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“A child painting in an art class, using 
watercolors and a brush on paper.”

“A joyful dog playing in the snow, leaving paw prints and 
trying to catch snowflakes on its nose.”

“A shark playing chess.”

“A fairy tends to enchanted, glowing 
flowers.”

“A raccoon drumming on bongos under a starry night sky.”

“A snow princess stands on the balcony of her ice castle, her hair 
adorned with delicate snowflakes, overlooking her serene realm.”

Figure 1: Generations from video diffusion models after adaptation with VADER using reward
functions for aesthetics and text-image alignment.

ABSTRACT

We have made significant progress towards building foundational video diffusion
models. As these models are trained using large-scale unsupervised data, it has
become crucial to adapt these models to specific downstream tasks. Adapting these
models via supervised fine-tuning requires collecting target datasets of videos,
which is challenging and tedious. In this work, we utilize pre-trained reward
models that are learned via preferences on top of powerful vision discriminative
models to adapt video diffusion models. These models contain dense gradient
information with respect to generated RGB pixels, which is critical to efficient
learning in complex search spaces, such as videos. We show that backpropagating
gradients from these reward models to a video diffusion model can allow for
compute and sample efficient alignment. We show results across a variety of
reward models and video diffusion models, demonstrating that our approach can
learn much more efficiently in terms of reward queries and computation than
prior gradient-free approaches. More visualization are available at https://
vader-anonymous.github.io/

1 INTRODUCTION

We would like to build systems capable of generating videos for a wide array of applications, ranging
from movie production, creative story-boarding, on-demand entertainment, AR/VR content genera-
tion, and planning for robotics. The most common current approach involves training foundational
video diffusion models on extensive web-scale datasets. However, this strategy, while crucial, mainly
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produces videos that resemble typical online content, featuring dull colors, suboptimal camera angles,
and inadequate alignment between text and video content.

Contrast this with the needs of an animator who wishes to bring a storyboard to life based on a
script and a few preliminary sketches. Such creators are looking for output that not only adheres
closely to the provided text but also maintains temporal consistency and showcases desirable camera
perspectives. Relying on general-purpose generative models may not suffice to meet these specific
requirements. This discrepancy stems from the fact that large-scale diffusion models are generally
trained on a broad spectrum of internet videos, which does not guarantee their efficacy for particular
applications. Training these models to maximize likelihood across a vast dataset does not necessarily
translate to high-quality performance for specialized tasks. Moreover, the internet is a mixed bag
when it comes to content quality, and models trained to maximize likelihood might inadvertently
replicate lower-quality aspects of the data. This leads us to the question: How can we tailor diffusion
models to produce videos that excel in task-specific objectives, ensuring they are well-aligned with
the desired outcomes?

The conventional approach to aligning generative models in the language and image domains begins
with supervised fine-tuning (Rafailov et al., 2024; Brooks et al., 2023). This involves collecting
a target dataset that contains expected behaviors, followed by fine-tuning the generative model on
this dataset. Applying this strategy to video generation, however, presents a significantly greater
challenge. It requires obtaining a dataset of target videos, a task that is not only more costly and
laborious than similar endeavors in language or image domains, but also significantly more complex.
Furthermore, even if we were able to collect a video target dataset, the process would have to be
repeated for every new video task, making it prohibitively expensive. Is there a different source of
signal we can use for aligning video diffusion, instead of collecting a target dataset of desired videos?

Reward models play a crucial role in aligning image and text generations (Schuhmann, 2022; Wu
et al., 2023; Lambert et al., 2024). These models are generally built on top of powerful image or
text discriminative models such as CLIP or BERT (Radford et al., 2021; Bardes et al., 2023; Tong
et al., 2022). To use them as reward models, people either fine-tune them via small amounts of human
preferences data (Schuhmann, 2022) or use them directly without any fine-tuning; for instance, CLIP
can be used to improve image-text alignment or object detectors can be used to remove or add objects
in the images (Prabhudesai et al., 2023).

This begs the question, how should reward models be used to adapt the generation pipeline of
diffusion models? There are two broad categories of approaches, those that utilize reward gradients
(Prabhudesai et al., 2023; Clark et al., 2023; Xu et al., 2023), and others that use the reward only as a
scalar feedback and instead rely on estimated policy gradients (Black et al., 2023; Lee et al., 2023).
It has been previously found that utilizing the reward gradient directly to update the model can be
much more efficient in terms of the number of reward queries, since the reward gradient contains
rich information of how the reward function is affected by the diffusion generation (Prabhudesai
et al., 2023; Clark et al., 2023). However, in text-to-image generation space, reward gradient-free
approaches are still dominant (Sauer et al., 2024), since these methods can be easily trained within 24
hours and the efficiency gains of leveraging reward gradients are not significant.

In this work, we find that as we increase the dimensionality of generation i.e transition from image to
video, the gap between the reward gradient and policy gradient based approaches increases. This is
because of the additional amount and increased specificity of feedback that is backpropagated to the
model. For reward gradient based approaches, the feedback gradients linearly scale with respect to
the generated resolution, as it yields distinct scalar feedback for each spatial and temporal dimension.
In contrast, policy gradient methods receive a single scalar feedback for the entire video output. We
test this hypothesis as shown in Figure 3, where we find that the gap between reward gradient and
policy gradient approaches increases as we increase the generated video resolution. We believe this
makes it crucial to backpropagate reward gradient information for video diffusion alignment.

