et al. (2017); Haarnoja et al. (2018); Nachum et al. (2017)
study smoothed TD operators for a modified entropy- or KL-regularized RL objective. Bellemare
et al. (2016) derives a family of consistent Bellman operators and shows that they lead to increasing
action gaps (Farahmand, 2011) for more stable learning. However, most of these operators have
not been studied in offline learning. Our work adds a novel family operators to this rich literature of
operators for RL, and provides strong empirical validation on how simple modifications of operators
can translate to effective offline RL with function approximations.

B PROOFS

All the provided proofs operate under the setting where µ(a|s) has full support over the action space.
When this assumption is not satisfied, the provided proofs can be transferred by assuming we are
operating in a new MDP Mµ as defined below.

Given the MDP M = 〈S,A, r,P, γ〉 and µ(a|s), let us define the new MDP Mµ =
〈Sµ,Aµ, r,P, γ〉, where Sµ denotes the set of reachable states by µ, and Aµ is A restricted to
the support of µ(a|s) in each state in Sµ.

B.1 CONTRACTION MAPPING

Theorem 3.1. In the tabular setting, for any N ∈ N, T Nµ is a contraction operator in the L∞
norm. Hence, with repeated applications of the T Nµ , any initial Q function converges to a unique
fixed point.
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Proof. Let Q1 and Q2 be two arbitrary Q functions.∥∥T Nµ Q1 − T Nµ Q2

∥∥
∞ = (11)

max
s,a

∣∣∣∣(r(s, a) + γ · Es′E{ai}N [ max
{ai}N

Q1(s′, a′)]
)
−
(
r(s, a) + γ · Es′E{ai}N [ max

{ai}N
Q2(s′, a′)]

)∣∣∣∣ =

(12)

γ ·max
s,a

∣∣∣∣Es′E{ai}N [ max
{ai}N

Q1(s′, a′)− max
{ai}N

Q2(s′, a′)
]∣∣∣∣ ≤ (13)

γ ·max
s,a

Es′E{ai}N

∣∣∣∣max
{ai}N

Q1(s′, a′)− max
{ai}N

Q2(s′, a′)

∣∣∣∣ ≤ (14)

γ ·max
s,a

Es′E{ai}N ‖Q1 −Q2‖∞ = (15)

γ · ‖Q1 −Q2‖∞ (16)

where line 15 is due to the following: Let â = arg max{ai}N Q1(s′, ai),

max
{ai}N

Q1(s′, a′)− max
{ai}N

Q2(s′, a′) = Q1(s′, â)− max
{ai}N

Q2(s′, a′) (17)

≤ Q1(s′, â)−Q2(s′, â) (18)
≤ ‖Q1 −Q2‖∞ (19)

B.2 LIMITING BEHAVIOR

Theorem 3.3. Let π∗µ denote the optimal policy from the class of policies whose actions are re-
stricted to lie within the support of the policy µ(a|s). Let Q∗µ denote the Q-value function cor-
responding to π∗µ. Furthermore, let Qµ denote the Q-value function of the policy µ(a|s). Let
µ∗(s) :=

∫
Support(π∗µ(a|s)) µ(a|s) denote the probability of optimal actions under µ(a|s). Under

the assumption that infs µ
∗(s) > 0 and r(s, a), we have that,

Q1
µ = Qµ and lim

N→∞
QNµ = Q∗µ

Let µ∗(s) :=
∫
Support(π∗µ(a|s)) µ(a|s) denote the probability of optimal actions under µ(a|s). To

show limN→∞QNµ = Q∗µ, we also require the additional assumption that infs µ
∗(s) > 0.

Proof. Given that,

T 1
µQ(s, a) := r(s, a) + γ · Es′E{ai}N∼µ(·|s′) [Q(s′, a′)] (20)

the unique fixed-point of T 1
µ is the Q-value function of the policy µ(a|s). Hence Q1

µ = Qµ.

The second part of this theorem will be proven as a Corollary to Theorem 3.5

B.3 INCREASINGLY BETTER POLICIES

Theorem 3.4. For all N,M ∈ N, where N > M , we have that ∀s ∈ S,∀a ∈ Support(µ(·|s)),
QNµ (s, a) ≥ QMµ (s, a). Hence, πNµ (a|s) is at least as good of a policy as πMµ (a|s).

