Under review as a conference paper at ICLR 2021

A RELATED WORK

Offline RL. Many recent methods for offline RL (Fujimoto et al., 2018a; Kumar et al.,[2019; Wu
et al., [2019; Jaques et al., [2019), where no interactive data collection is allowed during training,
mostly rely on constraining the learned policy to stay close to the data collection distribution. |Fuji-
moto et al.|(2018a)) clip the maximum deviation from actions sampled from a base behavior policy,
while |Kumar et al.| (2019); |Wu et al.| (2019); Jaques et al.| (2019) incorporate additional distribu-
tional penalties (such as KL divergence or MMD) for regularizing learned policies to remain close
to the base policy. Our work is an instance of this family of approaches for offline RL; however,
arguably our method is simpler as it does not involve learning an additional proposal-modifying
policy [Fujimoto et al.| (2018a)), or modifying reward functions (Kumar et al.l 2019; |Jaques et al.,
2019).

Finding Maximizing Actions Naively, EMaQ can also be seen as just performing approxi-
mate search for max, (s, a) in standard Q-learning operator, which has been studied in various
prior works for Q-learning in large scale spaces (e.g. continuous). NAF (Gu et al.| 2016b) and
ICNN (Amos et al., 2017) directly constrain the function family of Q-functions such that the opti-
mization can be closed-form or tractable. QT-OPT (Kalashnikov et al.| 2018b) makes use of two
iterations of the Cross-Entropy Method (Rubinstein & Kroese,2013)), while CAQL (Ryu et al.}[2019)
uses Mixed-Integer Programming to find the exact maximizing action while also introducing faster
approximate alternatives. In (Van de Wiele et al.l 2020) — the most similar approach to our pro-
posed method EMaQ — throughout training a mixture of uniform and learned proposal distributions
are used to sample actions. The sampled actions are then evaluated under the learned Q functions,
and the top K maximizing actions are distilled back into the proposal distribution. In contrast to
our work, these works assume these are approximate maximization procedures and do not provide
extensive analysis for the resulting TD operators. Our theoretical analysis on the family of TD oper-
ators described by EMaQ can therefore provide new perspectives on some of these highly successful
Q-learning algorithms (Kalashnikov et al., |2018a; [Van de Wiele et al., [2020) — particularly on how
the proposal distribution affects convergence.

Modified Backup Operators Many prior works study modifications to standard backup opera-
tors to achieve different convergence properties for action-value functions or their induced optimal
policies. W-learning (Rawlik et al., |2013)) proposes a modified operator that corresponds to policy
iterations with KL-constrained updates (Kakade, 2002; |Peters et al.l [2010; Schulman et al., [2015)
where the action-value function converges to negative infinity for all sub-optimal actions. Similarly
but distinctly, [Fox et al.|(2015); Jaques et al. (2017); Haarnoja et al.| (2018); Nachum et al.| (2017)
study smoothed TD operators for a modified entropy- or KL-regularized RL objective. |Bellemare
et al.|(2016) derives a family of consistent Bellman operators and shows that they lead to increasing
action gaps (Farahmand, |2011) for more stable learning. However, most of these operators have
not been studied in offline learning. Our work adds a novel family operators to this rich literature of
operators for RL, and provides strong empirical validation on how simple modifications of operators
can translate to effective offline RL with function approximations.

B PROOFS

All the provided proofs operate under the setting where (a|s) has full support over the action space.
When this assumption is not satisfied, the provided proofs can be transferred by assuming we are
operating in a new MDP M, as defined below.

Given the MDP M = (S, A,r,P,v) and p(a|s), let us define the new MDP M, =
(Sus Ay, P,7y), where S, denotes the set of reachable states by 1, and A, is A restricted to
the support of 1(als) in each state in S,.

B.1 CONTRACTION MAPPING

Theorem 3.1. In the tabular setting, for any N € N, 7;N is a contraction operator in the L.,

norm. Hence, with repeated applications of the 7;N , any initial Q) function converges to a unique
fixed point.
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Proof. Let Q1 and Q3 be two arbitrary () functions.