We propose VADER, an approach to adapt foundational video diffusion models using the gradients
of reward models. VADER aligns various video diffusion models using a broad range of pre-trained
vision models. Specifically, we show results of aligning text-to-video (VideoCrafter, OpenSora, and
ModelScope) and image-to-video (Stable Video Diffusion) diffusion models, while using reward
models that were trained on tasks such as image aesthetics, image-text alignment, object detection,
video-action-classification, and video masked autoencoding. Further, we suggest various tricks to
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improve memory usage which allow us to train VADER on a single GPU with 16GB of VRAM.
We include qualitative visualizations that show VADER significantly improves upon the base model
generations across various tasks. We also show that VADER achieves much higher performance than
alternative alignment methods that do not utilize reward gradients, such as DPO or DDPO. Finally,
we show that alignment using VADER can easily generalize to prompts that were not seen during
training.

xT xt xt−1 x0

Reward 
Model Loss

Send GradientsReverse Diffusion

∇θLoss

Figure 2: VADER aligns various pre-trained video diffusion models by backpropagating gradients
from the reward model, to efficiently adapt to specific tasks.

Algorithm 1 VADER

Require: Diffusion Model weights θ
Require: Reward function R(·)
Require: Denoising Scheduler f

(eg - DDIM, EDM)
Require: Gradient cutoff step K

1: while training do
2: for t = T,..,1 do
3: pred = ϵθ(xt, c, t)
4: if t > K then
5: pred = stop grad(pred)
6: end if
7: xt−1 = f .step(pred, t, xt)
8: end for
9: g = ∇θR(x0, c)

10: θ ← θ − η ∗ g
11: end while
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Figure 3: Reward obtained vs resolution of
generated video for different methods. We re-
port the reward achieved after 100 steps of op-
timization. As the resolution of the generation
increases, the reward gap between VADER
and DDPO significantly increases.

2 RELATED WORK

Denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have made significant
progress in generative capabilities across various modalities such as images, videos and 3D shapes
(Ho et al., 2022a;b; Liu et al., 2023). These models are trained using large-scale unsupervised or
weakly supervised datasets. This form of training results in them having capabilities that are very
general; however, most end use-cases of these models have specific requirements, such as high-fidelity
generation (Schuhmann, 2022) or better text alignment (Wu et al., 2023).

To be suitable for these use-cases, models are often fine-tuned using likelihood (Blattmann et al.,
2023; Brooks et al., 2023) or reward-based objectives (Black et al., 2023; Prabhudesai et al., 2023;
Clark et al., 2023; Xu et al., 2023; Lee et al., 2023; Dong et al., 2023; Feng et al., 2023). Likelihood
objectives are often difficult to scale, as they require access to the preferred behaviour datasets.
Reward or preference based datasets on the other hand are much easier to collect as they require a
human to simply provide preference or reward for the data generated by the generative model. Further,
widely available pre-trained vision models can also be used as reward models, thus making it much
easier to do reward fine-tuning (Black et al., 2023; Prabhudesai et al., 2023). The standard approach
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for reward or preference based fine-tuning is to do reinforcement learning via policy gradients (Black
et al., 2023; Wallace et al., 2023). For instance, the work of Lee et al. (2023) does reward-weighted
likelihood and the work of Black et al. (2023) applies PPO (Schulman et al., 2017). Recent works of
Prabhudesai et al. (2023) and Clark et al. (2023) find that instead of using policy gradients, directly
backpropagating gradients from the reward model to diffusion process helps significantly with sample
efficiency.

A recent method, DPO (Rafailov et al., 2024; Wallace et al., 2023), does not train an explicit reward
model but instead directly optimizes on the human preference data. While this makes the pipeline
much simpler, it doesn’t solve the sample inefficiency issue of policy gradient methods, as it still
backpropagates a single scalar feedback for the entire video output.

While we have made significant progress in aligning image diffusion models, this has remained
challenging for video diffusion models (Blattmann et al., 2023; Wang et al., 2023). In this work, we
take up this challenging task. We find that naively applying prior techniques of image alignment
(Prabhudesai et al., 2023; Clark et al., 2023) to video diffusion can result in significant memory
overheads. Further, we demonstrate how widely available image or video discriminative models can
be used to align video diffusion models. Concurrent to our work, InstructVideo (Yuan et al., 2023)
also aligns video diffusion models via human preference; however, this method requires access to a
dataset of videos. Such a dataset is difficult to obtain for each different task, and becomes difficult
to scale especially to large numbers of tasks. In this work, we show that one can easily align video
diffusion models using pre-trained reward models while not assuming access to any video dataset.

3 BACKGROUND

Diffusion models have emerged as a powerful paradigm in generative modeling. These models
operate by modeling a data distribution through a sequential process of adding and removing noise.

The forward diffusion process transforms a data sample x into a completely noised state over a series
of steps T . This process is defined by the following equation:

xt =
√
ᾱtx+

√
1− ᾱtϵ, ϵ ∼ N (0,1), (1)

where ϵ represents noise drawn from a standard Gaussian distribution. Here, ᾱt =
∏t

i=1 αi denotes
the cumulative product of αi = 1− βi, which indicates the proportion of the original data’s signal
retained at each timestep t.