Proof. It is sufficient to show that ∀s, a,QN+1
µ (s, a) ≥ QNµ (s, a). We will do so by induction. Let

Qi denote the resulting function after applying T N+1
µ , i times, starting from QNµ .

Base Case
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By definition Q0 := QNµ . Let s ∈ S, a ∈ A.

Q1(s, a) = T N+1
µ Q0(s, a) (21)

= r(s, a) + γ · Es′E{ai}N+1∼µ(a′|s′)[ max
{ai}N+1

Q0(s′, a′)] (22)

≥ r(s, a) + γ · Es′E{ai}N∼µ(a′|s′)[ max
{ai}N

Q0(s′, a′)] (23)

= r(s, a) + γ · Es′E{ai}N∼µ(a′|s′)[ max
{ai}N

QNµ (s′, a′)] (24)

= QNµ (s, a) (25)

= Q0(s, a) (26)

Induction Step

Assume ∀s, a,Qi(s, a) ≥ Qi−1(s, a).

Qi+1(s, a)−Qi(s, a) = T N+1
µ Qi(s, a)− T N+1

µ Qi−1(s, a) (27)

= γ · Es′E{ai}N+1∼µ(a′|s′)[ max
{ai}N+1

Qi(s′, a′)− max
{ai}N+1

Qi−1(s′, a′)]

(28)
≥ 0 (29)

Hence, by induction we have to ∀i, j, i > j =⇒ ∀s, a,Qi(s, a) ≥ Qj(s, a). Since Q0 = QNµ and
limi→∞Qi = QN+1

µ , we have than ∀s, a,QN+1
µ (s, a) ≥ QNµ (s, a). Thus πN+1

µ is a better policy
than πNµ , and by a simple induction argument, πNµ is a better policy than πMµ when N > M .

B.4 BOUNDS

Theorem 3.5. For s ∈ S let,

∆(s) = max
a∈Support(µ(·|s))

Q∗µ(s, a)− E{ai}N∼µ(·|s)[ max
b∈{ai}N

Q∗µ(s, b)]

The suboptimality of QNµ can be upperbounded as follows,∥∥QNµ −Q∗µ∥∥∞ ≤ γ

1− γ
max
s,a

Es′
[
∆(s′)

]
≤ γ

1− γ
max
s

∆(s) (30)

The same also holds when Q∗µ is replaced with QNµ in the definition of ∆.

Proof. The two versions where ∆(s) is defined in terms of QNµ and Q∗µ have very similar proofs.

Version with QNµ

Let T QL denote the backup operation in Q-Learning. Let (T QL)m = T QL ◦ T QL ◦ ... ◦ T QL︸ ︷︷ ︸
m times

. We

know the following statements to be true:

QNµ = T Nµ QNµ = r(s, a) + γ · Es′E{ai}N∼µ(a′|s′)[ max
{ai}N

QNµ (s′, a′)] (31)

T QLQNµ = r(s, a) + γ · Es′ max
a′

QNµ (s′, a′) (32)

lim
m→∞

(T QL)mQNµ = Q∗ (33)∥∥(T QL)m+2QNµ − (T QL)m+1QNµ
∥∥
∞ ≤ γ ·

∥∥(T QL)m+1QNµ − (T QL)mQNµ
∥∥
∞ (34)∥∥(T QL)m+1QNµ − (T QL)mQNµ

∥∥
∞ ≤ γ

m ·
∥∥T QLQNµ −QNµ ∥∥∞ (35)
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Putting these together we have that,∥∥QNµ −Q∗∥∥∞ ≤ ∞∑
m=0

∥∥(T QL)m+1QNµ − (T QL)mQNµ
∥∥
∞ (36)

≤
∞∑
m=0

γm ·
∥∥T QLQNµ −QNµ ∥∥∞ (37)

=
1

1− γ
∥∥T QLQNµ −QNµ ∥∥∞ (38)