17,501 = 7Y Qe = (1
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ns1,aax (r(57a) + v ES’E{M}N[{I?H&})ZS, Ql(s ,a )]) (T(S, a) + v - B E{ai}N[{Ifgia})]S QQ(S , @ )])‘
(12)
/ / / /
. ’ — <
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v-max By By [Qr = Qo = (15)
v 1Q1 — Q2| & (16)
where lineis due to the following: Let & = arg maxy, ;~ Q1(5,as),
pnax Qui(s',a") — pax Qa2(s',d') = Qu(s,a) — pnax Q2(s',d) (17)
S Ql(sl7 d) - Q2(8/7 &) (18)
< Q1 — Q2] (19)
O

B.2 LIMITING BEHAVIOR

Theorem 3.3. Let ), denote the optimal policy from the class of policies whose actions are re-
stricted to lie within the support of the policy p(als). Let Qj, denote the Q-value function cor-

responding to 7. Furthermore, let Q,, denote the Q-value function of the policy wu(als). Let
wr(s) == fSupport(w*(a|s)) w(als) denote the probability of optimal actions under pi(als). Under
m

the assumption that inf s (1*(s) > 0 and r(s, a), we have that,

L =Qu and lim Q) =Q

N—o00

Let u*(s) := fSupport(ﬂ;(ap)) w(als) denote the probability of optimal actions under p(a|s). To
show limpy o0 ny = @Q*, we also require the additional assumption that infs u*(s) > 0.
Proof. Given that,

7;162(8, a) :=r(s,a) + 7 - EaBgyn s [Q(s, )] (20)
the unique fixed-point of 7;} is the Q-value function of the policy ji(als). Hence Q}, = Q,..
The second part of this theorem will be proven as a Corollary to Theorem [3.3] O
B.3 INCREASINGLY BETTER POLICIES
Theorem 3.4. Forall N,M € IN, where N > M, we have that Vs € S,Va € Support(u(-|s)),

QN (s,a) > QN (s, a). Hence, w}Y (als) is at least as good of a policy as m))! (als).

Proof. 1t is sufficient to show that Vs, a, Qﬁ]“ (s,a) > Qﬁ[(s, a). We will do so by induction. Let
Q' denote the resulting function after applying ’7;N *1, 4 times, starting from Qﬁ’ .

Base Case
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By definition Q° := Q). Let s € S, a € A.

Q'(s,a) = TNQ"(s,a) @21)
=r(s,a) +7- ES/E{ai}N+1~p(a’\s/)[{ar%al*v)il Q"(s',a")] (22)
>r(s,a)+ - IES/E{M}NNH(QWS/)[{EI;%)I% Q°(s',a)) (23)
=r(s,a)+- ]ES/E{M}NNM(MS/)[{IEIa})]S ny(s/, a')] (24)
= Q) (s,a) (25)
=Q%s,a) (26)

Induction Step

Assume Vs, a, Q' (s,a) > Q~1(s,a).

Qi_‘—l(& CL) - Qi(sa a) = 771,N+1Qi(3a a) - 7;LN+1Qi_1(57 a) (27)
A , Nl N YA AN =100 7
=7 EgEy,}n+10u(a)s )[{alfl}?}vﬁl Q'(s',d) (nax, Q" (s',a")]
(28)
>0 (29)

Hence, by induction we have to Vi, j,i > j = Vs,a,Q"(s,a) > Q’(s,a). Since Q° = Q) and
lim; oo Q° = Q', we have than Vs, a, Q)" (s,a) > Q[} (s,a). Thus 7"+ is a better policy
than 7,)', and by a simple induction argument, 7,)’ is a better policy than 7} when N' > M.

O
B.4 BOUNDS
Theorem 3.5. Fors € S let,
A= st W5 @)~ Bloa o i Qul )
The suboptimality of Qﬁ] can be upperbounded as follows,
HQﬁ’ - Q| < % max E, [A(s’)} < ﬁ max A(s) (30)

The same also holds when Q}, is replaced with Qﬁ/ in the definition of A.

Proof. The two versions where A(s) is defined in terms of Qﬁ’ and @7, have very similar proofs.

Version with Qﬁf

Let 7L denote the backup operation in Q-Learning. Let (7@L)™ = T7@L o 7L o . o T?L We

know the following statements to be true: e tmes
Qu =T Q" =r(5,0) + 7 B Ba v wpiaion [ max Q' (s',a)] (31)
TQLQFJY =r(s,a)+v-Ey max ij(s’, a) (32)
im (THQ) = @ (33)
[(TeE)™2Q — (TN QY| < v- (T QY —(TMmQy[l,, G4
[(TE™ QI — (T Qi ||, <™ 1T Q) — Q| (35)
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Putting these together we have that,

@) - @l < X e Q) - Q. @
m=0

Z |7-QLQN Ql]tVHoo (37)
_1

_ HTQLQN QLVHOO (38)

1 N/t o1

SE R eE—

( s, a + - ES/E{a W op(a! |S)[{rna,})§,Q (sl,a’)})‘ (40)

= jnslix E, [HZE}XQ,JX(Slaal) _E{ai}N p(a ‘S,)[{ma})lin (SI’al)]H @0

g%msax maxQ (s',a’) — ]E{a7}NNu(a/‘S/)[{Hla})§Q (5’,a’)]‘ (42)