The reverse diffusion process reconstructs the original data sample from its noised version by
progressively denoising it through a learned model. This model is represented by ϵθ(xt; t) and
estimates the noise ϵ added at each timestep t.

Diffusion models can easily be extended for conditional generation. This is achieved by adding c as
an input to the denoising model:

Ldiff(θ;D′) =
1

|D′|
∑

xi,ci∈D′

||ϵθ(
√
ᾱtx

i +
√
1− ᾱtϵ, c

i, t)− ϵ||2, (2)

where D′ denotes a dataset consisting of image-conditiong pairs. This loss function minimizes the
distance between the estimated noise and the actual noise, and aligns with the variational lower bound
for log p(x|c).
To sample from the learned distribution pθ(x|c), one starts with a noise sample xT ∼ N (0,1) and
iteratively applies the reverse diffusion process:

xt−1 =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t, c)

)
+ σtz, z ∼ N (0,1), (3)

The above formulation captures the essence of diffusion models, which highlights their ability to
generate structured data from random noise.
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4 VADER: VIDEO DIFFUSION VIA REWARD GRADIENTS

We present our approach for adapting video diffusion models to perform a specific task specified via
a reward function R(·).
Given a video diffusion model pθ(·), dataset of contexts Dc, and a reward function R(·), we seek to
maximize the following objective:

J(θ) = Ec∼Dc,x0∼pθ(x0|c)[R(x0, c)] (4)

To learn efficiently, both in terms of the number of reward queries and compute time, we seek to
utilize the gradient structure of the reward function, with respect to the weights θ of the diffusion
model. This is applicable to all reward functions that are differentiable in nature. We compute the
gradient∇θR(x0, c) of these differentiable rewards, and use it to update the diffusion model weights
θ. The gradient is given by :

∇θR(x0, c) =

T∑
t=1

∂R(x0, c)

∂ft
· ∂ft
∂θ

. (5)

where ft is a denoising function that predicts the previous timestep: xt−1 = f(xt, θ) derived from
Equation 3. VADER is flexible in terms of the denoising schedule, we demonstrate results with DDIM
(Song et al., 2022) and EDM solver (Karras et al., 2022). To prevent over-optimization, we utilize
truncated backpropagation (Tallec & Ollivier, 2017; Prabhudesai et al., 2023; Clark et al., 2023),
where the gradient is back propagated only for K steps, where K < T, and T is the total diffusion
timesteps. Using a smaller value of K also reduces the memory burden of having to backpropagate
gradients, making training more feasible. We provide the pseudocode of the full training process in
Algorithm 1. Next, we discuss the type of reward functions we consider for aligning video models.

Reward Models: Consider a diffusion model that takes conditioning vector c as input and generates
a video x0 of length N , consisting of a series of images ik, for each timestep k from 0 to N . Then
the objective function we maximize is as follows:

Jθ = Ec,i0:N [R([i0, i1...ik...iN−1], c)] (6)

We use a broad range of reward functions for aligning video diffusion models. Below we list down
the distinct types of reward functions we consider.

Image-Text Similarity Reward - The generations from the diffusion model correspond to the text
provided by the user as input. To ensure that the video is aligned with the text provided, we can
define a reward that measures the similarity between the generated video and the provided text. To
take advantage of popular, large-scale image-text models such as CLIP (Radford et al., 2021), we can
take the following approach. For the entire video to be well aligned, each of the individual frames of
the video likely need to have high similarity with the context c. Given an image-context similarity
model gimg, we have:

R([i0, i1...ik...iN−1], c) =
∑
k

R(ik, c) =
∑
k

gimg(ik, c) (7)

Then, we have Jθ = Ek∈[0,N ] [gimg(ik, c)], using linearity of expectation as in the image-alignment
case. We conduct experiments using the HPS v2 (Wu et al., 2023) and PickScore (Kirstain et al.,
2023) reward models for image-text alignment. As the above objective only sits on individual images,
it could potentially result in a collapse, where the predicted images are the exact same or temporally
incoherent. However, we don’t find this to happen empirically, we think the initial pre-training
sufficiently regularizes the fine-tuning process to prevent such cases.

Video-Text Similarity Reward - Instead of using per image similarity model gimg, it could be beneficial
to evaluate the similarity between the whole video and the text. This would allow the model to
generate videos where certain frames deviate from the context, allowing for richer, more diverse
expressive generations. This also allows generating videos with more motion and movement, which
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is better captured by multiple frames. Given a video-text similarity model gvid we have Jθ =
E [gvid([i0, i1...ik...iN−1], c)]. In our experiments, we use a VideoMAE (Tong et al., 2022) fine-tuned
on action classification, as gvid, which can classify an input video into one of a set of action text
descriptions. We provide the target class text as input to the text-to-video diffusion model, and use
the predicted probability of the ground truth class from VideoMAE as the reward.