=
1

1− γ
max
s,a

∣∣∣∣∣(r(s, a) + γ · Es′ max
a′

QNµ (s′, a′)
)

(39)

−
(
r(s, a) + γ · Es′E{ai}N∼µ(a′|s′)[ max

{ai}N
QNµ (s′, a′)]

)∣∣∣∣∣ (40)

=
γ

1− γ
max
s,a

∣∣∣∣Es′[max
a′

QNµ (s′, a′)− E{ai}N∼µ(a′|s′)[ max
{ai}N

QNµ (s′, a′)]
]∣∣∣∣ (41)

≤ γ

1− γ
max
s′

∣∣∣∣max
a′

QNµ (s′, a′)− E{ai}N∼µ(a′|s′)[ max
{ai}N

QNµ (s′, a′)]

∣∣∣∣ (42)

Version with Q∗µ

Very similarly we have,∥∥QNµ −Q∗∥∥∞ ≤ ∞∑
m=0

∥∥(T Nµ )m+1Q∗ − (T Nµ )mQ∗
∥∥
∞ (43)

≤
∞∑
m=0

γm ·
∥∥T Nµ Q∗ −Q∗

∥∥
∞ (44)

=
1

1− γ
∥∥Q∗ − T Nµ Q∗

∥∥
∞ (45)

=
1

1− γ
max
s,a

∣∣∣∣∣(r(s, a) + γ · Es′ max
a′

Q∗(s′, a′)
)

(46)

−
(
r(s, a) + γ · Es′E{ai}N∼µ(a′|s′)[ max

{ai}N
Q∗(s′, a′)]

)∣∣∣∣∣ (47)

=
γ

1− γ
max
s,a

∣∣∣∣Es′[max
a′

Q∗(s′, a′)− E{ai}N∼µ(a′|s′)[ max
{ai}N

Q∗(s′, a′)]
]∣∣∣∣ (48)

≤ γ

1− γ
max
s′

∣∣∣∣max
a′

Q∗(s′, a′)− E{ai}N∼µ(a′|s′)[ max
{ai}N

Q∗(s′, a′)]

∣∣∣∣ (49)

Corollary B.1. Let Vµ, Qµ, Aµ denote the value, Q, and advantage functions of µ respectively.
When N = 1 we have that,

‖Qµ −Q∗‖∞ ≤
γ

1− γ
max
s′

∣∣∣max
a′

Qµ(s′, a′)− Ea′∼µ(a′|s′)[Qµ(s′, a′)]
∣∣∣ (50)

=
γ

1− γ
max
s′

∣∣∣max
a′

Qµ(s′, a′)− Vµ(s′)
∣∣∣ (51)

=
γ

1− γ
max
s′,a′

Aµ(s′, a′) (52)

It is interesting how the sub-optimality can be upper-bounded in terms of a policy’s own advantage
function.
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Corollary B.2. (Proof for second part of Theorem 3.3)

Proof. We want to show limN→∞QNµ = Q∗. More exactly, what we seek to show is the following,

lim
N→∞

∥∥QNµ −Q∗∥∥∞ = 0 (53)

or,

∀ε > 0,∃N, s.t. ∀M ≥ N,
∥∥QNµ −Q∗∥∥∞ < ε (54)

Let ε > 0. Recall,

∆(s) = max
a∈Support(µ(·|s))

Q∗µ(s, a)− E{ai}N∼µ(·|s)[ max
b∈{ai}N

Q∗µ(s, b)] (55)

Let infs µ
∗(s) = p > 0. Let the lower and upper bounds of rewards be ` and L, and let α = 1

1−γ `

and β = 1
1−γL. We have that,

E{ai}N∼µ(·|s)[ max
b∈{ai}N

Q∗µ(s, b)] ≥ (1− p)N · α+ (1− (1− p)N ) · max
a∈Support(µ(·|s))

Q∗µ(s, a) (56)

Hence ∀s,
∆(s) ≤ (1− p)N · max

a∈Support(µ(·|s))
Q∗µ(s, a)− (1− p)N · α (57)

= (1− p)N ·
(

max
a∈Support(µ(·|s))

Q∗µ(s, a)− α
)

(58)

≤ (1− p)N ·
(
β − α

)
(59)

Thus, for large enough N we have that,∥∥QNµ −Q∗µ∥∥∞ ≤ γ

1− γ
max
s

∆(s) < ε (60)

concluding the proof.

