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Abstract

The Gromov–Wasserstein (GW) problem, a variant of the classical opti-
mal transport (OT) problem, has attracted growing interest in the machine
learning and data science communities due to its ability to quantify similar-
ity between measures in different metric spaces. However, like the classical
OT problem, GW imposes an equal mass constraint between measures,
which restricts its application in many machine learning tasks. To address
this limitation, the partial Gromov-Wasserstein (PGW) problem has been
introduced. It relaxes the equal mass constraint, allowing the comparison of
general positive Radon measures. Despite this, both GW and PGW face sig-
nificant computational challenges due to their non-convex nature. To over-
come these challenges, we propose the linear partial Gromov-Wasserstein
(LPGW) embedding, a linearized embedding technique for the PGW prob-
lem. For K different metric measure spaces, the pairwise computation of
the PGW distance requires solving the PGW problem O(K2) times. In
contrast, the proposed linearization technique reduces this to O(K) times.
Similar to the linearization technique for the classical OT problem, we prove
that LPGW defines a valid metric for metric measure spaces. Finally, we
demonstrate the effectiveness of LPGW in practical applications such as
shape retrieval and learning with transport-based embeddings, showing that
LPGW preserves the advantages of PGW in partial matching while signifi-
cantly enhancing computational efficiency. The code is available at https:
//github.com/mint-vu/Linearized_Partial_Gromov_Wasserstein.

1 Introduction

Optimal transport (OT), unbalanced and partial OT, and linearized OT. The core
objective of this work, and a general challenge in machine learning, is to match objects and
devise practical, computationally efficient notions of similarity between shapes. One of the
most well-known techniques for this task arises from optimal transport (OT) theory, which
has found extensive applications in generative modeling (Arjovsky et al., 2017; Genevay
et al., 2016), domain adaptation (Courty et al., 2016; Balaji et al., 2020), representation
learning (Wu et al., 2023), and many other domains. The classical OT problem, as detailed
by (Villani, 2009), involves matching two probability distributions to minimize the expected
transportation cost, giving rise to the so-called Wasserstein distances. Although the classi-
cal OT problem imposes a mass conservation requirement, recent advances have extended
the utility of OT beyond probability measures, allowing for comparisons of non-negative
measures with different total masses and partial matching of sets through the unbalanced
and partial OT frameworks (Chizat et al., 2018a;b; Fatras et al., 2021; Séjourné et al.,
2021). Additionally, in large-scale machine learning applications, since the OT approach
is computationally expensive, it has motivated numerous approximations that lead to sig-
nificant speedups, such as those in (Cuturi, 2013; Chizat et al., 2020; Scetbon & Cuturi,
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2022), and the linearization technique, termed linear optimal transportation (LOT), pro-
posed by (Wang et al., 2013). There have also been advances in reducing the computational
complexity of comparing unbalanced measures (Cai et al., 2022; Bai et al., 2023).

The Gromov-Wasserstein (GW) distance, unbalanced and partial GW, and lin-
earized GW. Another line of research has focused on the comparison of probability mea-
sures across different metric spaces using Gromov-Wasserstein (GW) distances (Mémoli,
2011). These innovations have applications in areas ranging from quantum chemistry (Peyré
et al., 2016) to natural language processing (Alvarez-Melis & Jaakkola, 2018), enhancing
fundamental tasks such as clustering (Chowdhury & Needham, 2021), dimensionality re-
duction (Van Assel et al., 2024), shape correspondence (Kong et al., 2024), shape analysis
(Mémoli & Needham, 2022), and inference-based simulation (Hur et al., 2024). The GW
distance is a valuable tool across a variety of domains, as it allows for comparisons between
distributions while being independent of the ambient spaces. To extend GW to unbalanced
settings, GW-like comparisons have been developed for metric measure spaces with differ-
ing total masses (Liu et al., 2020; Chapel et al., 2020; Séjourné et al., 2021; Bai et al.,
2024; Zhang et al., 2022). Furthermore, to address the computational expense of pairwise
GW distance calculations in large-scale applications, a linearized version of GW has been
proposed in (Beier et al., 2022). Similar to the LOT framework (Wang et al., 2013), this
approach is based on barycentric projection maps of transport plans.

Contributions.

• We propose the linear Partial Gromov-Wasserstein embedding (LPGW) technique,
which extends the classical LOT embedding technique to the partial GW setting.

• Based on the embedding, we propose the so-called LPGW distance, which we prove
to be a metric under certain assumptions. Given K different metric measure spaces,
computing their pairwise PGW distances requires solving the PGW problem O(K2)
times. However, computing the LPGW distance pairwise requires only O(K) dis-
tance computations.

• Numerically, we test our proposed LPGW embedding and LPGW distance in two
experiments: shape retrieval and learning with transform-based embeddings. In
both experiments, we observe that the LPGW-based approach can preserve the
partial matching property of PGW while significantly improving computational
efficiency.

2 Background
2.1 The Wasserstein Distance

Let P(Rd) be the space of probability measures on the Borel σ-algebra on Rd, and let
P2(Rd) := {µ ∈ P(Rd) :

∫
Rd |x|2dµ(x) < ∞}. Given a (measurable) mapping T : Rd → Rd,

the pushforward measure T#µ is defined as T#µ(B) := µ(T−1(B)) for all Borel sets B ⊆ Rd,
where T−1(B) := {x : T (x) ∈ B} is the preimage of B under T .

Given µ, ν ∈ P2(Rd), the 2-Wasserstein distance is defined as

W 2
2 (µ, ν) := min

γ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥2dγ(x, y) (1)

where Γ(µ, ν) is set of joint probability measures on Rd×Rd whose first and second marginals
are µ and ν, respectively. The classical OT theory (Villani, 2021; 2009) guarantees that a
minimizer to (1) always exists, so such a formulation is well-defined. In fact, there might
exist multiple minimizers, and we denote by Γ∗(µ, ν) the set of all optimal transportation
plans for problem (1).

When an optimal transportation plan γ is induced by a mapping T : Rd → Rd, that is,

γ = (id× T )#µ ∈ Γ∗(µ, ν), with T#µ = ν, (2)

we say that the Monge mapping assumption holds, and the function T is called a
Monge mapping. In particular, by Brenier’s theorem, when µ is a continuous measure (i.e.,
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absolutely continuous with respect to the Lebesgue measure on Rd), a Monge mapping T
always exists and it is unique.

We refer to Appendix A for a detailed introduction to the LOT formulation.

2.2 The Gromov-Wasserstein Distance

Consider two compact gauged measure spaces (gm-spaces) X = (X, gX , µ) and Y =
(Y, gY , ν), where X ⊂ Rdx , Y ⊂ Rdy are non-empty (compact) convex sets (with dx, dy ∈ N);
gX : X⊗2 → R is a gauge function in L2

sys(X
⊗2, µ⊗2), i.e., the space of symmet-

ric, real-valued functions on X⊗2 := X × X that are square-integrable with respect to
µ⊗2 := µ ⊗ µ (similarly for gY ∈ L2

sys(Y
⊗2, ν⊗2); and µ, ν are probability measures de-

fined on X,Y respectively. In addition, assume that X and Y are metric measure spaces
(mm-spaces); that is, there exist distances dX and dY on X and Y , respectively. In gen-
eral, we will assume that gX is a continuous function on X⊗2 with respect to the metric
dX⊗2((x1, x

′
1), (x2, x

′
2)) := dX(x1, x2) + dX(x′

1, x
′
2) on X⊗2 (respectively, for gY ). Thus,

since X is compact, gX (respectively, gY ) is a Lipschitz continuous function, i.e., there
exists K ∈ R>0 such that

|gX(x1, x
′
1)− gX(x2, x

′
2)| ≤ K(dX(x1, x2) + dX(x′

1, x
′
2)), ∀x1, x

′
1, x2, x

′
2 ∈ X. (3)

For the reader’s convenience, unless stated otherwise, we default to gX(x1, x2) = d2X(x1, x2)
(which is the classical setting for the Gromov-Wasserstein problem (Alvarez-Melis &
Jaakkola, 2018; Vayer, 2020)), or to the inner product gX(x1, x2) = x⊤

1 x2 (which has been
studied in (Vayer, 2020; Sturm, 2012)). The same applies to gY .

The Gromov-Wasserstein (GW) problem between X and Y is defined as

GW 2(X,Y) := min
γ∈Γ(µ,ν)

⟨|gX − gY |2, γ⊗2⟩ (4)

where

⟨|gX − gY |2, γ⊗2⟩ :=
∫
(X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2 dγ(x, y)dγ(x′, y′).

A minimizer for (4) always exists (Mémoli, 2011), and we use Γ∗(X,Y) to denote the set of
all optimal transportation plans γ ∈ Γ(µ, ν) for the GW problem defined in (4). In addition,
when gX = dsX and gY = dsY for s ≥ 1, GW (·, ·) defines a metric on the space of mm-spaces
up to isomorphism1.

Similar to classical OT theory, we say that the GW-Monge mapping assumption holds
if there exists a minimizer γ for (4) of the form γ = (id × T )#µ, where id : X → X is the
identity map on X, and T : X → Y is a measurable function that pushes forward µ to ν.
In recent years, the existence of Monge mappings for the GW problem has been studied in
works such as (Vayer, 2020; Maron & Lipman, 2018; Dumont et al., 2024).

Note that the GW minimization problem defined in (4) is quadratic but non-convex. The
computational cost of GW (·, ·) for discrete measures µ, ν of size n is O(n3 · L) to obtain
a solution that is a local minimum, where n3 is the computational cost of one iteration
and L is the required number of iterations2. Thus, when faced with the task of computing
the pairwise GW distances between discrete gm-spaces Y1, . . . ,YK with n points each, the
resulting complexity is O(K2 · n3 · L). To reduce the complexity of computing the pairwise
distances in this setting, (Beier et al., 2022) introduces a linear embedding technique called
linear Gromov-Wasserstein (LGW), which we discuss in the following section.

2.3 The Linear Gromov-Wasserstein Embedding and Distance

Consider a fixed gm-space X = (X, gX , µ), which serves as a reference space. Given a
target gm-space Y = (Y, gY , ν), suppose that the GW-Monge mapping assumption holds,
i.e., there exists an optimal transportation plan γ = (id × T )#µ for the GW problem

1Two mm-spaces X, Y are isomorphic is there exists an isometry ψ : X → Y , i.e., dX(x, x′) =
dY (ψ(x), ψ(x′)), which is surjective and such that ν = ψ#µ.

2We refer to Appendix D for details.
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(4) between X and Y. Then, the linear Gromov-Wasserstein (LGW) embedding is
defined as the following mapping

Y 7→ kγ := gX(·1, ·2)− gY (T (·1), T (·2)), (5)

which assigns each gm-space Y to a gauge function kγ : X ×X → R defined by (5). This
embedding can recover the GW distance GW (X,Y) by the following:

GW (X,Y) =
∫
X×X

|kγ(x, x′)|2dµ(x)dµ(x′).

Given two gm-spaces Y1 = {Y 1, gY 1 , ν1},Y2 = {Y 2, gY 2 , ν2}, assume that there exist op-
timal transportation plans γ1 = (id × T 1)#µ ∈ Γ∗(X,Y1), γ2 = (id × T 2)#µ ∈ Γ∗(X,Y2).
Let kγ1 , kγ2 denote the corresponding linear GW embeddings as defined by (5). Then, the
LGW distance conditioned on γ1, γ2, is defined as

LGW (Y1,Y2;X, γ1, γ2) := ∥kγ1 − kγ2∥L2(µ⊗2). (6)

When the GW-Monge mapping assumption does not hold, (Beier et al., 2022) extend the
above distance conditioned on a pair of arbitrary plans γ1 ∈ Γ∗(X,Y1), γ2 ∈ Γ∗(X,Y2):

LGW (Y1,Y2;X, γ1, γ2) = inf
γ∈Γ(γ1,γ2;µ)

⟨|gY 1 − gY 2 |2, γ⊗2⟩ (7)

= inf
γ∈Γ(γ1,γ2;µ)

∫
(X×Y 1×Y 2)⊗2

|gY 1(y1, y1′)− gY 2(y2, y2′)|2dγ(x, y1, y2)γ(x′, y1′, y2′),

where

Γ(γ1, γ2;µ) := {γ ∈ M+(X × Y 1 × Y 2) : (πX,Y 1)#γ = γ1, (πX,Y 2)#γ = γ2, (πX)#γ = µ},

for πX,Y i(x, y1, y2) := (x, yi) for i = 1, 2, and πX(x, y1, y2) := x. Finally, the LGW
distance between Y1 and Y2 is defined as

LGW (Y1,Y2;X) = inf
γ1∈Γ∗(µ,ν1)

γ2∈Γ∗(µ,ν2)

LGW (Y1,Y2;X, γ1, γ2). (8)

We refer to Appendix B for further details.

To simplify the computation of the above formulation, (Beier et al., 2022) propose the
barycentric projection method, which we will briefly review here.

Let γ ∈ Γ(µ, ν) be a transportation plan between µ ∈ P(X) and ν ∈ P(Y ). By using
[Definition 5.4.2, Ambrosio et al. (2005)], the barycentric projection map Tγ : X → Y
is defined as

Tγ(x) :=
∫
Y

y dγY |X(y|x). (9)

where {γY |X(·|x)}x∈X is the corresponding disintegration of γ with respect to its first
marginal µ. That is, {γY |X(·|x)}x∈X is a family of measures satisfying∫

X×Y

ϕ(x, y) dγ(x, y) =

∫
X

∫
Y

ϕ(x, y) dγY |X(y|x)dµ(x), ∀ϕ ∈ C(X × Y ).

If γ∗ ∈ Γ∗(X,Y), we define the measure ν̃γ∗ := (Tγ∗)#µ ∈ P(Y ) and the gm-space Ỹγ∗ :=
(Y, gY , νγ∗). We provide the following results as a complement to the work in (Beier et al.,
2022).

Proposition 2.1. Let γ∗ ∈ Γ∗(X,Y) and γ0 ∈ Γ∗(X,X). Then, we have the following:

(1) The LGW embedding of Y can recover the GW distance, i.e.,

LGW (X,Y;X, γ0, γ∗) = GW (X,Y).
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(2) If T is a Monge mapping for GW (X,Y) such that γ∗ = (id× T )#µ, then Tγ∗ = T ,

µ-a.e. As a consequence, ν̃γ∗ = ν, and thus Ỹγ∗ = Y.

(3) If gY (·1, ·2) = α⟨·1, ·2⟩Y , where ⟨·1, ·2⟩Y is an inner product restricted to Y and
α ∈ R, then the barycentric projection map Tγ∗ defined by (9) is a Monge mapping

in the sense that γ̃ = (id× Tγ∗)#µ is optimal for the GW problem GW (X, Ỹγ∗).

We refer the reader to Appendix E for the proof.

Based on the above proposition, given Y1 = (Y 1, gY 1 , ν1) and Y2 = (Y 2, gY 2 , ν2), let γ1 ∈
Γ∗(X,Y1) and γ2 ∈ Γ∗(X,Y2). The following approximated LGW (aLGW) distance
can be used as a proxy for the LGW and GW distances. Furthermore, in practice, we can
fix a single pair (γ1, γ2) to compute the distance rather than compute the infimum:

aLGW (Y1,Y2;X) := inf
γ1∈Γ∗(X,Y1)

γ2∈Γ∗(X,Y2)

LGW (Y1
γ1 ,Y2

γ2 ;X, γ1, γ2)

= inf
γ1∈Γ∗(X,Y1)

γ2∈Γ∗(X,Y2)

∥gY 1(Tγ1(·1), Tγ1(·2))− gY 2(Tγ2(·1), Tγ2(·2))∥2L2(µ⊗2) (10)

≈ ∥gY 1(Tγ1(·1), Tγ1(·2))− gY 2(Tγ2(·1), Tγ2(·2))∥2L2(µ⊗2). (11)

2.4 The Partial Gromow-Wasserstein Distance

Partial Gromov-Wasserstein (PGW), or more generally, unbalanced GW, relaxes the
assumption that µ, ν are normalized probability measures (Chapel et al., 2020; Séjourné
et al., 2021; Bai et al., 2024). In particular, the PGW distance is defined as

PGW 2
λ(X,Y) := inf

γ∈Γ≤(µ,ν)
⟨|gX − gY |2, γ⊗2⟩+ λ(|µ⊗2 − γ⊗2

X |+ |ν⊗2 − γ⊗2
Y |), (12)

where λ > 0 is a parameter; γX := (πX)#γ, γY := (πY )#γ are the corresponding marginals
of γ on X and Y , respectively; and Γ≤(µ, ν) := {γ ∈ M+(X ×Y ) : γX ≤ µ, γY ≤ ν}, where
M+(X ×Y ) denotes the set of finite non-negative measures on X ×Y , and γX ≤ µ denotes
that for any Borel set A, γX(A) ≤ µ(A) (similarly for γY ≤ ν).