Image Generation Objective - While text similarity is a strong signal to optimize, some use cases
might be better addressed by reward models that only sit on the generated image. There is a prevalence
of powerful image-based discriminative models such as Object Detectors and Depth Predictors. These
models utilize the image as input to produce various useful metrics of the image, which can be used
as a reward. The generated video is likely to be better aligned with the task if the reward obtained
on each of the generated frames is high. Hence we define the reward in this case to be the mean
of the rewards evaluated on each of the individual frames, i.e R([i0, i1...ik...iN−1], c) =

∑
k R(ik).

Note that given the generated frames, this is independent of the text input c. Hence we have, Jθ =
Ek∈[0,N ] [R(ik)] = Ek∈[0,N ] [Mϕ(ik)] via linearity of expectation, where Mϕ is a discriminative
model that takes an image as input to produce a metric, that can be used to define a reward. We use
the Aesthetic Reward model (Schuhmann, 2022) and Object Detector (Fang et al., 2021) reward
model for our experiments.

Video Generation Objective - With access to an external model that takes in multiple image frames,
we can directly optimize for desired qualities of the generated video. Given a video metric model Nϕ,
the corresponding reward is Jθ = E [Nϕ([i0, i1, ..ik...iN−1])].

VideoCrafter VADER (Ours)

“The raccoon is wearing a red coat and holding a snowball.”

“A strong lion and a graceful lioness resting together in the shade of a big tree on a wide grassland.”

“A peaceful deer eating grass in a thick forest, with sunlight filtering through the trees.”

“The fox is wearing a red hat and playing with leaves.”

Figure 4: Text-to-video generation results for VideoCrafter and VADER. We show results for
VideoCrafter Text-to-Video model on the left and results for VADER on the right, where we use
VideoCrafter as our base model. The reward models applied are a combination of HPSV2.1 and
Aesthetic model in the first two rows, and PickScore in the last two rows.

Long-horizon consistent generation - In our experiments, we adopt this formulation to enable a
feature that is quite challenging for many open-source video diffusion models - that of generating
clips that are longer in length. For this task, we use Stable Video Diffusion (Blattmann et al., 2023),
which is an image-to-video diffusion model. We increase the context length of Stable Video Diffusion
by 3x by making it autoregressive. Specifically, we pass the last generated frame by the model as
input for generating the next video sequence. However, we find this to not work well, as the model
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was never trained over its own generations thus resulting in a distribution shift. In order to improve
the generations, we use a video metric model Nϕ (V-JEPA (Bardes et al., 2023)) that given a set
of frames, produces a score about how predictive the frames are from one another. We apply this
model on the autoregressive generations, to encourage these to remain consistent with the earlier
frames. Training the model in this manner allows us to make the video clips temporally and spatially
coherent.

Reducing Memory Overhead: Training video diffusion models is very memory intensive, as the
amount of memory linearly scales with respect to the number of generated frames. While VADER
significantly improves the sample efficiency of fine-tuning these models, it comes at the cost of
increased memory. This is because the differentiable reward is computed on the generated frame,
which is a result of sequential de-noising steps.

Standard Tricks - To reduce the memory usage we use LoRA (Hu et al., 2021) that only updates a
subset of the model parameters, further we use mixed precision that stores non-trainable parameters
in fp16. Also, gradient checkpointing is applied. For the long horizon tasks, offload the storage of the
backward computation graph from the GPU memory to the CPU memory.

Truncated Backprop - Additionally, In our experiments we only backpropagate through the diffusion
model for one timestep, instead of backpropagating through multiple timesteps (Prabhudesai et al.,
2023), and have found this approach to obtain competitive results while requiring much less memory.

Subsampling Frames - Since all the video diffusion models we consider are latent diffusion models,
we further reduce memory usage by not decoding all the frames to RGB pixels. Instead, we randomly
subsample the frames and only decode and apply loss on the subsampled ones.

We conduct our experiments on 2 A6000 GPUS (48GB VRAM), and our model takes an average of
12 hours to train. However, our codebase supports training on a single GPU with 16GB VRAM.

5 RESULTS

In this work, we focus on fine-tuning various conditional video diffusion models, including
VideoCrafter (Chen et al., 2024) , Open-Sora (Zheng et al., 2024) , Stable Video Diffusion (Blattmann
et al., 2023) and ModelScope (Wang et al., 2023), through a comprehensive set of reward models
tailored for images and videos. These include the Aesthetic model for images (Schuhmann, 2022),
HPSv2 (Wu et al., 2023) and PickScore (Kirstain et al., 2023) for image-text alignment, YOLOS
(Fang et al., 2021) for object removal, VideoMAE for action classification (Tong et al., 2022), and
V-JEPA (Bardes et al., 2023) self-supervised loss for temporal consistency. Our experiments aim to
answer the following questions:

• How does VADER compare against gradient-free techniques such as DDPO or DPO regard-
ing sample efficiency and computational demand?

• To what extent can the model generalize to prompts that are not seen during training?
• How do the fine-tuned models compare against one another, as judged by human evaluators?
• How does VADER perform across a variety of image and video reward models?

This evaluation framework assesses the effectiveness of VADER in creating high-quality, aligned
video content from a range of input conditioning.

Baselines. We compare VADER against the following methods:

• VideoCrafter (Chen et al., 2024), Open-Sora 1.2 (Zheng et al., 2024), and ModelScope
(Wang et al., 2023) are current state-of-the-art (publicly available) text-to-video diffusion
models. We serve them as base models for fine-tuning in text-to-video space.