C AUTOREGRESSIVE GENERATIVE MODEL

The architecture for our autoregressive generative model is inspired by the works of (Metz et al.,
2017; Van de Wiele et al., 2020; Germain et al., 2015). Given a state-action pair from the dataset
(s, a), first an MLP produces a d-dimensional embedding for s, which we will denote by h. Below,
we use the notation ai to denote the ith index of a, and a[:i] to represent a slice from first up to
and not including the ith index, where indexing begins at 0. We use a discretization in each action
dimension. Thus, we discretize the range of each action dimension into N uniformly sized bins, and
represent a by the labels of the bins. Let `i denote the label of the ith action index.

Training We use separate MLPs per action dimension. Each MLP takes in the d-dimensional state
embedding and ground-truth actions before that index, and outputsN logits for the choice over bins.
The probability of a given index’s label is given by,

p(`i|s, a[: i]) = SoftMax
(

MLPi(d, a[: i])
)

[`i] (61)

We use standard maximum-likelihood training (i.e. cross-entropy loss).

Sampling Given a state s, to sample an action we again embed the state, and sample the action
indices one-by-one.

p(`0|s) = SoftMax
(

MLPi(d)
)

[`0] (62)

`0 ∼ p(`0|s), a0 ∼ Uniform(Bin corresponding to `0) (63)

p(`i|s) = SoftMax
(

MLPi(d, a[: i])
)

[`i] (64)

`i ∼ p(`i|s, a[: i]), ai ∼ Uniform(Bin corresponding to `i) (65)
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Algorithm 2: Full EMaQ Training Algorithm
Offline dataset D, Pretrain µ(a|s) on D
Initialize K Q functions with parameters θi, and K target Q functions with parameters θtarget

i
Ensemble parameter λ, Exponential moving average parameter α

Function Ensemble(values):
return λ ·min(values) + (1− λ) ·max(values)

Function ytarget(s, a, s′, r, t):
{a′i}N ∼ µ(a′|s′)
Qvalues← [ ]
for k ← 1 to N do

/* Estimate the value of action a′k */

Qvalues.append
(
Ensemble

(
[Qtargeti (s′, a′k) for all i]

))
return r + (1− t) · γmax(Qvalues)

while not converged do
Sample a batch {(sm, am, s′m, rm, tm)}M ∼ D
for i = 1, ...,K do

L(θi) =
∑
m

(
Qi(sm, am)− ytarget(sm, am, s

′
m, rm, tm)

)2
θi ← θi − AdamUpdate

(
L(θi), θi

)
θtarget
i ← α · θtarget

i + (1− α) · θi

D ALGORITHM BOX

E INCONCLUSIVE EXPERIMENTS

E.1 UPDATING THE PROPOSAL DISTRIBUTION

Akin to the work of (Van de Wiele et al., 2020), we considered maintaining a second proposal
distribution µ̃ that is updated to distill arg max{ai}N Q(s, a), and sampling from the mixture of µ
and µ̃. In our experiments however, we did not observe noticeabel gains. This may potentially be
due to the relative simplicity of the Mujoco benchmark domains, and may become more important
in more challenging domains with more uniformly distributed µ(a|s).

F LAUNDRY LIST

• Autoregressive models are slow to generate samples from and EMaQ needs to take many
samples, so it was slower to train than the alternative methods. However, this may be
addressed by better generative models and engineering effort.

G ONLINE RL

EMaQ is also applicable to online RL setting. Combining strong offline RL methods with good
exploration policies has the potential for producing highly sample-efficient online RL algorithms.
Concretely, we refer to online RL as the setting where iteratively, a batch of M environment steps
with an exploration policy are interleaved with M RL updates (Levine et al., 2020; Matsushima
et al., 2020).