In the discrete setting, the PGW problem can be solved by variants of the Frank-Wolfe
algorithm (see the algorithms in (Bai et al., 2024) for details). From a theoretical perspec-
tive, there always exists a minimizer for the optimization problem in (12) (see [Proposition
3.3, (Bai et al., 2024)]). We use the notation Γ∗

≤,λ(X,Y) to denote the set of all optimal

transportation plans for PGWλ(X,Y). For convenience, when λ is fixed, we may omit the
subscript λ and write Γ∗

≤(X,Y) instead.

We say that the PGW-Monge mapping assumption holds if there exists an optimal
transportation plan γ for the optimization problem in (12) of the form γ = (id×T )#γX for
some T : X → Y .

3 Linear Partial Gromov-Wasserstein Embedding and Distance

Inspired by the work in (Beier et al., 2022), we extend the LGW distance to the unbalanced
setting. In particular, we present a linearization technique for the PGW problem proposed
in (Bai et al., 2024).

Given gm-spaces X = (X, gX , µ) and Y = (Y, gY , ν), let γ ∈ Γ∗
≤,λ(X,Y). We first suppose

that the PGW-Monge mapping assumption holds; that is, γ = (id × T )#γX for some T :
X → Y . We subsequently define the linear partial Gromov-Wasserstein (LPGW)
embedding as

Y 7→ (γX , kγ , γc), (13)

where γX := (πX)#γ, kγ(·1, ·2) := gX(·1, ·2) − gY (T (·1), T (·2)), and γc := ν⊗2 − (γY )
⊗2

for γY = (πY )#γ. Here, the first component of the embedding, γX , encodes the mass
transportation from the source domain X. The second component, kγ , describes the trans-
portation cost function. Finally, the third component, γc, encodes the mass creation in the
target domain Y .
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Similarly to the LGW embedding given by (5), we show in Proposition 3.1 that the above
embedding can recover PGWλ(X,Y) in the sense that

∥kγ∗∥2L2((γ∗
X)⊗2) + λ(|µ|2 − |γ∗

X |2 + |γ∗
c |) = PGWλ(X,Y).

Given two gm-spaces Y1,Y2, let γ1 ∈ Γ∗
≤,λ(X,Y1) and γ2 ∈ Γ∗

≤,λ(X,Y2). Suppose γ1, γ2 are

induced by Monge mappings T 1, T 2 and compute the corresponding LPGW embeddings via
(13). We define the LPGW discrepancy conditioned on γ1, γ2 by

LPGWλ(Y1,Y2;X, γ1, γ2) := inf
µ′≤γ1

X
∧γ2

X

∥kγ1 − kγ2∥2L2(µ′⊗2) + λ(|ν1|2 + |ν2|2 − 2|µ′|2), (14)

where (γ1
X ∧ γ2

X)(E) = minF⊂E{γ1
X(E) + γ2

X(E \ F )}. Note that the above formulation
can be written entirely in terms of the LPGW embeddings since |ν1|2 = |γ1

c | + |γ1
X |2, and

similarly |ν2|2 = |γ2
c |+ |γ2

X |2.
When the PGW-Monge mapping assumption does not hold, we extend the above LPGW dis-
crepancy conditioned on arbitrary transportation plans γ1 ∈ Γ∗

≤,λ(X,Y1), γ2 ∈ Γ∗
≤,λ(X,Y2)

as follows:

LPGWλ(Y1,Y2;X, γ1, γ2) := inf
γ∈Γ≤(γ1,γ2;µ)

∥gY 1 − gY 2∥2L2(γ⊗2) + λ(|ν1|2 + |ν2|2 − 2|γ|2), (15)

where

Γ≤(γ
1, γ2;µ) := {γ ∈ M+(X × Y 1 × Y 2) : (πX,Y 1)#γ ≤ γ1, (πX,Y 2)#γ ≤ γ2}.

Finally, to gain independence from the transportation plans γ1, γ2, we formally define the
LPGW discrepancy as

LPGWλ(Y1,Y2;X) := inf
γ1∈Γ∗

≤,λ(X,Y
1)

γ2∈Γ∗
≤,λ(X,Y

2)

LPGWλ(Y1,Y2;X, γ1, γ2). (16)

Proposition 3.1. Given compact gm-spaces X = (X, gX , µ) and Y = (Y, gY , ν), let γ
0 ∈

Γ∗
≤,λ(X,X) and γ∗ ∈ Γ∗

≤,λ(X,Y). We have the following:

(1) Problem (15) admits a minimizer.

(2) Under the PGW-Monge mapping assumption, the problems (14) and (15) coincide.

(3) Under the PGW-Monge mapping assumption, when

2λ ≥ max
y1,y1′∈Y 1,
y2,y2′∈Y 2

|gY (y1, y1′)− gY (y
2, y2′)|2 (17)

problem (14) achieves the value

LPGWλ(Y1,Y2;X, γ1, γ2) := ∥kγ1 − kγ2∥2L((γ1
X

∧γ2
X

)⊗2) + λ(|ν1|2 + |ν2|2 − 2|γ1
X ∧ γ2

X |2).
(18)

(4) The LPGW embedding of Y can recover PGWλ(X,Y) in the sense that, under the
PGW-Monge mapping assumption, we have

∥kγ∗∥2L2((γ∗
X)⊗2) + λ(|µ|2 − |γ∗

X |2 + |γ∗
c |) = PGWλ(X,Y),

and in general, we have

LPGWλ(X,Y; γ0, γ∗) = PGWλ(X,Y).

(5) The LPGW discrepancies defined in (15) and (16) are pseudo-metrics. Indeed,
under certain conditions, (16) is a rigorous metric. We refer to Appendix F for
detailed discussion.
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The proof of the above proposition is included in Appendix F.

Similar to LGW, to accelerate the computation of the above formulation, we propose the
following barycentric projection method in the LPGW setting.

First, similar to Proposition 2.1, we present the following theorem, for which we provide the
proof in Appendix H.

Theorem 3.2. Given gm-spaces X = (X, gX , µ) and Y = (Y, gY , ν), let γ0 ∈ Γ∗
≤,λ(X,X)

and γ∗ ∈ M+(X × Y ). Further, let ν̃ := ν̃γ∗ := (Tγ∗)#γ and Ỹγ∗ = (Y, dY , ν̃). Then,

(1) If γ∗ is induced by a mapping T , then Tγ∗ = T, γ∗
X − a.s.

(2) If γ∗ ∈ Γ∗
≤(X,Y), and the conditions for gY (·1, ·2) in statement (3) of Proposition

2.1 hold, then γ̃ := (id× Tγ∗)#γ
∗
X is optimal for PGWλ(X, Ỹγ∗).

(3) If γ1 ∈ Γ∗
≤(X,Y1) and γ2 ∈ Γ∗

≤(X,Y2), and the PGW-Monge mapping assumption
holds, then

LPGWλ(Y1,Y2;X, γ1, γ2) = LPGWλ(Ỹγ1 , Ỹγ2 ;X, γ̃1, γ̃2) + λ(|γ1
c |+ |γ2

c |). (19)

Based on part (3) in the above theorem, we define the approximated LPGW (aLPGW)
discrepancy by

aLPGWλ(Y1,Y2;X) := inf
γ1∈Γ∗

≤,λ(X,Y1),

γ2∈Γ∗
≤,λ(X,Y2)

LPGWλ(Ỹγ1 , Ỹγ2 ;X, γ1, γ2) + λ(|γ1
c |+ |γ2

c |). (20)

Proposition 3.3. If X,Y are compact sets, when λ is sufficiently large, in particular, (17)
is satisfied, the above formulation becomes:

aLPGWλ(Y1,Y2;X) = inf
γ1∈Γ∗

≤,λ(X,Y1),

γ2∈Γ∗
≤,λ(X,Y2)

∥kγ1 − kγ2∥2(γ1
X

∧γ2
X

)⊗2 + λ(|ν1|2 + |ν2|2 − 2|γ1
X ∧ γ2

X |2). (21)

In practice, similar to LGW, we only select one pair of optimal transportation plans γ1, γ2

to compute the embedding and the above aLPGW discrepancy. In addition, we apply (21)
to approximate the original formula (20). That is, in our experiments, we directly compute

∥kγ1 − kγ2∥2(γ1
X∧γ2

X)⊗2 + λ(|ν1|2 + |ν2|2 − 2|γ1
X ∧ γ2

X |2). (22)

3.1 Numerical implementation of LPGW in discrete setting

In practice, we consider discrete distributions (or, more generally, discrete Radon measures).
Suppose X = {X, ∥·∥d0

, µ =
∑n

i=1 piδxi
}, where X ⊂ Rd0 is a convex compact set containing

{0d0
, x1, . . . xn}. We similarly let Y1 = (Y 1, ∥ · ∥d1

, ν =
∑m1

j=1 q
1
j δy1

j
) and Y2 = (Y 2, ∥ ·

∥d2 , ν2 =
∑m2

j=1 q
2
j δy2

j
).

Suppose γ1 ∈ Rn×m1
+ is an optimal transportation plan for PGWλ(X,Y1). By convexity of

Y , the barycentric projection given by (9) becomes

Tγ1(xi) =

{
ỹi =

1
q̃i
[γ1y1]i if q̃i > 0

0d1
if q̃i = 0

where q̃ = γ1
X = γ11m1

. (23)

Thus, the corresponding projected measure becomes ν̃γ1 =
∑

i q̃iδỹi
. In addition, we have

|γc| = (
∑n

i=1 pi)
2 − (

∑n
i∈1 q̃

1
i )

2. Let

K̃1 := kγ̃∗ = [∥ỹi − ỹ′i∥2 − ∥xi − x′
i∥2]i,i′∈[1:n] ∈ Rn×n. (24)

Suppose γ2 ∈ Rn×m2
+ is an optimal transportation plan for PGWλ(X,Y2). We define all

corresponding terms analogously.

7
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Let q̃1,2 = q̃1 ∧ q̃2, |q̃1 − q̃2|TV =
∑n

i=1 |q̃1i − q̃2i |, |q1| =
∑m1

i=1 q
1
i . The aLPGW distance given

by (20) and (21) becomes

aLPGW (Y1,Y2;X)

≈
n∑

i=1

(
∥ỹ1i − ỹ1i′∥2 − ∥Ỹ 2

i − Ỹ 2
i′ ∥2

)2
q̃12i q̃12i′ + λ(|q1|2 + |q2|2 − 2|q̃12|2)

= (q̃12)⊤
[
(K̃1 − K̃2)

2
]
(q̃12) + λ(|γ1

c |+ |γ2
c |+ |q̃⊗2

1 − q̃⊗2
2 |TV ), (25)

where (K̃1 − K̃2)
2 denotes the element-wise squared matrix and q̃⊗2

1 = q̃1q̃
⊤
1 (similarly for

q̃⊗2
2 ). The above quantity (25) can be used to approximate the original PGW distance
between Y1 and Y2.

In addition, the original LPGW embedding (13) of Y1 (in fact, of Ỹ1) is (K̃1, ν̃γ1 , γ1
c ). We

reduce this embedding to (K̃1, q̃1, |γ1
c |) which is sufficient to compute the above aLPGW

discrepancy. Thus, (K̃1, q̃1, |γ1
c |) can be regarded as numerical implementation of the LPGW

embedding (13).

4 Experiments

4.1 Elliptical Disks

In this experiment, we apply the LPGW distance and the PGW distance to the 2D dataset
presented in (Beier et al., 2022), consisting of 100 elliptical disks. We first compute the
pairwise distances between the samples using the PGW distance and then compare them
against the LPGW distance using nine different reference spaces. We present the resulting
wall-clock time for each method and evaluate the quality of the approximation of PGW by
LPGW using the mean relative error (MRE) and the Pearson correlation coefficient (PCC).

Experiment setup. We represent each 2D shape as an mm-space Xi = (R2, ∥ · ∥2, µi),
where µi =

∑n
i=1

1
nδxi . We normalize each shape so that the largest pairwise distance in

each mm-space is 1. Based on [Lemma E.2, Bai et al. (2023)], the largest possible choice of λ
is given by 2λ = 1. We hence test λ ∈ {0.05, 0.08, 0.1, 0.3, 0.5}, and for each reference space,
we compute the pairwise LPGW distances and compute the wall-clock time, MRE, and
PCC. We refer to Appendix K for full numerical details, MDS visualizations, and complete
results.

Performance analysis. We present the results when λ = 0.1 in Table 1. First, we
observe that LPGW is significantly faster than PGW as it only requires N = 100 transport
plan computations, whereas the PGW methods require

(
N
2

)
transport plan computations.

Second, we observe that when the reference space is one of S6,S7,S8,S9, LPGW admits
a relatively smaller MRE and higher PCC, demonstrating the importance of the chosen
reference space.

PGW S1 S2 S3 S4 S5 S6 S7 S8 S9

points 441 676 625 52 289 545 882 882 317

time (min) 46.97 0.76 3.78 3.13 0.08 0.62 1.56 1.91 1.98 0.71

MRE ↓ — 0.1941 0.1264 0.1431 0.2542 0.0538 0.0444 0.0205 0.0198 0.0245

PCC ↑ — 0.5781 0.5738 0.5881 0.8581 0.9871 0.9930 0.9952 0.9954 0.9949

Table 1: Experimental results when λ = 0.1. The first row shows the total wall-clock time
for PGW and LPGW. The second and third rows display the MRE (mean relative error)
and PCC (Pearson correlation coefficient), respectively.

4.2 Shape Retrieval

Experiment setup. We now employ the PGW distance to distinguish between 2D and
3D shapes, similarly to as done in (Beier et al., 2022). We use GW, LGW, and PGW
as baselines for comparison against the results of our proposed LPGW. Given a series of

shapes, we represent the shapes as mm-spaces Xi = (Rd, ∥ · ∥2, µi), where µi =
∑ni

k=1 α
iδxi

k
.

8
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For the GW and LGW methods, we normalize the mass for the balanced mass constraint
setting (i.e., αi = 1

ni ), and for the PGW and LPGW methods, we let αi = α for all the
shapes, where α > 0 is a fixed constant. In this manner, we compute the pairwise distances
between the shapes.

Next, using the approach given by (Beier et al., 2022), we combine each distance matrix
with a support vector machine (SVM), applying stratified 10-fold cross-validation. In each
iteration of cross-validation, we train an SVM using exp(−σD) as the kernel, where D is the
matrix of pairwise distances (w.r.t. one of the considered distances) restricted to 9 folds,
and compute the accuracy of the model on the remaining fold. We report the accuracy
averaged over all 10 folds for each model.

Dataset setup. We test one 2D shape dataset and one 3D shape dataset. We use the 2D
dataset presented in (Bai et al., 2024), consisting of 8 classes, each containing 20 shapes.
The 3D dataset is given by (Pan et al., 2021), which provides 100-200 complete shapes
in each of 16 different classes, and for each complete shape, provides 26 corresponding
“incomplete shapes.“ We choose four classes of shapes from this dataset, and for each, we
sample 15 complete and 45 incomplete shapes, yielding a total of 240 shapes. The datasets
are visualized in Figure 4 in the Appendix.

GW PGW LGW
LPGW

(ours)

2D Dataset

Accuracy ↑ 98.1% 96.2% 93.7% 97.5%

Time (s) ↓ 43s 39s 0.4s 0.5s

3D Dataset

Accuracy ↑ 92.5% 93.8% 92.5% 93.7%

Time (m) ↓ 203.0m 203.6m 1.3m 1.8m

Table 2: Accuracy and wall-clock time com-
parison in shape retrieval experiment.