• Stable Video Diffusion (Blattmann et al., 2023) is the current state-of-art publicly image-
to-video diffusion model. We use it for all our experiments in image-to-video space.

• DDPO (Black et al., 2023) is a recent image diffusion alignment method that uses policy
gradients to adapt diffusion model weights. Specifically, it applies PPO algorithm (Schulman
et al., 2017) to the diffusion denoising process. We extend it to adapt video diffusion models.
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• Diffusion-DPO (Wallace et al., 2023) extends the recent development of Direct Preference
Optimization (DPO) (Rafailov et al., 2024) in the LLM space to image diffusion models.
They show that directly modeling the likelihood using the preference data can alleviate the
need for a reward model. We extend their implementation to align video diffusion models,
where we use the reward model to obtain the required preference data.

Reward models. We use the following reward models to fine-tune the video diffusion model.

• Aesthetic Reward Model: We use the LAION aesthetic predictor V2 (Schuhmann, 2022),
which takes an image as input and outputs its aesthetic score in the range of 1-10. The model
is trained on top of CLIP image embeddings.

• Human Preference Reward Models: We use HPSv2 (Wu et al., 2023) and PickScore
(Kirstain et al., 2023), which take as input an image-text pair and predict human preference.

• Object Removal: We design a reward model based on YOLOS (Fang et al., 2021), an object
detection model, from which a video model learns to remove the target object category.

• Video Action Classification: We employ a reward model based on VideoMAE (Tong et al.,
2022). Our reward is the probability predicted by the action classifier given a video as input.

• Temporal Consistency via V-JEPA: We also use V-JEPA (Bardes et al., 2023) as our reward
model to improve temporal consistency, where the reward is the negative of the masked
autoencoding loss in the V-JEPA feature space.

Prompts. We consider various prompt datasets for reward fine-tuning of text-to-video and image-
to-video diffusion models. For more details, please refer to subsection A.1.

5.1 SAMPLE AND COMPUTATIONAL EFFICIENCY

Training of large-scale video diffusion models is done by a small set of entities with access to a large
amount of computing; however, fine-tuning of these models is done by a large set of entities with
access to a small amount of computing. Thus, it becomes imperative to have fine-tuning approaches
that boost both sample and computational efficiency.

In this section, we compare VADER’s sample and compute efficiency with other reinforcement
learning methods such as DDPO and DPO. In Figure 5, we visualize the reward curves during
training, where the x-axis in the upper half of the figure is the number of reward queries and the one in
the bottom half is the GPU-hours. As can be seen, VADER is significantly more sample and compute
efficient than DDPO or DPO. This is mainly due to the fact that we send dense gradients from the
reward model to the diffusion weights, while the baselines only backpropagate scalar feedback.

5.2 GENERALIZATION ABILITY

Table 1: Reward on prompts in train & test. Base model is ModelScope in this experiment. We split
the prompts into train and test sets, such that the prompts in the test set do not have any overlap with
the ones for training. We find that VADER achieves the best on both metrics.

Method Aes (T2V) HPS (T2V) ActP Aes (I2V)

Train. Test. Train. Test. Train. Train. Test.

Base 4.61 4.49 0.25 0.24 0.14 4.91 4.96
DDPO 4.63 4.52 0.24 0.23 0.21 N/A N/A
DPO 4.71 4.41 0.25 0.24 0.23 N/A N/A
Ours 7.31 7.12 0.33 0.32 0.79 7.83 7.64

A desired property of fine-tuning is generalization, i.e. the model fine-tuned on a limited set of
prompts has the ability to generalize to unseen prompts. In this section, we extensively evaluate this
property across multiple reward models and baselines. While training text-to-video (T2V) models,
we use HPSv2 Action Prompts in our training set, whereas we use Activity Prompts in our test set.
We use Labrador dog category in our training set for training image-to-video (I2V) models, while
Maltese category forms our test set. Table 1 showcases VADER’s generalization ability.
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Figure 5: Training efficiency comparison. Top: Sample efficiency comparison with DPO and DDPO.
Bottom: Computational efficiency comparison with DPO and DDPO.

5.3 HUMAN EVALUATION

Table 2: Human Evaluation results for HPS
reward model, where the task is image-text
alignment.

Method Fidelity Text Align

ModelScope 21.0% 39.0%
VADER (Ours) 79.0% 61.0%

We carried out a study to evaluate human preferences
via Amazon Mechanical Turk. The test consisted
of a side-by-side comparison between VADER and
ModelScope. To test how well the videos sampled
from both the models aligned with their text prompts,
we showed participants two videos generated by both
VADER and a baseline method, asking them to iden-
tify which video better matched the given text. For
evaluating video quality, we asked participants to
compare two videos generated in response to the
same prompt, one from VADER and one from a baseline, and decide which video’s quality seemed
higher. We gathered 100 responses for each comparison. The results, illustrated in Table 2, show a
preference for VADER over the baseline methods.

5.4 QUALITATIVE VISUALIZATION

In this section, we visualize the generated videos for VADER and the respective baseline. We conduct
extensive visualizations across all the considered reward functions on various base models.