EMaQ is designed to remain within the support of the provided training distribution. This however,
is problematic for online RL which requires good exploration interleaved with RL updates. To this
end, first, we modify our autoregressive proposal distribution µ(a|s) by dividing the logits of all
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(a) SAC vs. EMaQ, Trajectory Batch Size 1: For easier visual interpretration we plot a single hyperparameter
setting of EMaQ that tended to perform well across the 4 domains considered. The hyperparameters considered
were N = 200, λ = 1.0, β = 1.0, τ ∈ {1, 5, 10, 20}. SAC performed worse when using 8 Q-functions as in
EMaQ. x-axis unit is 1 million environment steps.

(b) SAC vs. EMaQ, Trajectory Batch Size 50K: For easier visual interpretration we plot a single hyperparameter
setting of EMaQ that tended to perform well across the 4 domains considered. The hyperparameters considered
were N = 200, λ ∈ {0.75, 1.0}, β ∈ {0.1, 1.0}, τ ∈ {1, 5, 10, 20}. x-axis unit is 1 million environment
steps.

Figure 3: Online RL results under different trajectory batch sizes.

softmaxes by τ > 1. This has the effect of smoothing the µ(a|s) distribution, and increasing the
probability of sampling actions from the low-density regions and the boundaries of the support.
Given this online proposal distribution, a criteria is required by which to choose amongst sampled
actions. While there exists a rich literature on how to design effective RL exploration policies (Weng,
2020), in this work we used a simple UCB-style exploration criterion (Chen et al., 2017) as follows:

Qexplore(s, a) = mean
(
{Qi(s, a)}K

)
+ β · std

(
{Qi(s, a)}K

)
(66)

Given N sampled actions from the modified proposal distribution, we take the action with highest
Qexplore.

We compare the online variant of EMaQ with entropy-constrained Soft Actor Critic (SAC) with
automatic tuning of the temperature parameter (Haarnoja et al., 2018). For EMaQ we swept the
temperatures and used a fixed bin size of 40, 8 Q-function ensembles and N = 200. For fairness of
comparisons, we also ran SAC with similar sweeps over different collection batch sizes and number
of Q-function ensembles. In the fully online setting (trajectory batch size 1, Figure 3a), EMaQ is
already competitive with SAC, and more excitingly, in the deployment-efficient setting3 (trajectory
batch size 50K, Figure 3b), EMaQ can outperform SAC4. Figures 4 and 5 present the results for
all hyperparameter settings, for SAC and EMaQ, in the batch size 1 and batch size 50K settings
respectively. In the fully online setting, EMaQ is already competitive with SAC, and more
excitingly, in the deployment-efficient setting, EMaQ can outperform SAC.

3By deployment-efficient we mean that less number of different policies need to be executed in the environ-
ment, which may have substantial benefits for safety and otherwise constrained domains (Matsushima et al.,
2020).

4It must be noted that the online variant of EMaQ has more hyperparameters to tune, and the relative
performance is dependent on these hyperparameters, while SAC with ensembles has the one extra ensemble
mixing parameter λ to tune.
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(a) SAC batch 1 results

(b) EMaQ batch 1 results

Figure 4: All results for batch size 1

(a) SAC batch 50K results

(b) EMaQ batch 50K results

Figure 5: All results for batch size 50K
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H OFFLINE RL EXPERIMENTAL DETAILS

For each environment and data setting, we train an autoregressive model – as described above – on
the provided data with 2 random seeds. These generative models are then frozen, and used by the
downstream algorithms (EMaQ, BEAR, and BCQ) as the base behavior policy (µ(a|s) in EMaQ)5.

H.1 COMPARING OFFLINE RL METHODS

Following the bechmarking efforts of (Wu et al., 2019), the range of clipping factor considered for
BCQ was Φ ∈ {0.005, 0.015, 0.05, 0.15, 0.5}, and the range of target divergence value considered
for BEAR was ε ∈ {0.015, 0.05, 0.15, 0.5, 1.5}. For both methods, the larger the value of the
hyperparameter is, the more the learned policy is allowed to deviate from the µ(a|s).