Performance analysis. We refer to Ap-
pendix L for full numerical details, param-
eter settings, and the visualization of the
resulting confusion matrices. We visualize
the resulting pairwise distance matrices in
Figure 7. For the SVM experiments, on the
2D dataset, GW achieves the highest accu-
racy, 98.1%, while the second best method
is LPGW, 97.5%. On the 3D dataset, PGW
achieves the highest accuracy of 93.8%, and
LPGW achieves the next highest accuracy
of 93.7%. We refer to Table 2 for details.

In addition, we report the wall-clock time required to compute all pairwise distances for
each distance in Table 2. In both datasets, we observe that LGW/LPGW admit similar
computational time and are much faster than GW/PGW. This difference is more obvious
in the 3D dataset. We note that when λ is sufficiently large, the performance between the
LPGW method and the LGW method is the same (see Appendix L for details).

4.3 Learning with Transform-Based Embeddings

Data Method LOT LGW LPGW (ours)

no rotation
Accuracy ↑ 89.0% 82.5% 82.5%
Time ↓ 183s+16s 405s+77s 309s+84s

η = 0
Accuracy ↑ 51.2% 82.5% 82.5%
Time ↓ 183s+15s 405s+77s 309s+84s

η = 0.1
Accuracy ↑ 13.4% 17.0% 81.8%
Time ↓ 183s+17s 405s+88s 309s+91s

η = 0.3
Accuracy ↑ 12.5% 13.3% 75.8%
Time ↓ 183s+23s 405s+145s 309s+123s

η = 0.5
Accuracy ↑ 12.5% 12.5% 72.9%
Time ↓ 183s+27s 405s+248s 309s+168s

Table 3: Accuracy and wall-clock time comparison for learning with transform-based em-
beddings experiments. We report each time as t1 + t2, where t1 is the time required to
compute the training set embeddings and t2 is the time required to compute the testing set
embeddings.

In this experiment, we perform machine learning tasks using transform-based embeddings.
Specifically, given training and testing datasets, we apply various transform-based embed-
ding methods to both. Additionally, we assume that the testing data is randomly rotated
and has been corrupted with random noise. The objective is to evaluate the robustness of

9
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machine learning models trained using the different embedding techniques. The full numer-
ical details for this experiment can be found in Appendix M.
Baseline methods. In this experiment, we consider several classical embedding methods,
namely the LOT embedding (Wang et al., 2013; Kolouri et al., 2020; Nenna & Pass, 2023),
LGW embedding (Beier et al., 2022), and our proposed LPGW embedding.

tra
in

te
st

te
st

, c
or

ru
pt

ed

(a) MNIST point cloud dataset.

=
0

Data

=
0.

2

LOT LGW LPGW

(b) Reconstructed digits based on the
LOT/LGW/LPGW embeddings.

Figure 1: MNIST digits and its re-
construction.

Dataset setup. We adopt the MNIST 2D point
cloud dataset for this experiment. Specifically, for
each digit, we sample N1 = 500 point clouds per
class from the training set and N2 = 100 point clouds
per class from the testing set. Each point cloud is
represented as a gm-space in R2 with the measure
µ =

∑n
i=1 piδxi

, where pi > 0,∀i ∈ {1, . . . , n} are the
pixel intensities provided by the original dataset. We
normalize pi such that

∑n
i=1 pi = 1 for all sampled

point clouds.

For each shape in the training set, we randomly ro-
tate or flip the shape horizontally and add the trans-
formed shape to the training set. As a result, each
class contains 500× 2 = 1000 shapes in the training
set. For each test shape, we first randomly rotate or
flip the shape, and we then “corrupt” the shape by
adding uniformly distributed noise. The mass of each
added point is 1

n , where n is the number of points in
the original shape, and the total mass of the added
points is η ∈ {0, 0.1, 0.3, 0.5}.

Performance analysis. For each method (LOT,
LGW, and LPGW), we first compute the embed-
dings of the training data and optimize a classifica-

tion model (logistic regression) using these embeddings. Then, we compute the embeddings
for the test dataset and evaluate the accuracy of the model on the test embeddings. The
results are presented in Table 3. In this table, we observe that for the original test dataset,
LOT achieves the highest accuracy at 89.0%. However, on the corrupted dataset, LOT’s
performance drops significantly, classifying only 51% correctly when η = 0 (no noise but with
random rotation/flip) and falling dropping to 12.5% (i.e., random guessing) when η > 0.1.
LGW is more robust to the data with random rotations/flips, but its accuracy also reduces
to random guessing as η is increased. In contrast, LPGW embeddings exhibit substantially
greater performance, with its accuracy ranging from 70-85% when η ≥ 0.1.

For an intuitive comparison of the performance of these embeddings, we present the data
reconstruction results in Figure 1b and the t-SNE visualization of the embeddings produced
by each method in Figure 9. Further details can be found in Appendix N.

5 Summary
In this paper, we propose the linear partial Gromov-Wasserstein (LPGW) embedding, a
linearization technique for the PGW problem. Theoretically, we prove that LPGW admits a
metric with certain assumptions, and numerically, we demonstrate the utility of our proposed
LPGW method in shape retrieval and learning with transform-based embedding tasks. We
demonstrate that the LPGW-based method can preserve the partial matching property of
PGW while significantly improving computational efficiency.
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A Background: Linear Optimal Transportation Distance

The space of measures P2(Rd) can be endowed with the two-Wasserstein metric W2, and the
resulting space defines a Riemannian manifold (see, e.g., (Villani, 2021)), which is referred
to in the literature as the Wasserstein space. Under the Monge mapping assumption,
consider µ ∈ P2(Rd) and let Tanµ(P2(Rd)) denote the corresponding tangent space at µ.
Then, each tangent vector v ∈ Tanµ(P2(Rd)) can be regarded as an L2(µ)−function, that
is, v : Rd → Rd such that

∥v∥2L2(µ) =

∫
Rd

∥v(x)∥2 dµ(x) < ∞.

Given ν ∈ P2(Rd), suppose γ = (id× T )#µ is an optimal transportation plan for W2(µ, ν).
Then, the logarithm mapping is defined by

P2(Rd) ∋ ν 7→ vγ := (T − id) ∈ Tanµ(P2(Rd)), (26)

and the resulting image vγ is the so-called Linear Optimal Transportation (LOT)
embedding (Wang et al., 2013).

The LOT embedding vγ is a “representation” of the measure ν and encodes the optimal
displacement from the fixed measure µ to ν. Indeed,

W 2
2 (µ, ν) = ∥vγ − 0∥2L2(µ).

In general, given two probability measures ν1, ν2 ∈ P2(Rd), if γ1, γ2 are optimal solutions
for W2(µ, ν

1),W2(µ, ν
2) of the form (2), one can use the following so-called LOT distance

to approximate the original OT distance W2(ν
1, ν2) (Moosmüller & Cloninger, 2023):

LOT 2
2 (ν

1, ν2;µ, γ1, γ2) := ∥vγ1 − vγ2∥2L2(µ). (27)

The above definition relies on the Monge mapping assumption. In (Wang et al., 2013;
Moosmüller & Cloninger, 2023), the authors generalize the LOT distance without the Monge
mapping assumption; however, in what follows, we will avoid such an assumption.

First, we discuss the notion of a geodesic in the classical OT setting. Suppose γ is an optimal
transportation plan for the OT problem between µ, ν ∈ P2(Rd). Then, the geodesic from
µ to ν is defined by

t 7→ γt := ((1− t)πX + tπY )#γ (0 ≤ t ≤ 1). (28)

Remark A.1. In the particular case where γ is of the form γ = (id×T )#µ, the above formula
reduces to

t 7→ ((1− t)id + tT )#µ (0 ≤ t ≤ 1).

Remark A.2. In the discrete case, µ =
∑n

i=1 piδxi
and ν =

∑m
j=1 qjδyj

. By abuse of

notation, let γ ∈ Γ∗(µ, ν) be interpreted as a matrix. Then, the above geodesic becomes

t 7→
n∑

i=1

m∑
j=1

δ(1−t)xi+tyj
γij (0 ≤ t ≤ 1).

Given curves {γ1
t }t∈[0,1], {γ2

t }t∈[0,1] both originating from µ, we claim they are equivalent

if there exists ϵ > 0 such that for all t ∈ [0, ϵ], γ1
t = γ2

t . Let Gµ denote the set of all the
equivalence classes. The generalized tangent space at µ, denoted by Tangµ(P2(Rd)), is
defined as the closure of Gµ (see (Beier et al., 2022) for details).

Now, given ν1, ν2 ∈ P2(Rd), let γ1, γ2 be some optimal transportation plan in Γ∗(µ, ν1),
Γ∗(µ, ν2), respectively. We define the following distance, defined on the space TangµP2(Rd),

as the LOT distance conditioned on γ1, γ2:

LOT 2
2 (ν

1, ν2;µ, γ1, γ2) := inf
γ∈Γ(γ1,γ2;µ)

∫
R3d

∥y1 − y2∥2dγ(x, y1, y2). (29)

where Γ(γ1, γ2;µ) := {γ ∈ P(R3d) : (π01)#γ = γ1, (π02)#γ = γ2}, where π01(x, y
1, y2) =

(x, y1), π02(x, y
1, y2) = (x, y2).
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Remark A.3. When γ1 = (id × T 1)#µ, γ
2 = (id × T 2)#µ for some mappings T 1, T 2, there

exists only one element in Γ(γ1, γ2;µ), which is (id×T 1×T 2)#µ. Thus, the right-hand side
of (29) becomes

∥T 1(x)− T 2(x)∥2L2(µ). (30)

That is, (29) and (27) coincide.

Finally, to formulate a distance that is independent of the optimal transportation plans
γ1, γ2, we define the LOT distance between ν1, ν2 with respect to µ by

LOT 2
2 (ν

1, ν2;µ) := inf
γ1∈Γ∗(µ,ν1)

γ2∈Γ∗(µ,ν2)

LOT 2
2 (ν

1, ν2;µ, γ1, γ2). (31)

Barycentric projection. The above LOT distance is complicated to compute. To simplify
the computation, (Wang et al., 2013) introduces the “barycentric projection” method that
we will recall here.

First, we review some basic concepts in measure theory. Given γ ∈ P(R2d), with π1#γ = µ,
where π1 : R2d → Rd is given by π1(x, y) = x, by the disintegration theorem (see, for
e.g., (Ambrosio et al., 2005, Thm 5.3.1) and (Dumont et al., 2024, Theorem 6)), there exists
a µ−a.e. uniquely defined family of probability measures {γ(·|x)}x∈Rd ⊂ P(Rd), such that∫

R2d

ϕ(x, y)dγ(x, y) =

∫
Rd

∫
Rd

ϕ(x, y)dγ(y|x)dµ(x), ∀ϕ ∈ C0(R2d). (32)

In this paper, we call γ(·|x) the disintegration of γ with respect to its first marginal
(µ), given x (for each x ∈ supp(µ)).

The barycentric projection map Tγ : Rd → Rd of γ is defined by

Tγ(x) := argmin
y∈Y

∫
Y

∥y − y′∥2 dγ(y′|x′) =

∫
Y

y′dγ(y′|x′). (33)

Note that the second equality holds since the distance between y, y′ is simply the quadratic
Euclidean distance. In the third term, we have a vector integration.

Given an optimal transportation plan γ ∈ Γ∗(µ, ν), we define ν̃γ := (Tγ)#µ.
Proposition A.4 (Prop. II.4 (Beier et al., 2022)). If γ ∈ Γ∗(µ, ν), then the transportation
plan induced by the barycentric projection map Tγ , denoted as γ̃ := (id × Tγ)#µ is optimal
for the OT problem W2(µ, ν̃γ).

In addition, if γ = (id×T )#µ satisfies the Monge mapping assumption, then Tγ∗ = T µ-a.e.
and is a Monge map.

Thus, if we replace ν by ν̃γ , the OT problem W2(µ, ν̃γ) can be solved by the map Tγ .
Based on this property, given ν1, ν2 ∈ P(Rd), consider optimal transportation plans γ1 ∈
Γ∗(µ, ν1), γ2 ∈ Γ(µ, ν2), then define the following approximated LOT distance (aLOT)
to estimate W2(ν

1, ν2):

aLOT 2
2 (ν

1, ν2;µ) := inf
γ1∈Γ∗(µ,ν1)

γ2∈Γ∗(µ,ν2)

LOT 2
2 (ν̃γ1 , ν̃γ2 ;µ, γ̃1, γ̃2)

= inf
γ1∈Γ∗(µ,ν1)

γ2∈Γ∗(µ,ν2)

∥Tγ1 − Tγ2∥2L2(µ) (34)

≈ ∥Tγ1 − Tγ2∥2L2(µ) (35)

Note, in most of the literature, (35) is referred to as LOT2, and for simplicity, it is approx-
imated by any pair of optimal transportation plans (γ1, γ2).
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B Background: Linear Gromov-Wasserstein Distance

Let X ⊂ Rd0 be a compact and convex subset, and consider a Borel measure µ on X. A
symmetric function gX : X⊗2 → R with

∫
X⊗2 gX(x, x′)dµ⊗2 < ∞ is called a gauge function.

The space of all gauge functions is denoted as L2
sym(X⊗2, µ⊗2). In this paper, without

specific description, we default set gX to be continuous (thus, Lipschitz continuous) on X.
For example gX(x, x′) = ∥x− x′∥2 or gX(x, x′) = x⊤x′. The space X = (X, gX , µ) is called
a gauged measure space (gm-space), which can be regarded as a generalized version of an
mm-space. The GW problem between two gm-spaces X,Y is:

GW 2(X,Y) := inf
γ∈Γ(µ,ν)

∫
(X×X)⊗2

|gX(x, x′)− gY (y, y
′)|2dγ⊗2.

Lemma B.1. There exists a minimizer γ of GW (X,Y) in Γ(µ, ν).

The existence of minimizers of GW (X,Y) could be shown by a standard compact-SNEss
argument, see for instance, Lemma 10.3 in (Mémoli, 2011). Suppose γ is one optimal solution
of the above generalized GW problem. The geodesic between X and Y is defined by

t 7→ γt := (X × Y, (1− t)gX + tgY , γ), t ∈ [0, 1]. (36)

Note, even if gX , gY are metrics, γt is a gm-space (rather than mm-space), and this is the
reason mm-space is generalized to gm-spaces in (Beier et al., 2022) and in this paper.

Two gm-spaces X,Y are “equivalent” if GW 2(X,Y) = 0. Let [X] denote the equivalence
class of X. The tangent space at [X] is defined by

TanX :=

 ⋃
(X′,gX′ ,µ′)∈[X]

L2
sym(X ′ ×X ′, µ′⊗2

)

 / ∼ (37)

where, if Tk1 = (X1, gX1 , µ1),Tk2 = (X2, gX2 , µ2) ∈ [X] are representatives of k1 ∈
L2
sys((X

1)⊗2, (µ1)⊗2), k2 ∈ L2
sys((X

2)⊗2, (µ2)⊗2), we say that k1 ∼ k2 if there exists γ ∈
Γ(X1,X2) such that GW (X1,X2) = 0. (We refer to (Beier et al., 2022) for more details.)

Given spaces X1 := (X × Y 1, dX , γ1),X2 := (X × Y 2, dX , γ2) where γ1, γ2 are optimal
transportation plans for GW (X,Y1), GW (X,Y2), respectively, it is straightforward to verify

GW (X,X1) = GW (X,X2) = 0,

thus X1,X2 ∈ [X].

In addition, choose k1 ∈ L2
sys(X

1)⊗2, (γ1)⊗2), k2 ∈ L2
sys((X

2)⊗2, (γ2)⊗2), then we have

k1, k2 ∈ TanX,

where Γ∗(Tk1
,Tk2

) is same to Γ∗(γ1, γ2) in GW (X1,X2).

Their inner product distance is defined by

D2(k1, k2) := inf
γ∈Γ∗(Tk1

,Tk2
)
∥k1 − k2∥2γ⊗2 .