HPS Reward Model: In Figure 4, we visualize the results before and after fine-tuning VideoCrafter
using both HPSv2.1 and Aesthetic reward function in the top two rows. Before fine-tuning, the
raccoon does not hold a snowball, and the fox wears no hat, misaligning with the text; however, the
videos generated from VADER do not result in these inconsistencies. Further, VADER successfully
generalizes to unseen prompts as shown in the first row of Figure 8, where the dog’s paw is less like a
human hand than the video on the left. Similar improvements can be observed in videos generated
from Open-Sora V1.2 and ModelScope as shown in the second and third rows of Figure 7.

Aesthetic Reward Model: In Figure 4, in the top two rows we visualize the results before and
after fine-tuning VideoCrafter using a combination of Aesthetic reward function and HPSv2.1 model.
Also, we fine-tune ModelScope via Aesthetic Reward function and demonstrate its generated video
in the last row of Figure 7. We observe that fine-tuning makes the generated videos more artistic.
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Before VADER (Ours)

“A book and a cup of tea on a blanket in a sunflower field.”

“A book and a cup of hot chocolate on a windowsill with a snowy view.”

“A book and a cup of coffee on a rustic wooden table in a cabin.”

Figure 6: Object removal using VADER. Left: Base model (VideoCrafter) generations, Right:
VADER generations after fine-tuning to not display books using an object detector as a reward model.
VADER effectively removes book and replaces it with some other object.

PickScore Model: In the bottom two rows of Figure 4, we showcase videos generated by PickScore
fine-tuned VideoCrafter. VADER shows improved text-video alignment than the base model. In
Figure 8, we test both models using a prompt that is not seen during training time. Further, video
generated from PickScore fine-tuned Open-Sora is displayed in Figure 7.

Object Removal: Figure 6 displays the videos generated by VideoCrafter after fine-tuning using
YOLOS-based objection removal reward function. In this example, books are the target objects for
removal. These videos demonstrate the successful replacement of books with alternative objects.

Video Action Classification: In Figure 10, we visualize the video generation of ModelScope and
VADER. In this case, we fine-tune VADER using the action classification objective, for the action
specified in the prompt. For ”A person eating donuts”, we find that VADER makes the human face
more evident along with adding sprinkles to the donut. Earlier generations are often misclassified as
baking cookies, which is a different action class in the kinetics dataset. The addition of colors and
sprinkles to the donut makes it more distinguishable from cookies leading to a higher reward.

V-JEPA reward model: In Figure 9, we show results for increasing the length of the video
generated by Stable Video Diffusion (SVD). For generating long-range videos on SVD, we use
autoregressive inference, where the last frame generated by SVD is given as conditioning input for
generating the next set of images. We perform three steps of inference, thus expanding the context
length of SVD by three times. However, as one can see in the images bordered in red, after one
step of inference, SVD starts accumulating errors in its predictions. This results in deforming the
teddy bear, or affecting the rocket in motion. VADER uses V-JEPA objective of masked encoding to
enforce self-consistency in the generated video. This manages to resolve the temporal and spatial
discrepancy in the generations as shown in Figure 9.

6 CONCLUSION

We presented VADER, which is a sample and compute efficient framework for fine-tuning pre-trained
video diffusion models via reward gradients. We utilized various reward functions evaluated on
images or videos to fine-tune the video diffusion model. We further showcased that our framework is
agnostic to conditioning and can work on both text-to-video and image-to-video diffusion models.
We hope our work creates more interest towards adapting video diffusion models.
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A APPENDIX

A.1 PROMPTS.

We consider the following set of prompt datasets for reward fine-tuning of text-to-video and image-
to-video diffusion models.

• Activity Prompts (Text): We consider the activity prompts from the DDPO (Black et al.,
2023). Each prompt is structured as ”a(n) [animal] [activity],” using a collection of 45
familiar animals. The activity for each prompt is selected from a trio of options: ”riding a
bike”, ”playing chess”, and ”washing dishes”.

• HPSv2 Action Prompts (Text): Here we filter out 50 prompts from a set of prompts
introduced in the HPS v2 dataset for text-image alignment. We filter prompts such that they
contain action or motion information in them.

• ChatGPT Created Prompts (Text): We prompt ChatGPT to generate some vivid and
creatively designed text descriptions for various scenarios, such as books placed beside cups,
animals dressed in clothing, and animals playing musical instruments.

• ImageNet Dog Category (Image): For image-to-video diffusion model, we consider the
images in the Labrador retriever and Maltese category of ImageNet as our set of prompts.

• Stable Diffusion Images (Image): Here we consider all 25 images from Stable Diffusion
online demo webpage.

A.2 VISUALIZATIONS.

Before VADER (Ours)

“a man in a trendy suit taking a selfie in a city square, surrounded by modern buildings and a fountain.”

“A bear enjoying a slice of cake at a picnic.”

Open-Sora

“A shark riding a bike.”

“A bear playing chess.”

ModelScope

Figure 7: Aligning Open-Sora 1.2 and ModelScope with VADER. The left column shows results
from the base models, while results from VADER are demonstrated on the right. The first two rows
use Open-Sora as the base model, and the last two rows use ModelScope. The reward models applied
are PickScore in the first row, HPSv2.1 in the second row, HPSv2 in the third row, and the Aesthetic
reward model in the last row.
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VideoCrafter VADER (Ours)

“A dog playing a slide guitar on a porch during a gentle rainstorm.”