‘ Version with @,

Very similarly we have,

| < DTy — (T,N)

@y — @ 43)
m=0
< Z TN QY (44)
m=0
- |l —TN (45)
1— ~y H o]
- max (r(s a) +v - By max Q*(s’ a’)) (46)
1— v os.a ’ a’ ’
- (r(s’a) - Es'E{ai}Nw(a'\s’)[fn?ﬁ Q*(S/’a/)})‘ “n
= max Eg/[maXQ*(s’ a') = Bia 3~ op(ar)s) | max Q* (s’ a’)]} (48)
1—~ 5% : 12 ) a; wlarls) LSS )
< —— max [ maxQ*(s’,a') — Ey, ols) [ Max s, a (49)
T x| ma Q" (s, d') = Bapnmp(a )[{I}NQ( )]
[

Corollary B.1. Let V,,,Q,, A, denote the value, Q, and advantage functions of | respectively.
When N = 1 we have that,

* ’y
||Q,u -Q Hoo < m max ’n}ﬁX Qu(5/7 a/) - Ea’wu(a/|s’)[Qu($/v a/)] (50)
- % max ’rr}lgx Qu(s',a) = V,(s) (51)
— % rsnzzxA (sl,a/) (52)

It is interesting how the sub-optimality can be upper-bounded in terms of a policy’s own advantage
function.
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Corollary B.2. (Proof for second part of Theorem

Proof. We want to show limy _, o QLV = Q*. More exactly, what we seek to show is the following,

Jim oY @ =0 3
or,
Ve >0,3N, st. VM > N, [|Q) — Q*||_ <e (54)
Let ¢ > 0. Recall,
A(s) = max QZ(S, a) — E{ai}N,\,#(.‘S)[ max Q7 (s,b)] (55)

a€Support(u(-|s)) befai}V T H
Let inf, p*(s) = p > 0. Let the lower and upper bounds of rewards be ¢ and L, and let o« = ﬁé
and B = ﬁL. We have that,
Efginoulo] max Q%(s,0)] > 1 —p)V -a+(1—(1-p)")- max *(s,a) (56)
(@} (] )[be{ai}N Q. (s,0)] > (1 —p) (1-(1-=p)™) pesdx S Q. (s,a) (
Hence Vs,
As) < (1=p)V- max Q. (s,a) — (1 -V .a (57)
a€Support(u(-|s))
=(1- N~( max *(s,a 704> (58)
(1=p) a€Support(1(-|s)) Quls,a)
<(1-p"-(8-a) (59)
Thus, for large enough N we have that,
N * Y
HQu - Q< 1fm;fauxA(s) <e€ (60)
concluding the proof. O

C AUTOREGRESSIVE GENERATIVE MODEL

The architecture for our autoregressive generative model is inspired by the works of (Metz et al.,
2017; Van de Wiele et al., 2020; (Germain et al., |2015). Given a state-action pair from the dataset
(s,a), first an MLP produces a d-dimensional embedding for s, which we will denote by k. Below,
we use the notation a; to denote the i*" index of a, and af.;) to represent a slice from first up to
and not including the i*" index, where indexing begins at 0. We use a discretization in each action
dimension. Thus, we discretize the range of each action dimension into N uniformly sized bins, and
represent a by the labels of the bins. Let ¢; denote the label of the i*/* action index.

Training We use separate MLPs per action dimension. Each MLP takes in the d-dimensional state
embedding and ground-truth actions before that index, and outputs /N logits for the choice over bins.
The probability of a given index’s label is given by,

p(lils, al: ) = SoftMax(MLPi(d, al: i])) 4] 61)
We use standard maximum-likelihood training (i.e. cross-entropy loss).

Sampling Given a state s, to sample an action we again embed the state, and sample the action
indices one-by-one.

p(fo]s) = SoftMax (MLP,;(d)) [60] (62)
Ly ~ p(€ys), ap ~ Uniform(Bin corresponding to ;) (63)
p(Li]s) = SoftMax (MLPi(d, al: 4] )) 4] (64)
4; ~ p(4;|s,al: i]), a; ~ Uniform(Bin corresponding to ¢;) (65)
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Algorithm 2: Full EMaQ Training Algorithm

Offline dataset D, Pretrain u(als) on D

Initialize K Q functions with parameters 6;, and K target Q functions with parameters
Ensemble parameter A, Exponential moving average parameter «

target
;"

Function Ensemble (values) :

| return ) - min(values) + (1 — A) - max(values)

Function Y (5,a, s, 7,1)

{ai} ~ p(a'|s")

Qualues <+ [ ]

for k < 1to N do

L /* Estimate the value of action a;v */

Qvalues.append(Ensemble([Qﬁarget(s’, a},) for all z]))

| returnr + (1 —t) - ymax(Qualues)

while not converged do
Sample a batch {(S, @, Sty Ty ton )} ~ D
fori=1,..., K do

2
'C(el) = Zm (Qz (va am) - ytargel(sma Am, S;n, T'm, tm.))
0; < 0; — AdamUpdate( L(0;), 9¢>
egargel “a- Hzarget + (1 . Oé) .0,

?

