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In this supplementary material, we include additional diagrams which describe the contrastive learning
procedure. Also, we give an in-depth description on how our approach is applied to expression
transfer and motion transfer. We also present additional ablations, qualitative results for our proposed
approach, and include a discussion about limitations and potential societal impacts of our method.

1 Contrastive Learning

We propose two contrastive losses, which are depicted in Figure[I] The appearance contrastive loss
pulls the representation for faces within the same video together, while pushing representations of
different identities apart. The structural contrastive loss pulls the representations from augmented
versions of the same frame together, while pushing representations of different frames apart. Although
the appearance contrastive loss diagram contains two video sequences, it is computed batch-wise.
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Figure 1: The appearance contrastive loss (left) and structural contrastive loss (right).
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Figure 2: Motion Transfer with our proposed architecture. We extract the appearance and structural
features from the source image as well as each frame of the driving video. Then the appearance
features of the source image and the structural features of each video frame are used to generate the
output video frames.

2 Applications

In this section, we include the technical details about how our method can be applied at inference
time for expression and motion transfer.

Expression Transfer As our encoder can disentangle the appearance and structural features of a
given latent code, we perform expression transfer by swapping the appearance and structural features
of two images and passing them through the decoder. Formally, given two face images x; and xo,
we extract their latent representations w1 and wo, respectively. If the goal is to generate a face with
the identity of z; and expression of x2, we pass both latent codes into our encoder and obtain the
appearance features of the first, wga), and the structural features of the second, wés). Then, we

generate a new latent code by inputting these representations into the decoder, w = fp (wga), wés))

This code is used by the GAN to generate a realistic face image with the appearance of the first input
image and expression of the second.

Motion Transfer We perform motion transfer in a similar fashion, by maintaining the structural
features of the driving video and substituting the appearance features of the source image. Given the
(a) s) .

source image T;,,4, We can extract disentangled features w,,, g and w;

likewise, each video frame
of the driving video, {z;}Z_,, can be disentangled into {w ™ }Z_, and {w*)}Z_,. With the decoder,

we can obtain the sequence of latent codes {fp (wl(fn) i wt(s))}le, which are used to generate the

output video frames. Figure [2]depicts how our method performs motion transfer.



Table 1: Ablations on the VoxCeleb dataset. We evaluate the effect of the auxiliary losses.

Method ‘ No £3D1\/U\4a No £3D1\41Ws No £cyc—lat No l:cycfimg No La nor LS ‘ Full

AKD 1.517 2.299 1.515 1.976 2.193 1.928
ACED 0.768 0.665 0.730 0.714 0.769 0.711

3 Additional Implementation Details

Hyper-parameter Selection The network is trained for 50 epochs using the Adam optimizer [[1]]
with an initial learning rate of 5e-5 and cosine learning rate scheduler [2]]. The margin used in the
contrastive losses is v = 1, and the weights for each loss are selected empirically: A... = 200,
)\a = 2, )\s = 2, )\cyc—lat = 100, Acyc—img = 10, )\BDMJMQ = 0.2, and )\31)]»]]\4S = 1. For each
batch, we sample 8 frames per video. The batch size for all latent computations is 256, and all losses
requiring image generation (Lcyc—img, £L3DM M, > and L3parar,) have a batch size of 8. Our model
is trained on 8 NVIDIA Tesla V100 GPUs.

Evaluation Protocol Quantitatively evaluating the quality of motion transfer is non-trivial since
the ground-truth videos are not available. Given a driving video and a source image, we perform
motion transfer to obtain an output video. To evaluate how well the motion is transferred, we obtain
the Average Keypoint Distance (AKD) between the output and driving videos. These keypoints are
extracted using a facial landmark detector pretrained by [3]]. As facial landmarks encode identity
information (e.g. mouth/eye size and face shape can lead to different landmarks for two people
with the same expression), we use the same identity for the source image and the driving video; this
ensures the metric correctly measures changes in expression and pose, and not identity features. We
also evaluate how well the source image’s identity is maintained throughout the video by measuring
the average classifier embedding distance (ACED) between frames of the output video and the source
image. This distance is the £ distance between the embedding layer of a ResNet-50 [4] model
trained on the UMDFaces dataset [3]. We note, the ACED and AKD metrics should be viewed jointly:
whereas ACED measures how well a method maintains a person’s identity, AKD measures how
well pose and expression are preserved. For this quantitative evaluation, we select 50 driving video
sequence{] from the VoxCeleb2 dataset, each ranging from 100 to 300 frames (4 to 12 seconds).
We transfer the motion to faces from selected frames within other videos with the same identities.
We also report the Frechet Inception Distance (FID) [6] and Frechet Video Distance (FVD) [7] to
evaluate each methods’ image naturalness and motion quality, respectively.