“A dog strumming an acoustic guitar by a lakeside campfire under the stars.”

Figure 8: Additional text-to-video generation results for VideoCrafter and VADER. We show results
for VideoCrafter Text-to-Video model on the left and results for VADER on the right, where we use
VideoCrafter as our base model. The reward models applied are a combination of HPSV2.1 and
Aesthetic model in the first row, and PickScore in the last row. The videos are generated based on
prompts that are not encountered during training.

Stable Video 
Diffusion

VADER  
(Ours)

Stable Video 
Diffusion

VADER  
(Ours)

Figure 9: Improving temporal and spatial consistency of Stable Video Diffusion (SVD) Image-
to-Video Model. Given the leftmost frame as input, we use autoregressive inference to generate
3*N frames in the future, where N is the context length of SVD. However, this suffers from error
accumulation, resulting in corrupted frames, as highlighted in the red border. We find that VADER
can improve the spatio-temporal consistency of SVD by using V-JEPA’s masked encoding loss as its
reward function.

ModelScope VADER (Ours)

“A person playing
Piano”

“A person eating
Donuts”

Figure 10: Video action classifiers as reward model. We use VideoMAE action classification model
as a reward function to fine-tune ModelScope’s Text-to-Video Model.
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A.3 BASELINES

DDPO: We implement the approach in (Black et al., 2023), by closely following the code from
kvablack/ddpo-pytorch. We adopt the same code structure, which computes the log probability for
each ddim denoising step, for the video diffusion model. This log probability is used to compute
policy gradient, following the method in (Black et al., 2023). We use the PPO version of the method
as opposed to only using policy gradient, since this is reported to give slightly better performance.
We use the same LoRA and gradient checkpointing approach that is used in VADER for updating the
video diffusion model.

DiffusionDPO: Our implementation for the approach in (Wallace et al., 2023) builds on the code
from SalesforceAIResearch/DiffusionDPO. We alternate between sampling from the diffusion model,
and training the model via the DPO objective, similar to the process in DDPO. Samples are added to
a replay buffer (since offline samples can be used for DPO training), and we use batches sampled
from the buffer for training. Given pairs of video generations, we assign them as V w and V l based
on rewards from the reward model, where V w obtains higher reward. We then use the exact same
loss function as them. We set β, the KL penalty in DPO to be 5000 following the standard. Just as
for DDPO, the model is updated using same LoRA training and gradient checkpointing approach as
in VADER.

A.4 QUANTATIVE ANALYSIS.

In this section, unless explicitly specified otherwise, the base model used is VideoCrafter. We use the
following acronyms to refer to various methods in the Tables below.

• VADER-Pick: PickScore reward.
• VADER-HPS: Aesthetic and HPS rewards
• VADER-ViCLIP: ViCLIP and Aesthetic rewards.
• VADER-V-JEPA: V-JEPA reward.
• VideoCrafter, ModelScope, and Stable Video Diffusion: Baseline models.

In this section, we present a comprehensive analysis of VADER. In Table 3, we explore how
optimizing VADER with specific reward models affects other reward scores. Notably, fine-tuning
with the PickScore reward model significantly improves the HPS score, which indicates a strong
inter-reward correlation. This aligns with the findings in Figure 11.

In Table 4, we evaluate VADER variants using EvalCrafter (Liu et al., 2024) benchmark. We find
that all VADER variants outperform the base model in both temporal coherence and motion quality.
We further evaluate VADER on VBench benchmark (Huang et al., 2024) in Table 5. We find that
VADER-Pick achieves the best consistency scores for subjects and backgrounds, while VADER-HPS
excels in aesthetic and imaging quality. Further, Table 6 evaluates VADER-V-JEPA and Stable Video
Diffusion using VBench metrics, demonstrating significant improvements in temporal coherence and
aesthetic style.

Table 7 ablates various memory optimization techniques. We find that using certain techniques, the
total memory usage can be reduced from 276.3 GB to 32.5 GB. In Table 8 we study the diversity
of generation across models. In Table 9 we ablate the number of truncated backpropagation steps,
showing how different values of the backpropagation step (K) in the diffusion model influence
training results. Finally, in Figure 12, we compare VADER’s compute efficiency against standard and
on-policy versions of DDPO and DPO baselines when trained for longer.
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Table 3: In this Table, we study how optimizing for specific reward functions via VADER affects
scores on other reward functions. We observe that the HPS score increases significantly after fine-
tuning the base model via the PickScore model, indicating a strong correlation.

Model HPS Score PickScore Score Aesthetic Score ViCLIP Score

VideoCrafter 0.2564 20.9231 5.2219 0.2643
VADER-HPS 0.2651 21.1345 5.7965 0.2622
VADER-Pick 0.2669 21.4911 5.5757 0.2640
VADER-ViCLIP 0.2511 20.8927 5.6241 0.2628

Table 4: EvalCrafter (Liu et al., 2024) evaluation results for VADER. EvalCrafter calculates Temporal
Coherence using Warping Error, Semantic Consistency (cosine similarity of the embeddings of
consecutive frames), and Face Consistency, which assess frame-wise pixel and semantic consistency.
Motion Quality is evaluated through Action-Score (action classification accuracy), Flow-Score
(average optical flow between frames obtained from RAFT (Teed & Deng, 2020)), and Motion
AC-Score (amplitude classification consistency with the text prompt). We generate 700 videos from
each model for this comparision. Results demonstrate that all the VADER-variants outperform the
base model (VideoCrafter).