The rest of the hyperparameters use can be found in Table 1. The autoregressive models have the
following architecture sizes (refer to Appendix C for description of the models used). The state
embedding MLP consists of 2 hidden layers of dimension 750 with relu activations, followed by a
linear embedding into a 750 dimensional state representation. The individual MLP for each action
dimension consist of 3 hidden layers of dimension 256 with relu activations. Each action dimension
is discretized into 40 equally sized bins.

Shared Hyperparameters
λ 1.0

Batch Size 256
Num Updates 1e6

Num Q Functions 8
Q Architecture MLP, 3 layers, 750 hid dim, relu

µ lr 5e-4
α 0.995

EMaQ Hyperparameters
Q lr 1e-4

BEAR Hyperparameters
π Architecture MLP, 3 layers, 750 hid dim, relu

Q lr 1e-3
π lr 3e-5

BCQ Hyperparameters
π Architecture MLP, 3 layers, 750 hid dim, relu

Q lr 1e-4
π lr 5e-4

Table 1: Hyperparameters for Mujoco Experiments

H.2 EMAQ ABLATION EXPERIMENT

Hyperparameters are identical to those in Table 1, except batch size is 100 and number of updates is
500K.

H.3 DETAILS FOR TABLE ?? EXPERIMENTS

Generative Model The generative models used are almost identical to the description in Appendix
C, with a slight modification that MLPi(d, a[: i]) is replace with MLPi(d,Lini(a[: i])) where Lini is
a linear transformation. This change was not necessary for good performance; it was as architectural
detail that we experimented with and did not revert prior generating Table ??. The model dimensions
for each domain are shown in 2 in the following format (state embedding MLP hidden size, state
embedding MLP number of layers, action MLP hidden size, action MLP number of layers, Ouput
size of Lini, number of bins for action discretization). Increasing the number of discretization bins

5While in the original presentation of BCQ and BEAR the behvior policy is learned online, there is techni-
cally no reason for this to be the case, and in theory both methods should benefit from this pretraining
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from 40 (value for standard Mujoco experiments) to 80 was the most important change. Output
dimension of state-embedding MLP is the same as the hidden size.

Hyperparameters Table 2 shows the hyperparameters used for the experiments in Table ??.

Shared Hyperparameters
λ 1.0

Batch Size 128
Num Updates 1e6

Num Q Functions 16
Q Architecture MLP, 4 layers, 256 hid dim, relu

α 0.995
µ lr 5e-4

Kitchen µ Arch Params (256, 4, 128, 1, 128, 80)
Antmaze µ Arch Params (256, 4, 128, 1, 128, 80)
Adroit µ Arch Params (256, 4, 128, 1, 128, 80)

EMaQ Hyperparameters
Q lr 1e-4

Kitchen N’s Searched {4, 8, 16, 32, 64}
Antmaze N’s Searched {50, 100, 150, 200}
Adroit N’s Searched {16, 32, 64, 128}

BEAR Hyperparameters
π Architecture MLP, 4 layers, 256 hid dim, relu

Q lr 1e-4
π lr 5e-4

BCQ Hyperparameters
π Architecture MLP, 4 layers, 256 hid dim, relu

Q lr 1e-4
π lr 5e-4

Table 2: Hyperparameters for Table ?? Experiments

Full Results Table Due to space limitations, we were unable to include the full table in the main
text. Table 3 presents the full set of results.

I VAE RESULTS

I.1 IMPLEMENTATION

We also ran experiments with VAE parameterizations for µ(a|s). To be approximately matched in
parameter count with our autoregressive models, the encoder and decoder both have 3 hidden layers
of size 1024 with relu activations. The dimension of the latent space was twice the number of action
dimensions. The decoder outputs a vector v which, and the decoder action distribution is defined
to be N (Tanh(v), I). When sampling from the VAE, following prior work, samples from the VAE
prior (spherical normal distribution) were clipped to the range [−0.5, 0.5] and mean of the decoder
distibution was used (i.e. the decoder distribution was not sampled from). The KL divergence
loss term was weighted by 0.5. This VAE implementation was the one used in the benchmarking
codebase of (Wu et al., 2019), so we did not modify it.