Now, we set k1 = kγ1 = gY 1 − gX , k2 = kγ2 = gY 2 − gX . Thus, the linear GW distance
between Y1 and Y2 given γ1, γ2 is defined by the above inner product distance. That is,

LGW(Y1,Y2;X, γ1, γ2) := D(k1, k2)

= inf
γ∈Γ∗(Tk1

,Tk2
)
∥k1 − k2∥2L2(γ⊗2)

= inf
γ∈Γ(γ1,γ2;µ)

∫
(X×Y 1×Y 2)⊗2

∥gY 1(y1, y1′)− gY 2(y2, y2
′
)∥2dγ⊗2

(38)
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where Γ(γ1, γ2;µ) := {γ ∈ P(X × Y 1 × Y 2) : (πX,Y 1)#γ = γ1, (πX,Y 2)#γ = γ2}. The third
line follows from Proposition III.1 in (Beier et al., 2022) (or equivalently from the identity
(49) in the next section). Note, under Monge mapping assumptions, γ1 = (id×T 1)#µ, γ

2 =
(id× T 2)#µ, Γ(γ

1, γ2;µ) = {(id× T 1 × T 2)#µ} and the above distance (38) coincides with
(7).

The original Linear Gromov-Wasserstein distance between Y1 and Y2 with respect to X is
defined as

LGW(Y1,Y2;X) := inf
γ1∈Γ(X,Y1)

γ2∈Γ(X,Y2)

LGW (Y1,Y2;X, γ1, γ2). (39)

C LOT/LGW/LPGW embedding without Monge mapping.

In this section, we briefly discuss the linear transportation embedding under linear optimal
transport, linear Gromov Wasserstein, and linear partial Gromov Wasserstein setting. In
summary, the formulations of these embeddings do not rely on the Monge mapping assump-
tion.

Linear OT embedding without Monge mapping. Given probability measures
ν1, ν2 ∈ P(Ω), and reference measure µ ∈ P(Ω), where Ω ⊂ Rd is non-empty set. Choose
optimal transportation plans γ1 ∈ Γ∗(µ, ν1), γ2 ∈ Γ∗(µ, ν2), the linear OT embedding 26
can be generalized to

ν1 7→ T̂ 1 := {x 7→ γ1(·|x)}, (40)

where the conditional distribution γ1(·|x) can be treated as a “random mapping”. When

γ1 = (id×T 1)#µ, it is straightforward to verify T 1 = T̂ 1). That is, the embedding (40),(26)
coincide.

We define the “distance” between two such two random mappings T 1, T 2 via:

∥T̂ 1 − T̂ 2∥2L(µ) :=

∫
inf

γ∈Γ(γ1(·|x),γ2(·|x))
∥y1 − y2∥2dγ(y1, y2)dµ(x) (41)

From (29), we have

LOT 2
2 (ν

1, ν2;µ) :=

∫
γ∈Γ(ν1,ν2;µ)

∥y1 − y2∥γ(x, y1, y2)

=

∫
Ω

inf
γ∈Γ(γ1(·|x),γ2(·|x)

∥y1 − y2∥2dµ(x)

= ∥T̂ 1 − T̂ 2∥2L(µ).

Linear GW embedding without Monge mapping. Similar to above formulation,
given two gm spaces Y1 = (Y 1, gY 1 , ν1),Y2 = (Y 1, gY 2 , ν2) and a reference gm−space
X = (X, gX , µ), where µ, ν1, ν2 are probability measures. Suppose γ1, γ2 are optimal trans-
portation plans for GW (X,Y1), GW (X,Y2) respectively. Then the embedding (5) can be
generalized to:

Y1 7→ k̂1 := {(x, x′) 7→ (gY 1(·1, ·2))#(γ1(·1|x)γ1(·2|x′)). (42)

Note, similar to LOT, when γ1 = (id× T 1)#µ, we have T̂ 1 = T 1. That is (5),(42) coincide.

Similarly, we define the “distance” between two embeddings k̂1, k̂2 via:

∥k̂1 − k̂2∥L(µ⊗2)

:=

∫
X2

inf
γ∈Γ(γ1(·|x),γ2(·|x)

γ′∈Γ(γ1(·|x′),γ2(·|x′))

∥gY 1(y1, y1′)− gY 2(y2, y2′)∥2dγ((y1, y2|x)dγ′(y1′, y2′|x′)dµ⊗2(x, x′).

(43)
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From (8), we have

LGW (Y1,Y2;Y1,Y2,X)
= inf

γ∈Γ(γ1,γ2;µ)
|gY 1(y1, y1′)− gY 2(y2, y2′)|2γ⊗2(x, y1, y2)

=

∫
X2

inf
γ∈Γ(γ1(·|x),γ2(·|x)

γ′∈Γ(γ1(·|x′),γ2(·|x′))

∥gY 1(y1, y1′)− gY 2(y2, y2′)∥2dγ((y1, y2|x)dγ′(y1′, y2′|x′)dµ⊗2(x, x′)

= ∥k̂1 − k̂2∥L(µ⊗2).

That is, the distance between two embeddings coincides with the LGW distance between
two gm spaces.

LPGW embedding without Monge mapping. Similar to above setting, given
gm-spaces X,Y1,Y2, and suppose γ1, γ2 are optimal transportation plans for
PGWλ(X,Y1), PGWλ(X,Y2), the LPGW embedding in general case is defined by

Y1 7→ E1 := (k̂1, γ1
X , γ1

c := (ν1)⊗2 − (γ1
Y 1)⊗2). (44)

Note, when the Monge mapping assumption holds, (13),(44) coincide.

The distance between two embeddings is defined as:

D(E1, E2) := inf
µ′≤γ1

X∧γ2
X

∥k̂1 − k̂1∥(µ′)⊗2 + λ(|γ1
X |2 + |γ2

X |2 − 2|µ′|2 + |γ1
c |+ |γ2

c |). (45)

We have

LPGWλ(Y1,Y2;X)

= inf
γ∈Γ≤(ν1,ν2;µ)

∫
(X×Y 1×Y 2)2

∥gY 1(y1, y1′)− gY 2(y2, y2′)∥2dγ(x, y1, y2)dγ(x′, y1′, y2′)

+ λ(|ν1|2 + |ν2|2 − |γ|2)

= inf
µ′≤γ1∧γ2

inf
γ∈Γ(γ1(·|x),γ2(·|x))

γ′∈Γ(γ1(·|x′),γ2(·|x′))

∫
X2

∥gY 1(y1, y1′)− gY 2(y2, y2′)∥d(µ′)⊗2(x, x′)

︸ ︷︷ ︸
∥k̂1−k̂2∥L((µ′)⊗2)

+ λ(|ν1|2 − |γ1
X |2︸ ︷︷ ︸

|γ1
c |

+ |ν2|2 − |γ2
X |2︸ ︷︷ ︸

|γ2
X |2

+|γ1
X |2 + |γ2

X |2 − 2|µ′|2)

= D(E1, E2)

That is, the distance between two embeddings coincides with the LPGW distance between
the two gm-spaces.

D Computational Complexity of LPGW

Computational Complexity of GW and PGW. The classical solvers for the GW and
PGW problems are variants of the Frank-Wolf algorithms (Chapel et al., 2020; Bai et al.,
2024).

Consider metric measure spaces X and Y, with measures given by µ =
∑n

i=1 piδxi
and

ν =
∑m

j=1 qjδyj
, respectively. To achieve an ϵ−accurate solution for the GW problem, the

number of required iterations of the FW algorithm is

max

{
2L1, 2 · n2m2 max({2(CX)2 + 2(CY )2})

}2

ϵ2
,
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and for PGW is

max

{
2L1, 2min(|p|, |q|) · n2m2 max({2(CX)2 + 2(CY )2, 2λ})

}2

ϵ2
.

Here, L1 is a value determined by the initial guess γ0 used in the FW algorithm and
CX , CY are the corresponding cost matrices for X,Y. Note, since the largest value for λ is
2λ = max(2(CX)2, 2(CY )2), the above two quantities coincide.

In each iteration of FW, we are required to solve an OT/POT problem, whose complexity
is O(nm(n + m)) (Bonneel et al., 2011). Thus, the theoretical time complexity to solve
GW/PGW is O( 1

ϵ2nm(n+m)n2m2).

Given K mm-spaces, X1, . . .XK , then, computing their pairwise GW/PGW distances re-

quires
(
K
2

)
· O( 1

ϵ2nm(n + m)n2m2). Meanwhile, computing the pairwise LPGW distances
between them requires only

KO
(

1

ϵ2
nm(n+m) + n2m2

)
+

(
K

2

)
O(n2

0), (46)

where the term O(n2
0) represents the time complexity of computing the distance between

two embeddings, and n0 denotes the size of the reference space. In general, we would like to
set n0 to be the mean/median/maximum of the sizes of K mm-spaces, and thus, this term
can be ignored as compared to the first term.
Remark D.1. We generally impose a fixed limit on the maximum number of iterations to
be used in the FW algorithm (e.g., in PythonOT (Flamary et al., 2021), it is set to 1000 by
default). In practice, this maximum number of iterations is generally not achieved. Hence,
un-rigorously speaking, we can think of the complexity of GW/PGW as beingO(nm(n+m)).

E Proof of Proposition 2.1

E.1 Clarification

Although statements (1) and (2) in this proposition are not explicitly introduced in (Beier
et al., 2022), they are implicitly mentioned, for example, in Proposition III.1 of such article.
Thus, we do not claim the proofs of statements (1) and (2) as contributions of this paper.
Additionally, to the best of our knowledge, the statement (3) has not yet been studied. We
present the related proof as a complement to the work in (Beier et al., 2022).

E.2 Conjecture and Understanding

Regarding statement (3), we conjecture that this conclusion can be extended to the case
where gX and gY are squared Euclidean distances. However, this statement may not hold
for other gauge mappings. In our understanding, for general gauge mappings, achieving a
similar result to the statement (3) would require defining a generalized barycentric projection
mapping that is dependent on the specific gauge mapping.

The formulation of a new barycentric projection mapping based on the chosen gauge map-
ping, as well as a generalized version of statement (3), is left for future work.

E.3 Proof of Proposition 2.1: Part (1)

Proof in a particular case. We first show the result in a simplified case. In particular,
suppose γ∗ satisfies the Monge mapping, i.e. γ∗ = (id × T )#µ, where T : X → Y , and
γ0 = (id× id)#µ ∈ Γ∗(X,X). Then kγ0 ≡ 0 and thus

LGW (X,Y;X, γ0, γ∗) = ∥kγ∗ − kγ0∥2µ⊗2 = ∥kγ∗∥2µ⊗2

=

∫
(X×Y )⊗2

|gX(x, x′)− gY (T (x), T (x
′))|2dµ⊗2

= GW (X,Y).
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Proof in the general case. Consider γ0 ∈ Γ∗(X,X), and γ ∈ Γ(γ0, γ∗).

We claim the following lemma

Lemma E.1. Choose γ0 ∈ Γ∗(X,X), γ∗ ∈ M+(X,Y), for each γ ∈ Γ(γ0, γ∗;µ), we have
the following identity:∫

(X×X×Y )⊗2

|gX(x2, x2′)− gY (y, y
′)|2d(γ)⊗2((x1, x1′), (x2, x2′), (y, y′))

=

∫
(X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2d(γ∗)⊗2((x, x′), (y, y′)) (47)

Proof of Lemma (E.1). Since

GW (X,X) =
∫
(X×X)⊗2

|gX(x1, x1′)− gX(x2, x2′)|2dγ0 = 0,

we have
gX(x1, x1′)− gX(x2, x2′) = 0, γ0 − a.s.

For convenience, let X1 = X2 = X be independent copies of X. We have:∫
(X×X×Y )⊗2

|gX(x2, x2′)− gY (y, y
′)|2dγ⊗2((x1, x1′), (x2, x2′), (y, y′))

=

∫
(X×X0×Y )⊗2

|gX(x2, x2′)− gX(x1, x1′) + gX(x1, x1′)− gY (y, y
′)|2dγ⊗2((x1, x1′)(x2, x2′), (y, y′))

=

∫
(X1×X2)⊗2

[∫
(Y )⊗2

|gX(x2, x2′)− gX(x1, x1′) + gX(x1, x1′)− gY (y, y
′)|2

dγ⊗2
Y |(X1,X2)((y, y

′)|(x1, x1′), (x2, x2′))
]
d(γ0)⊗2((x1, x1′), (x2, x2′)) (48)

=

∫
(X1×X2)⊗2

[∫
Y ⊗2

|gX(x1, x1′)− gY (y, y
′)|2dγ⊗2

Y |X1,X2((y, y
′)|(x1, x1′), (x2, x2′)

]
d(γ0)⊗2((x1, x1′), (x2, x2′))

=

∫
(X1×Y )⊗2

|gX(x1, x1′)− gY (y, y
′)|2dγ⊗2((x1, x2, y), (x1′, x2′, y′))

=

∫
(X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2d(γ∗)⊗2((x, y), (x′, y′)) (49)

where in (48) γY |X1,X2(·|x1, x2) is the disintegration of γ with respect to (πX1,X2)#γ =

γ0.

Based on the identity (47) and the fact γ1 is optimal for problem GW (X,Y), we have:

LGW (X,Y;X, γ0, γ∗) = inf
γ∈Γ(γ0,γ∗)

∫
(X×X×Y )⊗2

|dX(x0, x0′)− dY (y, y
′)|2dγ⊗2((x, x′), (x0, x0′), (y, y′))

= inf
γ∈Γ(γ0,γ∗)

GW (X,Y)

= GW (X,Y),

and we have completed the proof.

E.4 Proof of Proposition 2.1: Part (2)

In this case, γ∗ = (id × T )#µ, for each x ∈ Supp(µ), we have that the disintegration of γ∗

with respect to its first marginal (πX)#γ
∗ = γ∗

X , given first component is x, is

γ∗
Y |X(·2|y′) = δ(·2 − T (x)),
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where δ is the Dirac measure. Thus, for all x ∈ supp(µ), we have:

Tγ∗(x) =

∫
Y

ydγ∗
Y |X(y|x) =

∫
Y

y dδ(y − T (x)) = T (x).

where the last equality holds from the fact T (x) ∈ supp(ν) ⊂ Y . Therefore, Tγ∗ = T µ−a.s.
Since T#µ = ν, we have ν̃γ∗ := (Tγ∗)#µ = T#µ = ν.

E.5 Proof of Proposition 2.1: Part (3)

E.5.1 Proof in the Discrete Case

We first demonstrate the proof in the following simplified discrete case: Suppose gX(x, x′) =
x⊤x′ and gY (y, y

′) = y⊤y′, and consider

µ =

n∑
i=1

piδxi
, ν =

m∑
j=1

qjδyj
with

n∑
i=1

pi = 1 =

m∑
j=1

qk.

In addition, we suppose that X, Y are compact convex sets which contains 0 (besides
containing {x1, . . . , xn} and {y1, . . . , ym}, respectively).
Let γ∗ ∈ Γ∗(X,Y) be an optimal transportation plan. Then, the corresponding barycentric
projected measure is given by

ν̃ = ν̃γ∗ :=

n∑
i=1

piδỹi
, where ỹi :=

1

pi

m∑
j=1

γ∗
ijyj .

By convexity, ỹ1, . . . , ỹn ∈ Y . Thus Ỹ := Ỹγ∗ = (X, gY , ν̃).

Then, it induces a transportation plan γ̃∗ := diag(p01, · · · , p0n) ∈ Rn×n
+ with first and second

marginals µ and ν̃, respectively. We will show that for any transportation plan γ̃ ∈ Γ(µ, ν̃),
it holds that

C(γ̃∗;X, Ỹ) ≤ C(γ̃;X, Ỹ),

where

C(γ;X,Y) =
n∑

i,i′=1

m∑
j,j′=1

(x⊤
i xi′ − y⊤j yj′)

2γijγi′j′ ,

in other words, we will show that γ̃∗ is optimal for GW(X, Ỹ).

First, we notice that (γ̃∗)−1 = diag(1/p01, · · · , 1/p0n). Then, we set

γ := γ̃(γ̃∗)−1γ∗ ∈ Rn×m
+ .