D ALGORITHM BoOX

E INCONCLUSIVE EXPERIMENTS

E.1 UPDATING THE PROPOSAL DISTRIBUTION

Akin to the work of (Van de Wiele et al., |2020), we considered maintaining a second proposal
distribution £ that is updated to distill arg maxg, 1~ Q(s,a), and sampling from the mixture of
and fi. In our experiments however, we did not observe noticeabel gains. This may potentially be
due to the relative simplicity of the Mujoco benchmark domains, and may become more important
in more challenging domains with more uniformly distributed (als).

F LAUNDRY LIST

e Autoregressive models are slow to generate samples from and EMaQ needs to take many
samples, so it was slower to train than the alternative methods. However, this may be
addressed by better generative models and engineering effort.

G ONLINE RL

EMaqQ is also applicable to online RL setting. Combining strong offline RL methods with good
exploration policies has the potential for producing highly sample-efficient online RL algorithms.
Concretely, we refer to online RL as the setting where iteratively, a batch of M environment steps
with an exploration policy are interleaved with M RL updates (Levine et al., |2020; Matsushima
et al., [2020).

EMaqQ is designed to remain within the support of the provided training distribution. This however,
is problematic for online RL which requires good exploration interleaved with RL updates. To this
end, first, we modify our autoregressive proposal distribution p(a|s) by dividing the logits of all
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(a) SAC vs. EMaQ, Trajectory Batch Size 1: For easier visual interpretration we plot a single hyperparameter
setting of EMaQ that tended to perform well across the 4 domains considered. The hyperparameters considered
were N = 200, A = 1.0, 8 = 1.0, 7 € {1,5,10,20}. SAC performed worse when using 8 Q-functions as in

EMaQ. x-axis unit is 1 million environment steps.
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(b) SAC vs. EMaQ, Trajectory Batch Size S0K: For easier visual interpretration we plot a single hyperparameter
setting of EMaQ that tended to perform well across the 4 domains considered. The hyperparameters considered
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Figure 3: Online RL results under different trajectory batch sizes.

softmaxes by 7 > 1. This has the effect of smoothing the p(als) distribution, and increasing the
probability of sampling actions from the low-density regions and the boundaries of the support.
Given this online proposal distribution, a criteria is required by which to choose amongst sampled
actions. While there exists a rich literature on how to design effective RL exploration policies (Weng,
2020), in this work we used a simple UCB-style exploration criterion (Chen et al.,2017) as follows:

Qexplore(s’ a) = mean({Qi(s, a)}K) + 8- std({Qi(s7 a)}K> (66)

Given N sampled actions from the modified proposal distribution, we take the action with highest
Qexplore_

We compare the online variant of EMaQ with entropy-constrained Soft Actor Critic (SAC) with
automatic tuning of the temperature parameter (Haarnoja et al 2018)). For EMaQ we swept the
temperatures and used a fixed bin size of 40, 8 Q-function ensembles and N = 200. For fairness of
comparisons, we also ran SAC with similar sweeps over different collection batch sizes and number
of Q-function ensembles. In the fully online setting (trajectory batch size 1, Figure [3a), EMaQ is
already competitive with SAC, and more excitingly, in the deployment-efficient settin% (trajectory
batch size 50K, Figure , EMaQ can outperform SACﬂ Figures |4-_1| and |5| present the results for
all hyperparameter settings, for SAC and EMaQ, in the batch size 1 and batch size 50K settings
respectively. In the fully online setting, EMaQ is already competitive with SAC, and more
excitingly, in the deployment-efficient setting, EMaQ can outperform SAC.

3By deployment-efficient we mean that less number of different policies need to be executed in the environ-
ment, which may have substantial benefits for safety and otherwise constrained domains (Matsushima et al.,
2020).