Model Temporal Coherence Motion Quality

VideoCrafter 55.90 52.89
VADER-HPS 59.65 55.46
VADER-Pick 60.75 54.65
VADER-ViCLIP 57.08 54.25

Table 5: VBench (Huang et al., 2024) evaluation results VADER. The metrics used in VBench
include: Subject Consistency (consistency of the main subject across frames, evaluated using
DINO (Caron et al., 2021) feature similarity), Background Consistency (using CLIP (Radford
et al., 2021) feature similarity), Motion Smoothness (fluidity of motion, based on motion priors
from a frame interpolation model), Dynamic Degree (extent of motion in the video, estimated with
RAFT), Aesthetic Quality (assessed via the LAION aesthetic predictor), and Imaging Quality
(using MUSIQ (Ke et al., 2021)). We generate 700 videos for each model using prompts not seen
during training. We find that VADER-Pick has the best consistency score, while VADER-HPS shows
the best aesthetic and imaging quality.

Model Subject
Consis-
tency

Background
Consis-
tency

Motion
Smooth-

ness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

VideoCrafter 0.9544 0.9652 0.9688 0.5346 0.5752 0.6677
VADER-HPS 0.9659 0.9713 0.9734 0.4741 0.6295 0.7145
VADER-Pick 0.9668 0.9727 0.9726 0.3732 0.6094 0.6762
VADER-ViCLIP 0.9564 0.9662 0.9714 0.5519 0.6008 0.6566

Table 6: VBench evaluation results for Image to Video diffusion models. The base model is
Stable Video Diffusion. We compare Stable Video Diffusion and VADER-V-JEPA. VADER-V-JEPA
demonstrates improvements across most metrics, particularly in consistency and aesthetic quality.

Model Subject
Consis-
tency

Background
Consis-
tency

Motion
Smooth-

ness

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

Stable Video Diffusion 0.9042 0.9469 0.9634 0.8333 0.6782 0.6228
VADER-V-JEPA 0.9401 0.9551 0.9669 0.8333 0.6807 0.6384
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Table 7: Ablation of memory usage for different components in ModelScope-based VADER. For this
experiment, we offload the memory to the CPU main memory to prevent GPU out-of-memory error.
Starting with the standard (LoRA + Mixed Precision), each row represents an added component
(Subsampling Frames, Truncated Backpropagation, and Gradient Checkpointing) applied
incrementally to the previous row. The total RAM reduced is about 240 GB after implementing all
the steps.

Method VRAM System RAM Total RAM

LoRA + Mixed Precision 12.1 GB 264.2 GB 276.3 GB
+ Subsampling Frames 12.1 GB 216.8 GB 228.9 GB
+ Truncated Backpropagation 12.1 GB 57.3 GB 69.4 GB
+ Gradient Checkpointing 12.1 GB 20.4 GB 32.5 GB

Table 8: Diversity of generated videos for VADER. We generate 500 videos for each model and
prompt combination. We use 5 prompts resulting in a total of 2500 videos per model. The diversity
is calculated using the variance of VideoMAE latent space embeddings across the 500 videos for
each prompt. We then average the variances over all prompts. We find that VADER variants exhibit
reduced diversity compared to the baseline model (VideoCrafter). Prior works (Kirk et al., 2023;
Murthy et al., 2024) have found similar results, where aligning a model for a specific use case often
results in reduced diversity.

VideoCrafter VADER-Pick VADER-HPS VADER-ViCLIP

Average Variance 0.0037 0.0026 0.0023 0.0031

Table 9: We ablate the number of truncated backpropagation steps (K) in VADER. For this experiment,
we use VADER trained using Aesthetic and HPS Rewards. We find that higher values of K result in
more semantic level changes, while K = 1 results in more fine-grained changes, specifically in the
earlier steps of training. Visualizations are available at Project Website. Further, we find as we train
longer, both the models start exhibiting semantic level changes. We also find it is easier to optimize
with a smaller value of K, as can be seen in the results below.

Training Step Reward Value (K=1) Reward Value (K=10)

1 5.047 5.0946
100 5.3342 5.2523
200 5.4977 5.2072
300 5.6479 5.1906
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Figure 11: We study correlation across different reward models for VADER. We find that there is a
strong positive correlation between PickScore and HPS scores, while a strong negative correlation
between ViCLIP and Aesthetic reward function.

Figure 12: Training efficiency comparison against various baselines, when trained for longer. The
base model used here is ModelScope. We compare VADER against DPO, DDPO, on-policy DPO,
and on-policy DDPO. For implementing the on-policy version of the baselines, we simply reduce the
UTD (update-to-data) ratio to 1, thus only doing a single gradient update for each datapoint sampled.
We observe that VADER significantly outperforms all of them in terms of compute efficiency.
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