Secondly, we check that γ ∈ Γ(µ, ν). In fact, let p = (p1, . . . , pn), q = (q1, . . . , qm) be the
vectors of the weights of finite discrete measures µ and ν, respectively, then, since γ∗1m = p
and γ̃T 1n = q, we have

γ1m = γ̃(γ̃∗)−1γ∗1m = γ̃(γ̃∗)−1p = γ̃1n = q,

γ⊤1n = (γ∗)⊤(γ̃∗)−1γ̃⊤1n = (γ∗)⊤(γ̃∗)−1q = (γ∗)⊤1m = p.

Lastly, we compute the costs as follows:

C(γ∗;X,Y) =
n∑

i,i′=1

(x⊤
i xi′)

2pipi′ +

m∑
j,j′=1

(y⊤j yj′)
2qjqj′ − 2

n∑
i,i′=1

m∑
j,j′=1

(x⊤
i xi′)(y

⊤
j yj′)γ

∗
ijγ

∗
i′j′

= J1 − 2

n∑
i,i′=1

m∑
j,j′=1

(x⊤
i xi′)(y

⊤
j yj′)γ

∗
ijγ

∗
i′j′ .
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where J1 =
∑n

i,i′=1(x
⊤
i xi′)

2pipi′ +
∑m

j,j′=1(y
⊤
j yj′)

2qjqj′ is independent of γ
∗. By the multi-

linearity of the last term in the identity, we can show

C(γ̃∗;X, Ỹ) = J2 − 2

n∑
i,i′=1

n∑
ℓ,ℓ′=1

(x⊤
i xi′)(ỹ

⊤
ℓ ỹℓ′)γ̃

∗
iℓγ̃

∗
i′,ℓ′

= J2 − 2

n∑
i,i′=1

n∑
ℓ,ℓ′=1

x⊤
i xi′

m∑
j,j′=1

(
γ∗
ℓjy

⊤
j

pℓ

γ∗
ℓ′j′yj′

pℓ′

)
γ̃iℓγ̃i′ℓ′

= J2 − J1 + C(γ∗;µ, ν1),

(50)

where J2 =
∑n

i,i′=1(x
⊤
i xi′)

2pip
0
i′ +

∑n
ℓ,ℓ′=1(ỹ

⊤
ℓ ỹℓ′)

2p0ℓp
0
ℓ′ . Similarly, we can compute

C(γ̃;X, Ỹ) = J2 − J1 + C(γ;X,Y) (51)

The optimality of γ∗ together with identities (50) and (51) implies that C(γ̃∗;X, Ỹ) ≤
C(γ̃;X, Ỹ).

E.5.2 Proof in the General Case

Similar to the discrete case, given γ∗ ∈ Γ∗(X,Y), the barycentric projection is given by

Tγ∗(x) =

∫
Y

y dγ∗
Y |X(y|x).

We have that γ̃∗ = (id × Tγ∗)#µ is a joint measure with first and second marginals µ and

ν̃ := ν̃γ∗ := (Tγ∗)#µ, respectively. The goal is to show that γ̃∗ is optimal for GW (X, Ỹ)
where Ỹ := Ỹγ∗ := (Tγ∗)#µ.

Let γ̃ ∈ Γ(µ, ν̃γ∗) be an arbitrary plan. Let γ̃(·2|x) := γ̃Y |X(·2|x) denote the disintegration
of γ̃ with respect to µ, given that the first component is x, for each x ∈ Supp(µ). Similarly,
we adopt the notation γ∗(·2|x) for each x ∈ Supp(µ).

We define the joint measure

γ := γ∗
Y |X γ̃∗

X|Y γ̃ (52)

onX×Y . In particular, the above notation means that for each test function ϕ ∈ C0(X×Y ),
we have

∫
X×Y

ϕ(x, y)dγ(x, y) =

∫
X×Y×X×Y

ϕ(x, y)dγ∗(y|x0)dγ̃∗(x0|ỹ)dγ̃∗(x, ỹ)

=

∫
X×Y

(∫
X

(∫
Y

ϕ(x, y)dγ∗(y|x0)

)
dγ̃∗(x0|ỹ)

)
dγ̃∗(x, ỹ)
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For any test functions ϕX ∈ C0(X), ϕY ∈ C0(Y ) we have∫
X×Y

ϕX(x)dγ(x, y) =

∫
X×Y×X×Y

ϕX(x)dγ∗(y|x0)dγ̃∗(x0|ỹ)dγ̃(x, ỹ)

=

∫
X×Y

ϕX(x)dγ̃(x, ỹ)

=

∫
X

ϕX(x)dµ(x)∫
X×Y

ϕY (y)dγ(x, y) =

∫
X×Y×X×Y

ϕY (y)dγ
∗(y|x0)dγ̃∗(x0|ỹ)dγ̃(x, ỹ)

=

∫
X×Y×X

ϕY (y)dγ
∗(y|x0)dγ̃∗(x0|ỹ)dν̃(ỹ)

=

∫
X×Y

ϕY (y)dγ
∗(y|x0)dµ(x0)

=

∫
X×Y

ϕY (y)dγ
∗(x0, y)

=

∫
Y

ϕY (y)dν(y)

Thus γ ∈ Γ(µ, ν).

In addition, we observe that we have the following property that holds for the case of
considering inner products:

Lemma E.2. Suppose X ⊂ Rdx , Y ⊂ Rdy are finite-dimensional, convex compact sets.
Let γ ∈ M+(X × Y ) and define Tγ as in (9). In addition, let gY (y, y

′) = α⟨y, y′⟩, where
(y, y′) 7→ ⟨y, y′⟩ :=

∑d1

i=1 yiy
′
i is an inner product (the standard one, for example). Then for

each x, x′ ∈ X, let ỹ = Tγ(x), ỹ′ = Tγ(x′), we have:

gY (ỹ, ỹ
′) =

∫
Y×Y

gY (y, y
′)dγ(y|x)dγ(y′|x′). (53)

Proof of Lemma E.2. For each i ∈ [1 : dy], we have:

ỹ[i]ỹ′[i] =

∫
X

y[i]dγ(y|x)
∫
X

y′[i]dγ(y′|x′)

=

∫
X

y[i]

∫
y′
y′[i]dγ(y|x)dγ(y′|x′)

=

∫
Y×Y

y[i]y′[i]dγ(y|x)dγ(y′|x′)

where the third equality follows from Fubini’s theorem.

Thus,

gY (ỹ, ỹ
′) = α

dy∑
i=1

ỹ[i]ỹ′[i]

= α

∫
Y×Y

y[i]y′[i]dγ(y|x)dγ(y′|x′)

=

∫
Y×Y

α

dy∑
i=1

y[i]y′[i]dγ(y|x)dγ(y′|x′)

=

∫
Y×Y

gX(y, y′)dγ(y|x)dγ(y′|x′)
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Now, we continue with the proof of Proposition 2.1, part (3).

We have

C(γ∗;X,Y) =

∫
(X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2dγ∗(x, y)dγ∗(x′, y′)

= ∥gX(x, x′)∥2L2(µ⊗2) + ∥gY (y, y′)∥2L2(ν⊗2) − 2

∫
(X×X)⊗2

gX(x, x′)gY (y, y
′)dγ∗(x, y)dγ∗(x′, y′)

= J1 − 2⟨gXgY , (γ
∗)⊗2⟩ (54)

where J1 = ∥gX∥2L2(µ⊗2) + ∥gY ∥2L2(ν⊗2) is independent to γ∗. Similarly,

C(γ̃∗;X, Ỹ)

=

∫
(X×Y )⊗2

|gX(x, x′)− gY (ỹ, ỹ
′)|2dγ̃∗(x, y)dγ̃∗(x′, y′)

= ∥gX∥2L2(µ⊗2) + ∥gY ∥2L2(ν̃⊗2) − 2

∫
(X×Y )⊗2

gX(x, x′)gY (ỹ, ỹ
′)dγ̃∗(x, ỹ)dγ̃∗(x′, ỹ′)

= J2 − 2

∫
X⊗2

gX(x, x′)gY (Tγ∗(x), Tγ∗(x′))dµ(x)dµ(x′) (55)

= J2 − 2

∫
X⊗2

gX(x, x′)

[∫
Y ⊗2

gY (y, y
′)dγ∗(y|x)dγ∗(y′|y′)

]
dµ(x)dµ(x′) (56)

= J2 − 2

∫
(X×Y )⊗2

gX(x, x′)gY (y, y
′)dγ∗(x, y)dγ∗(x′, y′)

= J2 − 2⟨gXgY , (γ
∗)⊗2⟩ (57)

where in (55), J2 = ∥gX(·1, ·2)∥2L2(µ⊗2) + ∥gY (·1, ·2)∥2L2(ν̃⊗2) (which is independent of γ̃∗);

and (56) follows from Lemma E.2. Combining (54) and (57), we have

C(γ̃∗;X, Ỹ) = C(γ∗;X,Y)− J1 + J2. (58)

Similarly, we can show that

C(γ̃;X, Ỹ) = C(γ;X,Y)− J1 + J2. (59)

Also, similarly to (54) and (57), we have

C(γ;X,Y) = J1 − 2⟨gXgY , γ
⊗2⟩ (60)

C(γ̃;X, Ỹ) = J2 − 2⟨gXgY , γ̃
⊗2⟩ (61)

It remains to show

⟨gXgY , γ
⊗2⟩ = ⟨gXgY , γ̃

⊗2⟩. (62)
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Indeed,

⟨gXgY , γ̃
⊗2⟩ =

∫
(X×Y )⊗2

gX(x, x′)gY (ỹ, ỹ
′)dγ̃(x, ỹ)dγ̃(x′, ỹ′)

=

∫
(X×Y )⊗2

gX(x, x′)gY (ỹ, ỹ
′)dγ̃(ỹ|x)dγ̃(ỹ′|x′′)dµ(x)dµ(x′)

=

∫
(X×Y )⊗2

gX(x, x′)

[∫
X⊗2

gY (Tγ∗(x0), Tγ∗(x0′))dγ̃∗(x0|ỹ)dγ̃∗(x0′|ỹ′)
]

dγ̃(ỹ|x)dγ̃(ỹ′|x′)dµ(x)dµ(x′) (63)

=

∫
(X×Y×X)⊗2

gX(x, x′)gY (Tγ∗(x0), Tγ∗(x0′))

dγ̃∗(x0|ỹ)dγ̃∗(x0′|ỹ′)dγ̃(ỹ|x)dγ̃(ỹ′|x′′)dµ(x)dµ(x′)

=

∫
(X×Y×X×Y )⊗2

gX(x, x′)

[∫
Y ⊗2

gY (y, y
′)dγ∗(y|x0)dγ∗(y′|x0′)

]
dγ̃∗(x0|ỹ)dγ̃∗(x0′|ỹ′)dγ̃(ỹ|x)dγ̃(ỹ′|x′)dµ(x)dµ(x′) (64)

=

∫
(X×Y×X×Y )⊗2

gX(x, x′)gY (y, y
′)
(
dγ∗(y|x0)dγ̃∗(x0|ỹ)dγ̃(ỹ|x)dµ(x)

)
(
dγ∗(y′|x′0′)dγ̃∗(x0′|ỹ′)dγ̃(ỹ′|x′)dµ(x′)

)
=

∫
(X×Y )⊗2

gX(x, x′)gY (y, y
′)dγ(x, x)dγ(x′, y′)

= ⟨gXgY , γ
⊗2⟩

where (63) holds since given ỹ, theprobability measure γ̃∗(·1|ỹ) is only supported on {x0 ∈
X : ỹ = Tγ∗(x0)}, similarly to measure γ(·1|ỹ′); (64) follows from Lemma E.2 (that is, from
equality (53)).

Combining (59), (58), (62) and the fact C(γ∗;X,Y) ≤ C(γ;X,Y), we obtain that
C(γ̃∗;X,Y) ≤ C(γ̃;X,Y) which completes the proof.

F Proof of Proposition 3.1

Consider gm-spaces X,Y1,Y2, and select γ1 ∈ Γ∗
≤,λ(X,Y1), γ2 ∈ Γ∗

≤,λ(X,Y2). Inspired by

the LGW distance (38), we propose the LPGW distance (conditioned on γ1, γ2) (15) in the
general case:

LPGWλ(Y1,Y2;X, γ1, γ2) := inf
γ∈Γ≤(γ1,γ2;µ)

∫
(X×Y 1×Y 2)⊗2

|gY 1(y1, y1′)− gY 2(y2, y2′)|2dγ⊗2

+ λ(|ν1|2 + |ν2|2 − 2|γ|2). (65)

where Γ≤(γ
1, γ2;µ) := {γ ∈ M+(X × Y 1 × Y 2) : (πX,Y 1)#γ ≤ γ1, (πX,Y 2)#γ ≤ γ2}.

Next, we discuss the proof of Proposition 3.1.

F.1 Proof of Proposition 3.1: Part (1)

In this section, we discuss the proof of statement (1) of Proposition 3.1; namely, we prove
the existence of a minimizer to the LPGW problem.

First, we introduce a series of lemmas.

Lemma F.1. Given Radon measures µ, ν1, ν2, and γ1 ∈ Γ≤(µ, ν
1), γ2 ∈ Γ≤(µ, ν

2), then

Γ≤(γ
1, γ2;µ)

is sequentially compact set.
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Proof. The main idea is similar to the proof in, e.g., Lemma B.2 (Liu et al., 2023). In
particular, consider a sequence (γn) ⊂ Γ≤,X(γX , γY ). It is straightforward to verify that
this sequence is bounded above in total variation (since γ1 and γ2 are finite measures) and
that it is also a tight sequence. This verification is even simpler because X, Y 1, and Y 2 are
compact. Thus, by Prokhorov’s theorem for signed measures, the closure of Γ≤(γ

1, γ2) (in
the weak topology) is weakly sequentially compact in M(X × Y 1 × Y 2).

It remains to show Γ≤(γ
1, γ2;µ) is closed.

Suppose γn w∗
⇀ γ ∈ M(X × Y 1 × Y 2), for each nonnegative test function ϕ ∈ C(X × Y 1),

we have

lim
n→∞

∫
X×Y 1

ϕ(x, y1)d(πX,Y 1)#γ
n(x, y1) = lim

n→∞

∫
X×Y 1×Y 2

ϕ(x, y1)dγn(x, y1, y2)

=

∫
X×Y 1×Y 2

ϕ(x, y1)dγ(x, y1, y2)

=

∫
X×Y 1

ϕ(x, y1)d(πX,Y 1)#γ(x, y
1)

That is, (πX,Y 1)#γ
n w∗

⇀ (πX,Y 1)#γ. By Lemma B.1 in (Liu et al., 2023), we have
(πX,Y 1)#γ ≤ γ1. Similarly we have (πX,Y 2)#γ ≤ γ2.

Thus, γ ∈ Γ≤(γ
1, γ2;µ) and we have completed the proof.

Lemma F.2. Suppose gX , gY are continuous functions (see assumption (3)), we claim that
the mapping

(X × Y )⊗2 ∋ ((x, y), (x′, y′)) 7→ |gX(x, x′)− gY (y, y
′)|2 ∈ R

is a Lipschitz function with respect to metric

DX×Y ((x, y), (x
′, y′)) = dX(x, x′) + dY (y, y

′).

Proof of Lemma F.2. Let the mapping in the statement of the lemma be denoted by Φ. For
x1, x

′
1, x2, x

′
2 ∈ X, y1, y

′
1, y2, y

′
2 ∈ Y we have

|Φ((x1, y1), (x
′
1, x

′
1))− Φ((x2, y2), (x

′
2, y

′
2))|

= ||gX(x1, x
′
1)− gY (y1, y

′
1)|2 − |gX(x2, x

′
2)− gY (y2, y

′
2)|2|

≤ ||gX(x1, x
′
1)− gY (y1, y

′
1)|2 − |gX(x2, x

′
2)− gY (y1, y

′
1)|2|

+ ||gX(x2, x
′
2)− gY (y1, y

′
1)|2 − |gX(x2, x

′
2)− gY (y2, y

′
2)|2|

≤ K1(|gX(x1, x
′
1)− gX(x2, x

′
2)|+ |gY (y1, y′1)− gY (y2, y

′
2)|) (66)

= K1K2|dX(x1, x2) + dX(x′
1, x

′
2) + dY (y1, y2) + dY (y

′
1, y

′
2)| (67)

where (66) follows from the fact that the function r1 7→ |r1 − r2|2 is Lipschitz on a compact
set (see, e.g., Lemma C.1 in (Bai et al., 2024)), and K1 ≥ 0 is its Lipschitz constant. Then,
(67) follows from assumption (3) for gX and gY , with K2 ≥ 0 being the maximum of their
Lipschitz constants.