“It must be noted that the online variant of EMaQ has more hyperparameters to tune, and the relative
performance is dependent on these hyperparameters, while SAC with ensembles has the one extra ensemble
mixing parameter A to tune.
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Figure 5: All results for batch size 50K
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H OFFLINE RL EXPERIMENTAL DETAILS

For each environment and data setting, we train an autoregressive model — as described above — on
the provided data with 2 random seeds. These generative models are then frozen, and used by the
downstream algorithms (EMaQ, BEAR, and BCQ) as the base behavior policy (u(als) in EMaQﬂ

H.1 COMPARING OFFLINE RL METHODS

Following the bechmarking efforts of (Wu et al., 2019), the range of clipping factor considered for
BCQ was ® € {0.005,0.015,0.05,0.15,0.5}, and the range of target divergence value considered
for BEAR was € € {0.015,0.05,0.15,0.5,1.5}. For both methods, the larger the value of the
hyperparameter is, the more the learned policy is allowed to deviate from the 1(als).

The rest of the hyperparameters use can be found in Table [I] The autoregressive models have the
following architecture sizes (refer to Appendix |C| for description of the models used). The state
embedding MLP consists of 2 hidden layers of dimension 750 with relu activations, followed by a
linear embedding into a 750 dimensional state representation. The individual MLP for each action
dimension consist of 3 hidden layers of dimension 256 with relu activations. Each action dimension
is discretized into 40 equally sized bins.

Shared Hyperparameters
A 1.0
Batch Size 256
Num Updates le6
Num () Functions 8
() Architecture MLP, 3 layers, 750 hid dim, relu
wlr Se-4
o 0.995
EMaQ Hyperparameters
QIr [ le-4
BEAR Hyperparameters
7 Architecture MLP, 3 layers, 750 hid dim, relu
Qlr le-3
wlr 3e-5
BCQ Hyperparameters
7 Architecture MLP, 3 layers, 750 hid dim, relu
Qlr le-4
mlr Se-4

Table 1: Hyperparameters for Mujoco Experiments

H.2 EMAQ ABLATION EXPERIMENT

Hyperparameters are identical to those in Table[I] except batch size is 100 and number of updates is
500K.

H.3 DETAILS FOR TABLE ?? EXPERIMENTS

Generative Model The generative models used are almost identical to the description in Appendix
with a slight modification that MLP;(d, a[: 7]) is replace with MLP; (d, Lin; (a/[: 7])) where Lin; is
a linear transformation. This change was not necessary for good performance; it was as architectural
detail that we experimented with and did not revert prior generating Table ??. The model dimensions
for each domain are shown in [2]in the following format (state embedding MLP hidden size, state
embedding MLP number of layers, action MLP hidden size, action MLP number of layers, Ouput
size of Lin;, number of bins for action discretization). Increasing the number of discretization bins

SWhile in the original presentation of BCQ and BEAR the behvior policy is learned online, there is techni-
cally no reason for this to be the case, and in theory both methods should benefit from this pretraining
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from 40 (value for standard Mujoco experiments) to 80 was the most important change. Output
dimension of state-embedding MLP is the same as the hidden size.

Hyperparameters Table[2|shows the hyperparameters used for the experiments in Table ??.

Shared Hyperparameters
A 1.0
Batch Size 128
Num Updates le6
Num @ Functions 16
@ Architecture MLP, 4 layers, 256 hid dim, relu
«@ 0.995
wlr Se-4
Kitchen p Arch Params (256,4,128,1,128,80)
Antmaze ;1 Arch Params (256,4,128,1,128,80)
Adroit o Arch Params (256,4,128, 1,128, 80)
EMaQ Hyperparameters
Qlr le-4
Kitchen N’s Searched {4,8,16, 32,64}
Antmaze N’s Searched {50, 100, 150,200}
Adroit N’s Searched {16, 32,64, 128}
BEAR Hyperparameters
7 Architecture MLP, 4 layers, 256 hid dim, relu
Qlr le-4
mlr Se-4
BCQ Hyperparameters
7 Architecture MLP, 4 layers, 256 hid dim, relu
Qlr le-4
mwlr Se-4

Table 2: Hyperparameters for Table ?? Experiments

Full Results Table Due to space limitations, we were unable to include the full table in the main
text. Table 3| presents the full set of results.

I VAE RESULTS

1.1 IMPLEMENTATION

We also ran experiments with VAE parameterizations for p(a|s). To be approximately matched in
parameter count with our autoregressive models, the encoder and decoder both have 3 hidden layers
of size 1024 with relu activations. The dimension of the latent space was twice the number of action
dimensions. The decoder outputs a vector v which, and the decoder action distribution is defined
to be A/(Tanh(v), I). When sampling from the VAE, following prior work, samples from the VAE
prior (spherical normal distribution) were clipped to the range [—0.5,0.5] and mean of the decoder
distibution was used (i.e. the decoder distribution was not sampled from). The KL divergence
loss term was weighted by 0.5. This VAE implementation was the one used in the benchmarking
codebase of (Wu et al.,[2019), so we did not modify it.