4 Ablation Experiments

Auxiliary Losses We quantitatively evaluate how the proposed auxiliary losses effect the perfor-
mance of our method in Table 2| Practically, we aim to find a balance between identity/appearance
preservation and producing a face with the correct pose and expression. The 3DMM-based consis-
tency losses lead to predictable changes in the outputs. The network trained without the L3p s,
produces suffers from some appearance loss even though it improves in terms of landmark distance;
conversely, the network trained without £3p s, maintains the source identity, but does not correctly
transfer expressions. We find that the latent cyclic consistency loss (Lcyc—iq¢) leads to improved
disentangling: without this loss, the network generates faces with correct expression and pose, but
incorrect identities. Lastly, the inclusion of the image-based cyclic consistency loss (L¢yc—img) leads
to slight improvements in terms of identity preservation and expression transfer. In our final ablation,
we show that a network trained without our proposed contrastive losses (No L, nor L) performs
poorly on both metrics.

Distance Metric For our proposed method, we use the negative L2 distance to compute the
similarity in our contrastive losses (equations 2 and 3). Here, we evaluate the dot product as another
similarity metric. We observe that the network trained using the dot product is able to better transfer
face pose than the network trained using negative L2 distance. However, the faces produced by this
network differ from the target appearance in the source image, with more noticeable changes in

' All identities and videos used in evaluation are distinct from those used to train our network.



Table 2: Ablations on the VoxCeleb dataset. We evaluate the use of another similarity metric in the
contrastive objective (dot product).

Method AKD| ACEDJ
Dot product  1.583 0.755
Full Method  1.928 0.711

hairstyle and face shape. This behaviour is reflected in Table[2] where using the dot product leads to
improved average keypoint distance, but worse average classifier embedding distance.

5 Discussion

Hyperparameter Selection and Robustness We selected the loss weight hyper-parameters (A,
Aas Asy Acye—lats Aeyc—imgs A3DM M, > and Asparas, ) empirically. In selecting the loss weight hyper-
parameters, we had two main observations. First, increasing the magnitude of L,... and Leyc—ia:
relative to the other losses led to improved encoder and decoder training. Second, increasing the
weight for the 3DMM losses (Lasparar, > 1 and Laparar, > 1) led to a large degradation in
performance. In general, the method is robust to small changes in the other loss weights (A, = 2,
As = 2,and Agye—img = 10).

Limitations Although our method can perform expression and motion transfer quite well, we
observe that when the appearance of two subjects are vastly different, swapping structural features
can sometimes lead to variations in hair style and glasses. Moreover, we find that our approach
occasionally struggles with some smaller expression changes, like eye blinking. We attribute this
behaviour to the imbalance of training samples where the person has their eyes open vs. closed: since
the majority of video frames tend to have the persons’ eyes open, there is a lower chance to sample a
frame where the eyes are closed.

Societal Impact Our method can be used for a variety of applications. Artists and designers can
use our approach to change the expression of faces within images, or to generate realistic videos of
a given identity. However, there is always the possibility of our method being nefariously used to
generate images or videos for the purpose of spreading “fake news" or propaganda. To prevent this,
additional resources should be invested in technologies that can detect fake images [8, 9] and videos
(L0} (111

6 Additional Qualitative Results

Attached are 3 motion transfer videos using the Offset Trick, FOMM, and our proposed approach.
The driving videos are obtained from the VoxCeleb dataset and the source images are from FFHQ
dataset. We include a variety of source face identities and show that our method tends to transfers
motion with minimal change in appearance (see Videol.avi and Video2.avi). Moreover, we include
additional expression transfer examples in Figure[3]

Failure Cases As mentioned in the discussion, our method can fail when combining the appearance
and structural features of different faces. This can result in larger changes in identity as shown in
row 2 in Video3.avi. Although our generated videos tend to maintain facial appearance consistent
throughout the video, there are instances when certain attributes (e.g. hair or glasses) change from
frame to frame. This is evident in row 1 of Video3.avi, where the glasses disappear and reappear
multiple times within the video. Generally, these failures occur the both the identity and face pose of
the source image and driving video are very different.

Qualitative Evaluation of Auxiliary Losses In Figure 4] we show example outputs of our method
trained without various auxiliary losses. It can be seen that the 3DMM-based auxiliary losses are
complementary - L3pasar, and L3parar, aid in maintaining the appearance and structure of the
faces respectively. Both cyclic losses, Lcyc—iar and Leyc—img improve the disentangling ability of
the model.
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Figure 3: Expression transfer examples of our method. The first row contains the various expression
which will be used, and the first column in rows 2-10 contains the identities. We find that the identity

is maintained across different expressions.



Target Target
Appearance Expression No L3pmm, No L3pum; No Leyc_iar No Leyc_img Full Method
. . FCL =5,

Figure 4: Expression transfer examples without auxiliary losses. We find that the full method allows
for a balance between preservation of identity and correctly transferring the target expression.
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