Consider (γn) ⊂ Γ≤(γ
1, γ2;µ), such that

⟨|gY 1 − gY 2 |2 − 2λ, (γn)⊗2⟩ → inf
γ∈Γ≤(γ1,γ2;µ)

⟨|gY 1 − gY 2 |2 − 2λ, γ⊗2⟩.

By compactness of Γ≤(γ
1, γ2;µ) (see Lemma F.1), we have that there exists γ∗ ∈

Γ≤(γ
1, γ2;µ) which is sub-sequence limit of γn (in weak convergence).

By Lemma F.2 and Lemma C.2.(3) in (Bai et al., 2024), we have

⟨|gY 1 − gY 2 |2 − 2λ, (γ∗)⊗2⟩ = inf
γ∈Γ≤(γ1,γ2;µ)

⟨|gY 1 − gY 2 |2 − 2λ, γ⊗2⟩.

Thus, γ∗ is a minimizer, and we have completed the proof.
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F.2 Proof of Proposition 3.1: Part (2)

Proof. Under the Monge mapping assumptions, we have

Γ≤(γ
1, γ2;µ) = {(id× T 1 × T 2)#µ

′ : µ′ ≤ γ1
X ∧ γ2

X}.

Thus, (65) becomes

LPGW (Y1,Y2;X, γ1, γ2)

= inf
µ′≤γ1

x∧γ2
X

∫
X⊗2

|gY 1(T 1(x), T 1(x′))− gY 2(T 2(x), T 2(x′))|2 + λ(|ν1|2 + |ν2|2 − 2|(id× T 1 × T 2)#µ
′|2)

= inf
µ′≤γ1

X∧γ2
X

∫
X⊗2

|gY 1(T 1(x), T 1(x′))− gY 2(T 2(x), T 2(x′))|2 + λ(|ν1|2 + |ν2|2 − 2|µ′|2)

= (14).

and we have proven the statement.

F.3 Proof of Proposition 3.1: Part (3)

Since X,Y 1, Y 2 are compact, by continuity (see (3)), we have that gX , gY 1 , gY 2 are bounded
functions.

By Lemma E.2 in (Bai et al., 2024), when 2λ > max(|gY 1(y1, y1′)−gY 2(y2, y2′)|2), pick any
optimal

γ ∈ Γ≤(γ
1, γ2;µ) = {(id× T 1 × T 2)#µ

′ : µ′ ≤ γ1
X ∧ γ2

X},

we have |γ| = min(|γ1|, |γ2|) = min(|γ1
X |, |γ2

X |). Thus γ = (id× T 1 × T 2)#γ
1
X ∧ γ2

X . Plug in
this optimal γ into the LPGW problem (14) (or (15)), we obtain

LPGW (Y1,Y2;X, γ1, γ2)

= ⟨|gY 1 − gY 2 |2, (γ1
X ∧ γ2

X)⊗2⟩+ λ(|ν1|2 + |ν2|2 − 2|γ1
X ∧ γ2

X |2)
= ⟨|kγ1 − kγ2 |2, (γ1

X ∧ γ2
X)⊗2⟩+ λ(|ν1|2 + |ν2|2 − 2|γ1

X ∧ γ2
X |2)

and we complete the proof.

F.4 Proof of Proposition 3.1: Part (4)

First, under the Monge mapping assumption, an optimal PGW plan is of the form γ∗ =
(id× T )#γ

∗
X for some γ∗

X ≤ µ, we have

∥kγ∗∥2L2((γ∗
X)⊗2) + λ(|µ|2 − |γ∗

X |2 + |γc|)

=

∫
X⊗2

|gX(x, x′)− gY (T (x), T (x
′))|2d(γ∗)⊗2 + λ(|µ⊗2 − (γ∗

X)⊗2|+ |ν⊗2 − (γ∗
Y )

⊗2|)

= PGWλ(X,Y).

In the general case, we first introduce the following lemma.

Lemma F.3. If γ0 ∈ Γ∗
≤,λ(X,X), then (πX)#γ

0 = µ, (πY )#γ
0 = µ.

Proof of Lemma F.3. Pick any γ ∈ Γ≤(X,X), suppose |γ| < |µ|, we have

C(γ;X,X, λ) =
∫
X⊗2

|gX(x, x′)− gX(x0, x0′)|dγ⊗2 + λ(2|µ|2 − 2|γ|2)

≥ λ(2|µ|2 − 2|γ|2)
> 0. (68)

However, PGWλ(X,X) = 0. Thus,γ is not optimal.
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By the above lemma, we have |γ∗| ≤ |γ0|. For each γ ∈ Γ≤(γ
0, γ∗;µ), from (Bai et al.,

2024), there exists γ′ ∈ Γ≤(γ
0, γ∗) such that (πX,Y )#γ

′ = γ∗ and γ ≤ γ′. Thus we have
|γ′| = |γ∗|.
Let

C(γ;X,X,Y, λ) :=
∫
(X×X×Y )⊗2

|gX(x, x
′
)− gY (y, y

′)|2dγ⊗2((x, x′), (x, x
′
), (y, y′))

+ λ(|µ|2 + |ν|2 − 2|γ|2)

and similarly we define C(γ′;X,X,Y, λ). Then

C(γ′;X,X,Y, λ)− C(γ;X,X,Y, λ)

=

∫
(X×X×Y )⊗2

[
|gX(x, x′)− gY (y, y

′)|2 − 2λ
]
d(γ′⊗2 − γ⊗2)((x, x′), (x, x′), (y, y′))

≤ 0.

In addition,

C(γ′;X,X,Y, λ)

=

∫
(X×X×Y )⊗2

|gX(x, x
′
)− gY (y, y

′)|2dγ′⊗2((x, x′), (x, x
′
), (y, y′)) + λ(|µ|2 + |ν|2 − 2|γ′|2)

=

∫
(X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2d(γ∗)⊗2((x, x′), (y, y′)) + λ(|µ|2 + |ν|2 − 2|γ∗|2)

= PGWλ(X,Y)

where the second equality holds by (49) and the fact |γ′| = |γ∗|. Thus, we have

LPGWλ(X,Y;X, γ0, γ∗) ≤ C(γ′;X,X,Y, λ) = PGWλ(X,Y).

Another direction is trivial since for each γ ∈ Γ≤(γ
0, γ∗;µ), (π2,3)#γ := (πX,Y )#γ ∈

Γ≤(µ, ν). Thus

PGWλ(X,Y; γ) ≤ C(γ;X,X,Y, λ) ≤ LPGWλ(X,Y;X, γ0, γ∗).

and we have completed the proof.

F.5 Proof of Proposition 3.1: Part (5)

This section discusses the proof of statement (5) of Proposition 3.1. That is, we discuss the
metric properties of the proposed LPGW distance.

F.5.1 Formal Statement

In this section, we set gY = dsY . Let

G := {Y = (Y, gY , ν)}

where Y ⊂ Rd for some d ∈ N such that Y is nonempty convex compact set; ν ∈ M+(Y )
with ν⊗2(|gY |) < ∞.

Then ∀Y1,Y2 ∈ G, we define Y1 ∼ Y2 iff GW (Y1,Y2) = 0. By (Mémoli, 2011), in this case,
optimal transportation plan GW (Y1,Y2) is induced by the Monge mapping T . Furthermore,
T is bijection ν1-a.s. and is called “isomorphism” since

dY 1(y1, y1′) = dY 2(T (y1), T (y1′)), ν1 − a.s.

Next, given G′ ⊂ G we introduce the following assumptions:

Assumption F.4. For each Y ∈ G′, the problem PGWλ(X,Y) admits a unique solution.
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Assumption F.5. For subset G′, define K1,K2 by

K1 = sup{|ν|,Y = (Y, gY , ν) ∈ G′},
K2 = sup{ max

y,y′∈supp(ν)
|gY (y, y′)|2 : Y = (X, gY , ν) ∈ G′)}

We suppose K1,K2 < ∞.

Assumption F.6. gX , gY 1 , gY 2 are induced by metrics. In particular, gX(·, ·) = dqX(·, ·),
gY 1(·, ·) = dqY 1(·, ·), gY 2(·, ·) = dqY 2(·, ·), where dX is a metric defined in X, q ≥ 1, similar to
dY 1 , dY 2 .

Remark F.7. The uniqueness of optimal transportation plan assumption (F.4) is also intro-
duced by (Nenna & Pass, 2023) to prove the triangle inequality of linear optimal transport.
The assumption (F.5) discusses the bounded total mass and transportation cost.

Proposition F.8 (Metric property of LPGW). Fix X ∈ G and for each Y1, we select
γ1 ∈ Γ∗

≤,λ(X,Y1), γ2 ∈ Γ∗
≤,λ(X,Y2). In addition, set gX = dsX , gY = dsY where s ≥ 1. Then

we have:

(1) The LPGW distances (15),(16) are nonnegative:

LPGW (Y1,Y2;X, γ1, γ2, λ), LPGWλ(Y1,Y2;X) ≥ 0 (69)

(2) The LPGW distances (15),(16) are symmetric:

LPGW (Y1,Y2;X, γ1, γ2, λ) = LPGW (Y2,Y1X, γ2, γ1, λ)

LPGW (Y2,Y1;X, λ) = LPGWλ(Y1,Y2;X). (70)

(3) The LPGW distances (15) satisfy triangle inequality.

In addition, under assumption (F.4), (16) satisfies the triangle inequality.

(4) Under assumption (F.6), if LPGWλ(Y1,Y2;X, γ1, γ2) = 0, we have Y1 ∼ Y2.
Similarly to LPGWλ(Y1,Y2;X).

(5) Under assumption (F.5), suppose |µ| ≥ K1, and 2λ ≥ K2 +
supx,x′∈supp(µ) |gX(x, x′)|2, and Y1 ∼ Y2, where K1,K2 are defined in (F.5).

Then there exists γ1, γ2 such that

LPGW (Y1,Y2;X, γ1, γ2, λ) = LPGWλ(Y1,Y2;X) = 0.

Therefore, under the assumptions (F.4), (F.5), and (F.6), we have that (16) defines a metric
in G′/ ∼.

Note, the above statement implies the metric property of LGW by setting λ → ∞. We refer
to the next section for details.

F.5.2 Proof of Proposition F.8: Parts (1), (2), (4), (5)

Proof. Choose Y1,Y2,Y3 ∈ G.

(1), (2) It is straightforward to verify the nonnegativity (1) and symmetry (2).

(4) In this setting, we have:

0 = LPGWλ(Y1,Y2;X, γ1, γ2)

= inf
γ∈Γ≤(γ1,γ2;µ)

∫
(X×Y 1×Y 2)⊗2

|gY 1(y1, y1′)− gY 2(y2, y2′)|2dγ⊗2 + λ(|ν1|2 + |ν2| − 2|γ|2)

Pick one corresponding minimizer γ, we obtain∫
(X×Y 1×Y 2)⊗2

|gY 1(y1, y1′)− gY 2(y2, y2′)|2dγ⊗2 = 0,
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and
|ν1|2 + |ν2|2 − 2|γ|2 = 0.

Thus γ ∈ Γ(ν1, ν2) and therefore

GW (Y1,Y2) = 0.

That is Y1 ∼ Y2.

By a similar process, if LPGWλ(Y1,Y2;X) = 0, we have Y1 ∼ Y2.

(5) Since Y1 ∼ Y2, from triangle inequality of PGWλ(·, ·), we have

PGWλ(X,Y1) = PGWλ(X,Y2).

In addition, there exists a bijection mapping T : supp(ν1) → supp(ν2) such that
gY 1(x1, x

′
1) = gX2

(T (x1), T (x
′
1)), ν

1−a.s. such that T#ν
1 = ν2.

Pick γ1 ∈ Γ∗
≤,λ(X,Y1). Let γ2 := (id × T )#γ

1, that is, for each test function

ϕ ∈ C0(X × Y 2),

γ2(ϕ) :=

∫
X×Y 1

ϕ(x, T (y1))dγ1(x, y1).

We claim γ2 is optimal for PGWλ(X1,Y2).

(π1)#γ
2 = (π1)#γ

1 ≤ µ,

(π2)#γ
2 = T#((π2)#γ

1)) ≤ ν2 since (πY )#γ
1 ≤ ν1.

Thus, γ2 ∈ Γ≤(µ, ν
2). In addition,

C(γ2;X,Y2)

=

∫
(X×Y 1)⊗2

|gX(x, x′)− gY 2(T (y1), T (y1)′)|2d(γ1)⊗2 + λ(|µ|2 + |ν2|2 − 2|γ2|2)

=

∫
(X×Y 1)⊗2

|gX(x, x′)− gY 2(T (y1), T (y1)′)|2d(γ1)⊗2(x, x′|y1, y1′))d(ν1)⊗2(y1, y1′)

+ λ(|µ|2 + |ν1| − 2|γ1|1)

=

∫
(X×Y 1)⊗2

|gX(x, x′)− gY 1(y1, y1′)|2d(γ1)⊗2(x, x′|y1, y1′))d(ν1)⊗2(y1, y1′)

+ λ(|µ|2 − |γ1|2) (71)

= PGWλ(X,Y1) = PGWλ(X,Y2).

and thus γ2 is optimal in PGWλ(X,Y2).

Since 2λ is sufficiently large, by lemma E.2 in (Bai et al., 2024), there exists optimal
γ1 such that:

|γ1| = min(|µ|, |ν1|) = |ν1|.
Thus we have |γ2| = |γ1| = |ν1| = |ν2|. Plug γ1, γ2 into (15), we have:

LPGW (Y1,Y2;X, γ1, γ2)

=

∫
gY 1(y1, y1′)− gY 2(T (y1), T (y1′))d(ν1)⊗2(y1, y1′)

= 0. (72)

F.5.3 Proof of Proposition F.8: Part (3)

Notation Setup and Summary Choose γ1 ∈ Γ∗
≤,λ(X,Y1), γ2 ∈ Γ∗

≤,λ(X,Y2), γ3 ∈
Γ∗
≤,λ(X,Y3), the goal is to show triangle inequality in this section:

LPGWλ(Y1,Y2;X, γ1, γ2) ≤ LPGWλ(Y1,Y3;X, γ1, γ3) + LPGWλ(Y2,Y3;X, γ2, γ3).
(73)
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Related Lemmas

Lemma F.9 (Varient Gluing lemma). Suppose γ1 ∈ Γ(µ, ν1), γ2 ∈ Γ(µ, ν2), γ3 ∈ Γ(µ, ν3)

are probability measures. Pick γ1,2 ∈ Γ(γ1, γ2;µ), γ1,3 ∈ Γ(γ1, γ3;µ), γ2,3′ ∈ Γ(γ1, γ3′;µ),
there exists γ ∈ P(X × Y 1 × Y 2 × Y 3) such that{

(πX,Y 1,Y 3)#γ = γ1,3,

(πX,Y 2,Y 3)#γ = γ2,3.
(74)

Note, if we set X = {0} and µ = δ0, the above lemma becomes the classical Gluing lemma
(see e.g. Lemma 5.5 (Santambrogio, 2015)). For this, we call it the variant gluing lemma.

Proof of Lemma F.9. For convenience, let X ′, Y 3′ be independent copy of X,Y 3. By gluing
lemma, there exists γ′ ∈ P((X × Y 1 × Y 2)×X ′) such that{

(πX,Y 1,Y 2)#γ = γ1,2,

(πX,X′)#γ = (id× id)#µ.
(75)

Apply gluing lemma again between γ′ and γ1,3, we can find γ′′ ∈ P((X ×Y 1 ×Y 3)× (X ′ ×
Y 2 × Y 3′)) such that {

(πX,Y 1,Y 3,X′)#γ = γ′,

(πX′,Y 2,Y 3)#γ = γ2,3.