1.2 RESULTS

As can be seen in Figure @ EMaQ has a harder time improving upon u(a|s) when using the VAE
architecture described above. However, as can be seen in Figure BCQ and BEAR do show some
variability as well when switching to the VAEs. Since as an algorithm EMaQ is much more reliant
on p(als), our hypothesis is that if it is true that the autoregressive models better captured the action
distribution, letting EMaQ not make poor generalizations to out-of-distribution actions. Figures [§]
and [ show autoregressive and VAE results side-by-side for easier comparison.
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Setting BC BCQ BEAR EMaQ EMaQ N
kitchen-complete 272+32 | 265+48 — 369 + 3.7 64
kitchen-partial 462 +£28 | 69.3+52 — 74.6 £ 0.6 8
kitchen-mixed 52.5+3.8 655+ 1.8 — 70.8 + 2.3 8
antmaze-umaze 59.0£55 | 25.5+£20.0 | 56.3 +28.8 | 91.0 - 4.6 100
antmaze-umaze-diverse 588 +£95 | 68.0£19.0 | 575+39.2 | 94.0 - 2.4 50
antmaze-medium-play 0.7 £1.0 35+6.1 0.2+04 0.0£0.0 —
antmaze-medium-diverse 04 +0.8 0.5+09 0.2+04 0.0£0.0 —
antmaze-large-play 0.0£0.0 0.0£0.0 0.0+£0.0 0.0£0.0 —
antmaze-large-diverse 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 —
door-cloned 0.0 = 0.0 0.2+04 0.0 = 0.0 0.2+0.3 64
hammer-cloned 1.2 + 0.6 1.3+ 0.5 0.3 +0.0 1.0 £ 0.7 64
pen-cloned 2454+10.2 | 43.8+6.4 3.14+02 | 279+£3.7 128
relocate-cloned -0.2 + 0.0 -0.2 £ 0.0 0.0 = 0.0 -0.2 +£0.2 16

Table 3: Results on a series of other environments and data settings from the D4RL benchmark (Fu et al.,
2020a). Results are normalized to the range [0, 100], per the D4RL normalization scheme. For each method, for
each environment and data setting the results of the best hyperparameter setting are reported. The last column
indicates the best value of NV in EMaQ amongst the considered hyperparameters (for the larger antmaze
domains, we do not report this value since no value of IV obtains nonzero returns). All the domains below the
blue double-line are effectively unsolved by all methods. We have technical difficulties in evaluating BEAR on
the kitchen domains. This manuscript will be updated upon obtaining these results. Additional details can be

found in Appendix
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Figure 6: Results for evaluating EMaQ on D4RL (Fu et al., |2020b) benchmark domains when using the
described VAE implementation, with N € {5, 10, 25, 50, 100, 200, 400}. Values above p(a|s) represent the
result of evaluating the base behavior policies. Horizontal green lines represent the reported performance of
BEAR in the D4RL benchmark (apples to apples comparisons in Figure EI)

J EMAQ MEDIUM-EXPERT SETTING RESULTS

In HalfCheetah, increasing N significantly slows down the convergence rate of the training curves;
while large N's continue to improve, we were unable to train them long enough for convergence.
In Walker, for EMaQ, BCQ, and most hyperparameter settings of BEAR, training curves have a
prototypical shape of a hump, where performance improves up to a certain high value, and then
continues to fall very low. In Hopper, for higher values of NV in EMaQ we observed that increasing
batch size from 100 to 256 largely resolved the poor performance, but for consistency we did not
alter Figure [T] with these values.
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K LARGER PLOTS FOR VISIBILITY

Due to larger size of plots, each plot is shown on a separate page below. For ablation results, see

Figure[I0] For MuJoCo results, see Figure [TT}

23




0BWI VA oeW3 0Ny
00v 00Z 00T 0S5 SZ 0T § 00y 00Z 00T 0§ Sz 0T § (sleylava
= = = = = o=eom —
[SEEMN OeWI 0Ny
00y 00z 00T 05 SZ 01§ 00y 00z 00T 05 Sz 01 g (sle)ava
= 2 I Iz1c= 1
_ _ I:
0BW3 VA O3 0Ny
00v 00Z 00T 0S5 SZ 0T § 00y 00Z 00T 05 Sz O § (sleylava
T 4 I
1
1 1

—HH——uH

Under review as a confere

Y]

adx3-winipap

000T

0002

0008

000T

0002

0008

0007

000%
0009
0008
00001

000zT

‘uostredwod I91Se 10§ J0[d U0 UT S[OPOU YA PUER 9AISSaISaI0INe JOq [IIM SINSY :§ 9InSL]