I.2 RESULTS

As can be seen in Figure 6, EMaQ has a harder time improving upon µ(a|s) when using the VAE
architecture described above. However, as can be seen in Figure 7, BCQ and BEAR do show some
variability as well when switching to the VAEs. Since as an algorithm EMaQ is much more reliant
on µ(a|s), our hypothesis is that if it is true that the autoregressive models better captured the action
distribution, letting EMaQ not make poor generalizations to out-of-distribution actions. Figures 8
and 9 show autoregressive and VAE results side-by-side for easier comparison.
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Setting BC BCQ BEAR EMaQ EMaQ N
kitchen-complete 27.2 ± 3.2 26.5 ± 4.8 — 36.9 ± 3.7 64

kitchen-partial 46.2 ± 2.8 69.3 ± 5.2 — 74.6 ± 0.6 8
kitchen-mixed 52.5 ± 3.8 65.5 ± 1.8 — 70.8 ± 2.3 8

antmaze-umaze 59.0 ± 5.5 25.5 ± 20.0 56.3 ± 28.8 91.0 ± 4.6 100
antmaze-umaze-diverse 58.8 ± 9.5 68.0 ± 19.0 57.5 ± 39.2 94.0 ± 2.4 50
antmaze-medium-play 0.7 ± 1.0 3.5 ± 6.1 0.2 ± 0.4 0.0 ± 0.0 —

antmaze-medium-diverse 0.4 ± 0.8 0.5 ± 0.9 0.2 ± 0.4 0.0 ± 0.0 —
antmaze-large-play 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 —

antmaze-large-diverse 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 —
door-cloned 0.0 ± 0.0 0.2 ± 0.4 0.0 ± 0.0 0.2 ± 0.3 64

hammer-cloned 1.2 ± 0.6 1.3 ± 0.5 0.3 ± 0.0 1.0 ± 0.7 64
pen-cloned 24.5 ± 10.2 43.8 ± 6.4 -3.1 ± 0.2 27.9 ± 3.7 128

relocate-cloned -0.2 ± 0.0 -0.2 ± 0.0 0.0 ± 0.0 -0.2 ± 0.2 16

Table 3: Results on a series of other environments and data settings from the D4RL benchmark (Fu et al.,
2020a). Results are normalized to the range [0, 100], per the D4RL normalization scheme. For each method, for
each environment and data setting the results of the best hyperparameter setting are reported. The last column
indicates the best value of N in EMaQ amongst the considered hyperparameters (for the larger antmaze
domains, we do not report this value since no value of N obtains nonzero returns). All the domains below the
blue double-line are effectively unsolved by all methods. We have technical difficulties in evaluating BEAR on
the kitchen domains. This manuscript will be updated upon obtaining these results. Additional details can be
found in Appendix H.3.

Figure 6: Results for evaluating EMaQ on D4RL (Fu et al., 2020b) benchmark domains when using the
described VAE implementation, with N ∈ {5, 10, 25, 50, 100, 200, 400}. Values above µ(a|s) represent the
result of evaluating the base behavior policies. Horizontal green lines represent the reported performance of
BEAR in the D4RL benchmark (apples to apples comparisons in Figure 7).

J EMAQ MEDIUM-EXPERT SETTING RESULTS

In HalfCheetah, increasing N significantly slows down the convergence rate of the training curves;
while large Ns continue to improve, we were unable to train them long enough for convergence.
In Walker, for EMaQ, BCQ, and most hyperparameter settings of BEAR, training curves have a
prototypical shape of a hump, where performance improves up to a certain high value, and then
continues to fall very low. In Hopper, for higher values of N in EMaQ we observed that increasing
batch size from 100 to 256 largely resolved the poor performance, but for consistency we did not
alter Figure 1 with these values.
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Figure 7: Comparison of EMaQ, BCQ, and BEAR on D4RL (Fu et al., 2020b) benchmark domains when
using when using the described VAE implementation for µ(a|s). For both BCQ and BEAR, from left to right
the allowed deviation from µ(a|s) increases. Horizontal green lines represent the reported performance of
BEAR in the D4RL benchmark.

K LARGER PLOTS FOR VISIBILITY

Due to larger size of plots, each plot is shown on a separate page below. For ablation results, see
Figure 10. For MuJoCo results, see Figure 11.
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