Applying γ = (πX,Y 1,Y 2,Y 3)#γ
′′ we complete the proof.

Alternatively, we can set

γ = γ1,3
Y 1,Y 3|Xγ2,3

Y 2,Y 3|Xµ(x)

and it is straightforward to verify γ satisfies (74).

Lemma F.10 (Triangle inequality for LGW). Suppose X,Y1,Y2,Y3 are under the balanced
GW setting, choose γ1 ∈ Γ∗(µ, ν1), γ2 ∈ Γ∗(µ, ν2), γ3 ∈ Γ∗(µ, ν3), we have

LGW (Y1,Y2;X, γ1, γ2) ≤ LGW (Y1,Y3;X, γ1, γ3) + LGW (Y2,Y3;X, γ2, γ3) (76)

Proof of lemma F.10. Pick the γ from lemma F.9, we have

(πX,Y 1)#γX,Y 1 = (πX,Y 1)#γ
1,3 = γ1,

(πX,Y 2)#γX,Y 2 = (πX,Y 2)#γ
2,3 = γ2.

Thus (πX,Y 1,Y 2)#γ ∈ Γ(γ1, γ2;µ). Then we have

LGW (Y1,Y2;X, γ1, γ2)

=
〈
|gY 1 − gY 2 |2, (γ1,2)⊗2

〉1/2
≤
〈
|gY 1 − gY 2 |2, ((πX,Y 1,Y 2)#γ)

⊗2
〉1/2

(77)

=

(∫
X×Y×Y 2×Y 3

|gY 1(y1, y1′)− gY 2(y2, y2′)|2dγ⊗2((x, x′), (y1, y1′), (y2, y2′), (y3, y3′))

)1/2

≤
(∫

X×Y×Y 2×Y 3

(
|gY 1(y1, y1′)− gY 3(y3, y3′)|+ |gY 2(y2, y2′)− gY 3(y3, y3′|

)2
dγ⊗2

)1/2

≤
(∫

X×Y×Y 2×Y 3

(
|gY 1(y1, y1′)− gY 3(y3, y3′)|

)2
dγ⊗2

)1/2

+

(∫
X×Y×Y 2×Y 3

(
|gY 2(y2, y2′)− gY 3(y3, y3′|

)2
dγ⊗2

)1/2

(78)

= LGW (Y1,Y3;X, γ1, γ3) + LGW (Y2,Y3;X, γ2, γ3)
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where (77) follows from the fact γ1,2 is optimal in Γ(γ1, γ2;µ); (78) holds by the Minkowski
inequality. In the uniqueness assumption (F.4), we have

LGW (Y1,Y2;X) ≤ LGW (Y1,Y3;X) + LGW (Y2,Y3;X).

Convert LPGW to LGW The main idea of this step is similar to the proof of Propo-
sition 3.3 in (Bai et al., 2024).

Notations Setup

We can redefine Γ≤(γ
1, γ2;µ) as

Γ≤(γ
1, γ2;µ) =

{
γ ∈ M+(X × Y 1 ×X × Y 2) : (π1,2)#γ ≤ γ1, (π3,4)#γ ≤ γ2,

(π1,3)#γ = (id× id)#µ
′, µ′ ≤ µ} . (79)

We define auxiliary points ∞̂0, ∞̂1, ∞̂2, ∞̂3 and then define

X̂ = X ∪ {∞̂0},
Ŷ 1 = Y 1 ∪ {∞̂1, ∞̂2, ∞̂3},
Ŷ 2 = Y 2 ∪ {∞̂1, ∞̂2, ∞̂3},
Ŷ 3 = Y 3 ∪ {∞̂1, ∞̂2, ∞̂3}.

and

γ̂1 = γ1 + |γ2|δ∞̂0,∞̂2 + |γ3|δ∞̂0,∞̂3 ∈ M+(X̂ × Ŷ 1),

γ̂2 = γ2 + |γ1|δ∞̂0,∞̂1
+ |γ3|δ∞̂0,∞̂3

∈ M+(X̂ × Ŷ 2),

γ̂3 = γ3 + |γ1|δ∞̂0,∞̂1
+ |γ2|δ∞̂0,∞̂2

∈ M+(X̂ × Ŷ 3).

Define

gŶ 1(y
1, y1′) =

{
gY 1(y1, y1′) if y1, y1 ∈ Y 1,

∞ elsewhere

and gŶ 2 , gŶ 3 are defined similarly.

Finally, define

Dλ(r1, r2) =

{
|r1 − r2| if r1, r2 ∈ R,√
λ elsewhere.

.

Let X̂ ′ = X ′ ∪ {∞̂0} to be a copy of set X̂. Then, we can set

Γ̂(γ̂1, γ̂2;µ) :=
{
γ̂ ∈ M+(X̂ × Ŷ 1 × X̂ × Ŷ 2), (π1,2)#γ̂ = γ̂1, (π3,4)#γ̂ = γ̂2, (80)

(π1,3)#γ̂ |X⊗2= (id× id)#µ
′, µ′ ≤ µ} . (81)

Consider the mapping:

F : Γ≤(γ
1, γ2;µ) 7→ Γ̂(γ̂1, γ2;µ)

γ 7→ γ̂ := γ + (γ1 − (π1,2)#γ)⊗ δ(∞̂0,∞̂1) + δ(∞̂0,∞̂2) ⊗ (γ2 − (π3,4)#γ) + |γ|δ(∞̂0,∞̂2),(∞0,∞̂1)

+ |γ3|δ(∞̂0,∞̂3),(∞̂0,∞̂3). (82)

By the following lemma, we show that F defines an equivalent relation between the two
sets.

Lemma F.11. The mapping F defined in (82) is well-defined. In addition, it is a bijection
if we set the identity ∞̂0 = ∞̂1 = ∞̂2 = ∞̂3.
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Proof of Lemma F.11. By (Bai et al., 2022, Proposition B.1) we have for each γ ∈
Γ(γ1, γ2;µ),

(π1,2)#γ̂ = γ̂1, (π3,4)#γ̂ = γ̂2.

In addition,

(π1,3)#γ̂ = (π1,3)#γ̄ + ((π1)#γ
1 − (π1)#γ)⊗ δ∞̂0

+ δ∞̂0
⊗ ((π1)#γ

2 − (π3)#γ) + (|γ̄|+ |γ3|)δ∞̂0,∞̂0
.

Thus,
(π1,3)#γ̂ |X⊗2= (π1,3)#γ = (id× id)#(π1)#γ,

where (π1)#γ ≤ (π1)#γ
1 ≤ µ, and we have F is well-defined.

It remains to show F is a bijection. For each γ̂ ∈ Γ̂≤(γ̂
1, γ̂2) and we define mapping

F−1 : Γ̂(γ̂1, γ̂2;µ) → Γ≤(γ
1, γ2;µ) (83)

γ̂ 7→ γ̂ |X×Y 1×X×Y 2

It remains to show F−1 is inverse of F .

First, we claim F−1 is well-defined. Pick γ̂ ∈ Γ̂(γ̂1, γ̂2), by Lemma (Bai et al., 2022, Lemma
B.1.), we have (πX,Y 1)#γ̂ ≤ γ1, (π3,4)#γ̂ ≤ γ2. In addition,

(π1,3)#γ = (π1,3)#γ̂ |X⊗2= (id× id)#µ
′,

where µ′ ≤ µ. Thus, F−1(γ̂) ∈ Γ≤(γ
1, γ2;µ).

In addition, it is straightforward to verify F−1(F(γ)) = γ,∀γ̄ ∈ Γ≤(γ
1, γ2;µ),and then we

complete the proof.

It is straightforward to verify:

⟨D2
λ(gŶ 1 , gŶ 2 , γ̂

⊗2)⟩ = ⟨|gY 1 − gY 2 |2, γ⊗2⟩+ λ(|γ1|2 + |γ2|2 − |γ|2)

Combine it with the above lemma, take the infimum over Γ≤(γ
1, γ2;µ) (equivalently, over

Γ̂(γ̂1, γ̂2;µ), we obtain:

inf
γ̂∈Γ̂(γ̂1,γ̂2;µ)

⟨D2
λ(gŶ 1 , gŶ 2 , γ̂

⊗2)⟩ = inf
γ∈Γ≤(γ1,γ2;µ)

⟨|gY 1 − gY 2 |2, γ⊗2⟩+ λ(|γ1|2 + |γ2|2 − |γ|2)

= LPGW (Y1,Y2;X, γ1, γ2)

where the second equality holds from the fact |ν1| = |ν2| = |ν3| = |γ1| = |γ2| = |γ3|. Similar
identity holds for LPGW (Y1,Y3;X, γ1, γ3), LPGW (Y2,Y3;X, γ2, γ3).

Verifying Inequality It remains to show

inf
γ̂∈Γ̂(γ̂1,γ̂2;µ)

⟨D2
λ(gŶ 1 , gŶ 2 , γ̂

⊗2)⟩1/2 ≤ inf
γ̂∈Γ̂(γ̂1,γ̂3;µ)

⟨D2
λ(gŶ 1 , gŶ 3 , γ̂

⊗2)⟩1/2+ inf
γ̂∈Γ̂(γ̂2,γ̂3;µ)

⟨D2
λ(gŶ 2 , gŶ 3 , γ̂

⊗2)⟩1/2.

Pick γ1,2 ∈ Γ≤(γ
1, γ2;µ) that is optimal for ⟨D2

λ(gŶ 1 , gŶ 2 , γ̂⊗2)⟩1/2. Similalry, pick
optimal γ1,3 ∈ Γ≤(γ

1, γ3), γ2,3 ∈ Γ≤(γ
2, γ3), we construct the corresponding optimal

γ̂1,3 ∈ Γ(γ̂1, γ̂3;µ), γ̂2,3 ∈ Γ(γ̂2, γ̂3;µ).

Thus, by Gluing lemma, there exists γ ∈ M+((X ×Y 1)× (X ×Y 2)× (X ×Y 3))) such that

(π(1,2),(5,6))#γ = γ̂1,3,

(π(3,4),(5,6))#γ = γ̂2,3.

Now by the definition of Γ̂(γ̂1, γ̂3;µ), Γ̂(γ̂2, γ̂3;µ), we have

(π1,5)#γ = (id× id)#µ
′, (84)

(π3,5)#γ = (id× id)#µ
′′ (85)
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for some radon measures µ′, µ′′ ≤ µ. Thus, we have µ′ = µ′′ ≤ µ. Therefore,

(π1,3)#γ = (id× id)#µ
′.

In addition,

(π1,2)#γ = (π1,2)#γ̂
1,3 = γ̂1,

(π3,4)#γ = (π1,2)#γ̂
2,3 = γ̂2.

So (π1,2,3,4)#γ ∈ Γ(γ̂1, γ̂2;µ).

Therefore, we have 〈
D2

λ(kY 1 , kY 2), (γ̂1,2)⊗2
〉1/2

≤
〈
D2

λ(kY 1 , kY 2), γ⊗2
〉1/2

≤
〈
D2

λ(kY 1 , kY 3), γ⊗2
〉1/2

+
〈
D2

λ(kY 2 , kY 3), γ⊗2
〉1/2

where the second inequality holds from (Bai et al., 2024, Eq.(57)).

G Relation Between LPGW and LGW

Theorem G.1. Suppose |µ| = |ν1| = |ν2| = 1 and x, x is bounded, gY 1 , gY 2 are continuous
function.

Choose sequence λn → ∞, if n is sufficiently large, we have λn, then

LPGWλn
(Y1,Y2;X) → LGWλn

(Y1,Y2;X),
aLPGWλn(Y1,Y2;X) → aLGW (Y1,Y2;X).

Proof of theorem G.1. By the lemma F.1 in (Bai et al., 2024), when n is sufficiently large,
in particular, when

λn > M := sup
y1,y1′∈Y 1

y2,y2′∈Y 2

|gY 1(y1, y1′)− gY 2(y1, y1′)|,

for each γ1 ∈ Γ∗
≤(X,Y1), |γ1| = min(|µ|, |ν1|) = 1. That is

Γ∗
≤,λn

(X,Y1) = Γ∗(X,Y1).

Similarly, when n is sufficiently large, we have ,Γ∗
≤,λn

(X,Y2) = Γ∗(X,Y2).

Pick γ1 ∈ Γ∗
≤(X,Y1) = Γ∗(X,Y1), γ2 ∈ Γ∗

≤(X,Y2) = Γ∗(X,Y2), since |γ1| = |µ| = |ν1| =
|ν2| = 1, the mass penalty term vanishes in (65), thus we have

LPGWλn
(Y1,Y2;X, γ1, γ2) = LGW (Y1,Y2;X, γ1, γ2).

Take the infimum over all γ1, γ2 and the take a limit for n → ∞, we prove

LPGWλn(Y1,Y2;X) → LGW (Y1,Y2;X).

Similarly, in this case, γ1
c = γ2

c = 0

LPGWλn(Ỹγ1 , Ỹγ2 ;X, γ̃1, γ̃2) + λ(|γ1
c |+ |γ2

c |) = LGW (Ỹγ1 , Ỹγ2 ;X, γ̃1, γ̃2).

Take the infimum on both sides over γ1, γ2 and take λn → ∞, we obtain

aLPGW (Y1,Y2;X) → aLGW (Y1,Y2;X).
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H Proof of Theorem 3.2

H.1 Proof of Theorem 3.2: Parts (1), (3)

(1) Similar to proof in Theorem 2.1, in this case, we have Tγ∗ = T , γ∗
X − a.s.

(3) Based on statement (2) of Theorem 3.2 (see the proof in next section), we have

γ̃1, γ̃2 are optimal solutions for PGWλ(X, Ỹγ1), PGWλ(X, Ỹγ2) respectively.

By (1), we have T 1 = Tγ1 , T 2 = Tγ2 γ1
X ∧ γ2

Y −a.s. Thus, we have:

LPGWλ(Y1,Y2;X, γ1, γ2)

= inf
µ′≤γ1

X∧γ2
X

∫
X⊗2

|dY 1(T 1(·1), T 1(·2))− dY 2(T 1(·1), T 2(·2))|2d(µ′)⊗2 + λ(|ν1|2 + |ν2|2 − 2|µ′|2)

= inf
µ′≤γ1

X∧γ2
X

∫
X⊗2

|dY 1(Tγ1(·1), Tγ1(·2))− dY 2(Tγ2(·1), Tγ2(·1)|2d(µ′)⊗2 + λ(|ν̃γ1 |2 + |ν̃γ2 |2 − 2|µ′|2)

+ λ(|ν1|2 − |ν̃γ1 |2 + |ν2|2 − |ν̃γ2 |2)

= inf
µ′≤γ1

X∧γ2
X

[∫
X⊗2

|dY 1(Tγ1(·1), Tγ1(·2))− dY 2(Tγ2(·1), Tγ2(·1)|2d(µ′)⊗2 + λ(|ν̃γ1 |2 + |ν̃γ2 |2 − 2|µ′|2)
]

+ λ(|γ1
c |+ |γ2

c |) (86)

= LPGWλ(Ỹγ1 , Ỹγ2 ;X, γ1, γ2) + λ(|γc|1 + |γc|2)

where (86) holds since

ν̃1 = Tγ1γ1
1 = T 1γ1

1 = (πY )#γ
1 ≤ ν1.

Thus |ν1|2 − |ν̃1|2 = |(ν1)⊗2 − ((πY )#γ
1)⊗2| = |γ1

c |; and similarly we have |ν2|2 −
|ν̃2|2 = |γ2

c |.

H.2 Proof of Theorem 3.2: Part (2)

H.2.1 Proof in the discrete case.

Notation setup

We first demonstrate a simplified proof in the discrete case. Next, we will provide the proof
of the statement in the general case.

Suppose

µ =
n∑

i=1

pixi, ν =

m∑
j=1

qjyj ,

gX(x, x′) = x⊤x′, ∀x, x′ ∈ X,

gX(y, y′) = y⊤y′, ∀y, y′ ∈ Y.