OBWI VA 0BT oIy
00V 00Z 00T 0§ Sz 0T 00V 00Z 00T 0§ Sz OT § (sleyava
SRS I
z = =
I:1
x
OeWI VA OeWI ony
00v 00z 00T 05 Sz 0T 007 00z 00T 05 Sz OT g (slelavA
H]
E I S B A § I I
I
M ~ H u
OBWI VA OBIWT 0Ny
00V 00Z 00T 0§ Sz 0T 00V 00Z 00T 0§ Sz OT §  (sleyava
I
1 I 1

000T

00ST

0002

000€

0007

0005

OB IVA O3 oIy OBIW3 FVA e oy
00V 00Z 00T 05 Sz O § 00v 00Z 00T 05 Sz O sleyrt 3va 00v 00Z 00T 0§ SZ OT § 00V 00Z 00T 0§ Sz OT g  (sleyfava
H [] M M o B CECCETCET W o x
00s
I .
= = = = o= o= o= - 000T T
(11l
00st =
DeW3 IVA OeW3 oIy DeW3 IVA OeW3 oIy
00V 002 00T 05 Sz 0T § 00v 00z 00T 05 Sz 0T (sle)rf ava 00v 002 00T 05 SZ 0T § 00V 002 00T 05 Sz 0T g (sleyiavA
LI O O I I <t
000T (e}
I
0007 H H H ~ H ﬂ I —
000€ H
z I a1 1
S O3 oIy ORI FVA O3 oIny
00V 00Z 00T 05 Sz O § 00v 00Z 00T 05 Sz O sleyt 3vA 00v 00Z 00T 0§ SZ OT § 00V 00Z 00T 0§ Sz OT g (sleyfava
000y - = === -
= I I =z« *I 1
oos
-
0005
T -
- - _u -
wopuey

adj1em

000T

0002

ue1auUIIPeU

000€



‘uostreduros 19159 10§ 10[d QUO UT S[OPOUWT YA PUE JAISSAITAIOINE YI0q YIIM SINSAY :6 oINS

o et oo v v o5 oone Ly et wn ossomy 099
o e 51 SR sostitstvapy g0 siomowtvare sostiy e w100 o T ey sostos Bty
o
I | I ° o
o
— 5 LT oot <1 g
I 0B
oose
D
I el ®
— -- 008
ooce I = =
H oose 005z - L] - U 0sE.
zla cooe - oo
o e o onn om o ounam on oon v s omy o 10n oy
S e so i Ehvapo i so st Etvango L so st Etvamo TR o SH%e sostos Elvawo

1
z Im H T unu_.

HHuHu

out

SEIEY IE a TR ._HH_ _::

I 5
: oo I _
_ - . o

o s un oo oy

. o
o - .-
I -
H L]
e = .
H I - ~ -
Iy = zxzm n oo
=] I
1l I I1a =
Madx3z-wnipap wnipap

Under review as a confere




“3uIp09-10105 Jo uonduosap 1oj (1°guonoag) 1xay urew 03 1030y *{g/omSLy ur suostredwod
sordde 03 sordde) yrewryouaq TH Ay} Ul Yy Jo soueuriojrod payrodar oy yuasardar sour] uaaid [eIuozLIoY ‘sororjod Ioraeyaq oseq oY) SUneneAd Jo j[nsai ay)
wasaxdar (s|p)rf aaoqe sanfeA {00F ‘00Z ‘00T ‘0S ‘Gz ‘0T ‘G} > N YA ‘surewop yrewyouaq (qozog/ [ 18 19 nd) TIvd uo ORING Sunen[ead 1oJ s)nsay O] N3]

Under review as a conference paper at ICLR 2021

oen3

Oen3

oen3

oen3

00F 00Z 00T 0S Gz o1 s (sleyd 00y 00z 00T 0S Sz o1 s (sleyd 00F 00Z 00T 0S Gz O1 & (sleyd 00F 00Z 00T 0S Sz Or & (sl
B 0 [0 ]
H 00S H = — m 00g
ﬂ 000T 009 005 mmmno_"
00L H 05e O
0002 - T
1] === —co—ccccoommnaead 008 I 000t I 0
x T X 1 I GLE =
H 000€ H r I 006 I 1
z 00ST I oov
000T [F===========—=——————————oo =
oen3 oen3 oen3 oen3
00F 00z 00T 0S Gz o1 s (sleyd 00y 00z 00T 0S Sz o1 S (sled 00F 00Z 00T 0S SZ 0T g (slen 00F 00Z 00T 0S SZ OT § (sley
H 000T T, I = |0
|||||||||||||||||||||||||||||||||||||||||||||||||| 00S
T 0001
7702 T oot S
: I 000T 000z 1 wl_a
000€ 00z
I 1 I o
00ST 000€ =
H I 000¥ [ . 00€
xr = I = I =
oen3 oen3 oew3 oen3
00F 00z 00T 0S Gz or s (sleyd 00y 00z 00T 0S Sz or s (sleyd 00F 00Z 00T 0S SZ 0T g (slon 00F 00z 00T 0S Sz 0T g (sley
-
I H H 000¢ H 0001 0 I
H 000t o
I o
oooe | 00SH ooSu.
|||||||||||||||| R — 0009 I I o
1 000% O = ooom.@..
|||||||||||| Hnu e I 0005 - Q
H 0008 x H H H I I - ] 5
I 0005 Ik itte. At sttt —— 000€
Hadx3-wnipan PIXIN wnipan wiopuey

26



Under review as a conference paper at ICLR 2021

_H_st_m SMO[[0] SUIPOI-I0[0)) “YIeWYOUq
TIHd 9w ut Yvag jo soueunogred payiodar oy Juasardar saur] uaai3 [BIUOZLIOY SSBAIOUI (§|D)1! WOIJ UOBIAIP Pamo][e Y3 JYSLI 0) Y9 woly YvAd pue ODd
10q 104 “(s|p)1 aa1ssargarome pasodoid mo Juisn usym surewop srewyouaq (qoz0g |18 19 nd) TIHd uo Yvdad Pue ‘ODd ‘OrNH Jo uostredwo) :[[ 231

(sleyd  dewa yv3g 008 (sleyd  dena dv3g 008 (sleyd  oen3 yv3g 0od (sleyd  oew3 uvag 028
00z § ST S0 ST0S00STO0 S0 ST'0S0'0STO'G00°0 00z § ST S0 ST0S00STO0 S0 ST'050'0ST0'G00°0 00z § ST S0 STOS00STO0 S0 ST'050'05T0'%00'0 002§ ST 60 ST0S00STO0 S0 ST'0S0'0ST0'G00'0
0
IIIIIIIIII K 0 o
005 ] 005 H H H H
H [ ] 005 00T
o0t | i fmmmmmm o
H H I = I H L - H ost 3
H 005t I H I = H ooot [*]
00z
0002 I H 005t H IIIIIIIIII 00ST M
0sz o
00z
000¢ 0002 000z - 00¢ my
- osg
H 00se oose - mEEZmmm=
0052 - ooy
(sleyl  dewa yv3g 008 (sleyd  dena Wvag 008 (sleyd  oen3 yv3g 0od (sleyd  oew3 uvag 028
002 § ST S0 ST0S00STO0 S0 ST'0S0'0STO'G00°0 007§ ST S0 ST0S00STO0 S0 ST'0S0'0ST0'G00°0 007§ ST 0 ST0S00STO0 S0 ST'0S0'05T0'G00'0 007§ ST S0 ST0S00ST00 S0 ST'0S0'0STO'E00"0
- o - 0 0 - 0
I 4 005 - H 0
H 000T 05z =
IIIIIIIIII z 000T = M
o002 _ |||||| | 005 [ P R R 005t ooz
osL 000z = bleed e m
000€ soor 05z oov o
H 000v _ oczt 000€ 0o =
= H — 00€
0008 00st U R = 000y
(sleyd oew3 uy3g 008 (slext  dews uv3g 008 (slert w3 uv3g 008 (sleyd oew3 yv3g 008
002§ ST S0 ST0S00STO0 S0 ST'0S0'0STO'G00°0 007§ ST S0 ST0S00STO0 S0 ST'050'0ST0'G00°0 007§ ST S0 ST0S00STO0 S0 ST'0S0'05T0'%00'0 007§ ST S0 ST0SO0STO0 S0 ST'0S0'0STO'00'0
= 4 o
000y -
xx] 0002 0001 )
[—
= - s00r I w0 | 1 hmmmmmm—ee 00st =
oot (™Y
H H |||||||| | 0000 - x 000€ O x x 0005 005t aUU-
x I =Im= - I1]
000% 005 000z (P
|||||||||| - +
0008 = = H F ]
I x 0008 = 005z Q)
H H z I 0009 L] - 2 ____ =3
0000T I I o000 — x 000€

27



	Related Work
	Proofs
	Contraction Mapping
	Limiting Behavior
	Increasingly Better Policies
	Bounds

	Autoregressive Generative Model
	Algorithm Box
	Inconclusive Experiments
	Updating the Proposal Distribution

	Laundry List
	Online RL
	Offline RL Experimental Details
	Comparing Offline RL Methods
	EMaQ Ablation Experiment
	Details for Table ?? Experiments

	VAE Results
	Implementation
	Results

	EMaQ Medium-Expert Setting Results
	Larger Plots for Visibility