Choose γ∗ ∈ Γ∗
≤(X,Y), we obtain the corresponding barycentric projected measure:

ν̃ := ν̃γ∗ =
∑n

i=1 q̃iỹi with

q̃i =

n∑
j=1

γ∗
i,j , ∀i ∈ [1 : n], (87)

ỹi =

{
1
q̃1i
γ∗
ijxi if q̃i > 0,

0 elsewhere.
. (88)

Then Ỹγ∗ = (Y, gY , ν̃), γ̃
∗ = diag(q̃1, . . . q̃n). Our goal is to show γ̃∗ = diag(q̃1, . . . , q̃n) is

optimal in PGWλ(X, Ỹγ∗).
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Pick γ̃ ∈ Γ≤(p, q̃) := Γ≤(µ, ν̃), similar to section E.5, we set diagonal matrix (γ̃∗)−1 ∈ Rn×n
+

as

(γ̃∗)−1
ii =

{
1
q̃i

if q̃i > 0,

0 elsewhere.

Let γ := γ̃(γ̃∗)−1γ∗ ∈ Rn×m
+ . Let γX := γ1m and γY := γ⊤1n.

In addition, we set D = {i : q̃i > 0}, and 1D ∈ Rn with 1D[i] = 1,∀i ∈ D and 1D[i] = 0
elsewhere. Then we have:

γ1m = γ̃(γ̃∗)−1γ∗1m = γ̃(γ̃∗)−1q̃ = γ̃1D = γ̃X ≤ p0, (89)

γ⊤1n = (γ∗)⊤(γ̃∗)−1γ̃⊤1n ≤ (γ∗)⊤(γ̃∗)−1q̃ = (γ∗)⊤1D = γ∗
Y ≤ q. (90)

Therefore, γX ≤ γ̃X ≤ p, γY ≤ γ∗
Y ≤ q. Thus, γ ∈ Γ≤(p, q).

Relation between PGWλ(X,Y) and PGWλ(X, Ỹ).

Similar to (54),(57), we obtain

C(γ∗;X,Y, λ) = ⟨(x⊤x′)2, (γ∗
X)⊗2⟩+ ⟨(y⊤y′)2, (γ∗

Y )
⊗2⟩+ λ(|p|2 + |q|2 − 2|γ∗|)

− 2

n∑
i,i′=1

m∑
j,j′=1

x⊤
i x

′
iy

⊤
j y

′
jγ

∗
i,jγ

∗
i′,j′

C(γ̃∗;X, Ỹ, λ) = ⟨(x⊤x′)2, (γ̃∗
X)⊗2⟩+ ⟨(y⊤y′)2, (γ̃∗

Y )
⊗2⟩+ λ(|p|2 + |q̃|2 − 2|γ̃∗|)

− 2

n∑
i,i′=1

m∑
j,j′=1

x⊤
i x

′
iy

⊤
j yjγ

∗
i,jγ

∗
i′,j′

where (x⊤x′)2 := [(x⊤
i x

′
i′)

2]i,i′∈[1:n] ∈ Rn×n, (γ∗
X)⊗2 = γ∗

X(γ∗
X)⊤, ⟨(x⊤x′)2, (γ∗

X)⊗2⟩ :=∑n
i,i′=1(x

⊤
i x

′
i′)

2(γ∗
X)i(γ

∗
X)i′ , is the element-wise dot product. All other notations are defined

similarly.

Combined the above two equalities with the fact |γ∗| = |γ∗
Y | and γ∗

X = γ̃∗
X , we obtain:

C(γ̃∗;µ, ν̃, λ) = C(γ∗;X,Y, λ) + ⟨(ỹ⊤ỹ′)2, (γ̃∗
Y )

⊗2⟩ − ⟨(y⊤y′)2, (γ∗
Y )

⊗2⟩+ λ(|q|2 − |q̃|2).
(91)

Similarly, from the fact γX = γ̃X (see (89)) we obtain

C(γ̃;µ, ν̃, λ) = C(γ;X,Y, λ) + ⟨(ỹ⊤ỹ′)2, (γ̃Y )⊗2⟩ − ⟨(y⊤y′)2, (γY )⊗2⟩+ λ(|q|2 − |q̃|2). (92)

Thus

C(γ̃∗;X, Ỹ, λ)− C(γ̃;X, Ỹ, λ)
= C(γ∗;X,Y, λ)− C(γ;X,Y, λ) + ⟨(ỹ⊤ỹ′)2, (γ̃∗

Y )
⊗2 − (γ̃Y )

⊗2⟩ − ⟨(y⊤y′)2, (γ∗
Y )

⊗2 − (γY )
⊗2⟩

≤ ⟨(ỹ⊤ỹ′)2, (γ̃∗
Y )

⊗2 − (γ̃Y )
⊗2⟩ − ⟨(y⊤y′)2, (γ∗

Y )
⊗2 − (γY )

⊗2⟩ (93)

=
∑

i,i′∈D

(ỹ⊤i ỹi′)
2((γ̃∗

Y )i(γ̃
∗
Y )i′ − (γ̃Y )i(γ̃Y )i′)−

m∑
j,j′=1

(y⊤j yj′)
2((γ∗

Y )j(γ
∗
Y )j′ − (γY )j(γY )j′)

≤
∑

i,i′∈D

m∑
j,j′=1

γ∗
i,jγ

∗
i,j′

q̃1i q̃
1
i′

((x⊤
i xi′)

2)((γ̃∗
Y )i(γ̃

∗
Y )i′ − (γ̃Y )i(γ̃Y )i′)

−
m∑

j,j′=1

(y⊤j yj′)
2((γ∗

Y )j(γ
∗
Y )j′ − (γY )j(γY )j′) (94)

=

m∑
j,j′=1

(y⊤j yj′)
2

 ∑
i,i′∈D

γ∗
i,jγ

∗
i,j′

q̃1i q̃
1
i′

((γ̃∗
Y )i(γ̃

∗
Y )i′ − (γ̃Y )i(γ̃Y )i′)− ((γ∗

Y )j(γ
∗
Y )j′ − (γY )j(γY )j′)


= 0 (95)
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where (93) holds since γ1 is optimal in PGWλ(X,Y); (94) follows from the facts γY ≤ γ∗
Y

(see (90)), and the fact

ỹ⊤i ỹ
′
i =

m∑
j=1

m∑
j′=1

γi,jγi′,j′y
⊤
j y

′
j′

q̃iq̃′i
,∀i, i′ ∈ D

and Jensen’s inequality:

(ỹ⊤i ỹ
′
i)

2 ≤
m∑
j=1

m∑
j′=1

γi,jγi′,j′(y
⊤
j y

′
i)

2

q̃iq̃′i
.

The last equality (95) holds from the following:

For each (j, j′ ∈ [1 : m]), we have∑
i,i′∈D

γ∗
i,jγ

∗
i,j′

q̃1i q̃
1
i′

((γ̃1
Y )i(γ̃

∗
Y )i′ − (γ̃Y )i(γ̃Y )i′)− ((γ∗

Y )j(γ
∗
Y )j′ − (γY )j(γY )j′)

=

 ∑
i,i′∈D

γ∗
i,jγ

∗
i,j′

q̃1i q̃
1
i′

(γ̃∗
Y )i(γ̃

∗
Y )i′

− (γ∗
Y )j(γ

∗
Y )j′︸ ︷︷ ︸

A

−

 ∑
i,i′∈D

γ∗
i,jγ

∗
i,j′

q̃iq̃i′
(γ̃Y )i(γ̃Y )i′

− (γY )j(γY )j′︸ ︷︷ ︸
B

,

where

A =
∑

i,i′∈D

γ∗
i,jγ

∗
i′,j′

q̃1i q̃
1
i′

q̃1i q̃
1
i′ − q̃1j q̃

1
j′

=
∑

i,i′∈D

γ∗
i,jγ

∗
i′,j′ − q̃1j q̃

1
j′

=

(∑
i∈D

γ∗
i,j

)(∑
i′∈D

γ∗
i′,j′

)
− q̃1j q̃

1
j′ = 0

B =
∑

i,i′∈D

γ∗
i,jγ

∗
i,j′

q̃iq̃i′

n∑
k,k′=1

γ̃k,iγ̃k′,i′ −
n∑

k,k′=1

γk,jγk′,j′

=
∑

i,i′∈D

n∑
k,k′=1

γ∗
i,jγ

∗
i,j′

q̃1i q̃i′
γ̃k,iγ̃k′,i′ −

n∑
k,k′=1

(
∑
i∈D

γ̃k,iγ
∗
i,j

q̃i
)(
∑
i∈D

γ̃k′,i′γ
∗
i′,j′

q̃i′
)

=
∑

i,i′∈D

n∑
k,k′=1

γ∗
i,jγ

∗
i,j′

q̃1i q̃i′
γ̃k,iγ̃k′,i′ −

∑
i,i′∈D

n∑
k,k′=1

γ̃k,iγ̃k′,i′γ
∗
i,jγ

∗
i′,j′

q̃1i q̃
1
i′

= 0

and thus we complete the proof.

H.3 Proof for the general case

H.3.1 Notation setup and related lemma

Suppose
gX(x, x′) = α0x

⊤x′, gY = αx⊤y′,∀x, x′ ∈ X,Y, y′ ∈ X.

Choose γ∗ ∈ Γ∗
≤,λ(X,Y). The barycentric projection mapping is

Tγ∗(x) :=

∫
y′dγ∗(y′|x′),∀x ∈ supp(µ).

We obtain: ν̃ := ν̃γ∗ = (Tγ∗)#µ, γ̃
∗ = (id× Tγ∗)#µ and we Ỹγ∗ := (X, gY , ν̃).
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Our goal is to show ν̃ is optimal in PGWλ(X, Ỹ). Equivalently, pick γ̃ ∈ Γ≤(µ, ν̃), we
need to show

C(γ̃∗;X,Y, λ) ≤ C(γ̃;X,Y, λ).

Set γ from (52):

γ = γ∗
Y |X γ̃∗

X|Y γ̃.

We have γ satisfies the following two lemma:

Lemma H.1. Choose γ∗ ∈ Γ≤(µ, ν), γ̃ ∈ Γ≤(µ, ν̃). Set ν̃ = (Tγ∗)#µ, then γ defined in (52)
satisfies the following:

(a) γ ∈ Γ≤((πX)#γ̃, (πY )#γ
∗) ⊂ Γ≤(µ, ν

1), furthermore:

(πX)#γ = (πX)#γ̃ (96)

(πY )#γ ≤ (πY )#γ
∗ (97)

(b) If γ̃ = γ̃∗, then γ = γ∗.

(c) Regarding the second marginal of γ, we have for each test function ϕX ∈ C0(X):∫
X

ϕY (y)dγY (y) =

∫
Y×X×Y×X

ϕY (y)dγ̃
∗(y|x0)dγ̃∗(x0|ỹ)dγ̃Y (ỹ). (98)

Proof.

(a) Note, in a discrete setting, this statement has been proved in (89),(90). Pick test
functions ϕX ∈ C0(X), ϕY ∈ C0(Y ) with ϕY ≥ 0, we have:

⟨ϕX , γ⟩ =
∫
X×Y

ϕX(x)dγ(x, y)

=

∫
X×Y

∫
X

∫
Y

ϕX(x)dγ∗(y|x0)dγ̃∗(x0|ỹ)dγ̃(x, ỹ)

=

∫
X×Y

ϕX(x)dγ̃(x, ỹ)

=

∫
X

ϕX(x)dγ̃X(x)

⟨ϕY , γY ⟩ =
∫
X×Y

ϕY (y)dγ(x, y)

=

∫
X×Y×X×Y

ϕY (y)dγ
∗(y|x0)dγ̃∗(x0|ỹ)dγ̃(x, ỹ)

=

∫
X×X

∫
X

∫
Y

ϕY (y)dγ
∗(y|x0)dγ̃∗(x0|ỹ)dγ̃Y (ỹ)

≤
∫
X×Y

∫
X

∫
Y

ϕY (y)dγ
∗(y|x0)dγ̃∗(x0|ỹ)dγ̃∗

Y (ỹ)

=

∫
X×Y

ϕY (y)dγ
∗(y|x0)dγ̃∗

X(x0)

=

∫
X×Y

ϕY (y)dγ
∗(y|x0)dγ∗

X(x0)

=

∫
Y

ϕY (y)dγ
∗
Y (y)

where the inequality holds from the fact γ̃Y ≤ γ̃∗
Y .
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(b) If γ̃ = γ̃∗, pick ϕ ∈ C0(X ×X), we have:

⟨ϕ, γ⟩ =
∫
X×Y

∫
X

∫
Y

ϕ(x, y)dγ∗(y|x0)dγ̃∗(x0|ỹ)dγ̃∗(ỹ|x)dγ̃∗
X(x)

=

∫
X×Y

∫
X

∫
Y

ϕ(x, y)dγ∗(y|x0)dγ̃∗
X(x)

=

∫
X×Y

∫
X

ϕ(x, y)dγ∗(y|x0)δ(x− x0)dγ∗
X(x)

=

∫
X×Y

ϕ(x, y)dγ∗(y|x)dγ∗
X(x)

=

∫
X×X

ϕ(x, y)dγ∗(x, y)

(c) It follows directly from the definition of γ.

H.3.2 Relation between PGWλ(X,Y) and PGWλ(X, Ỹ).

From (54),(57),(60),(61) and (62), we obtain:

C(γ̃∗;X, Ỹ, λ) = C(γ∗;X,Y, λ) + ⟨g2Y , (γ̃∗
Y )

⊗2⟩ − ⟨g2Y , (γ∗
Y )

⊗2⟩+ λ(|ν|2 − |ν̃|2) (99)

C(γ̃;X, Ỹ, λ) = C(γ;X,Y, λ) + ⟨g2Y , (γ̃Y )⊗2⟩ − ⟨g2Y , (γY )⊗2⟩+ λ(|ν|2 − |ν̃|2) (100)

From (99)-(100), we obtain

C(γ̃∗;X, Ỹ, λ)− C(γ̃;X, Ỹ, λ)
= (C(γ∗;X,Y, λ)− C(γ;X,Y, λ)) + ((γ̃∗)⊗2 − γ̃⊗2))(g2Y (ỹ, ỹ

′))− ((γ∗)⊗2 − γ⊗2)(g2Y (x, y
′))

≤ ⟨g2Y , (γ̃∗
Y )

⊗2 − (γ̃Y )
⊗2⟩︸ ︷︷ ︸

A

−⟨g2Y , (γ∗
Y )

⊗2 − γ⊗2
Y ⟩ (101)

where (101) holds from the fact γ∗ is optimal in PGWλ(X,Y).

In addition, pick ỹ, ỹ′ ∈ supp(γ̃∗
Y ), then for each x ∈ supp(γ̃∗(·1|y)), x′ ∈ supp(γ̃∗(·1|y′)), we

have:
ỹ = Tγ∗(x), ỹ′ = Tγ∗(x′).

Thus,

A =

∫
(X×Y )⊗2

∫
X⊗2

g2Y (Tγ∗(x0), Tγ∗(x0′))d(γ⊗2
X|Y )((x

0, x0′)|̃(y, ỹ′))d((γ̃∗
Y )

⊗2−(γ̃Y )
⊗2)((x, x′), (ỹ, ỹ′))

From Lemma E.2 and Jensen’s inequality

g2Y (Tγ∗(x0), Tγ∗(x0′))

=

(∫
Y ⊗2

gY (y, y
′)dγ∗(y|x0)dγ∗(y′|x′0′)

)2

≤
∫
Y ⊗2

g2Y (y, y
′)dγ∗(y|x0)dγ∗(y′|x′0′).

Combined it with the fact γ̃∗
Y ≤ γ̃Y (see Lemma H.1 (a)), we obtain

A ≤
∫
(X×Y )⊗2

∫
X⊗2

g2Y (y, y
′)dγ∗(y|x0)dγ∗(y′|x′0′)dγ̃∗(x0|y)dγ̃∗(x0′|y′)d

(
(γ̃∗

Y )
⊗2 − γ̃⊗2

Y )
)
((x, x′), (y, y′))

= ⟨g2Y , (γ∗)⊗2
Y |X(γ̃∗)⊗2

X|Y ((γ̃
∗
Y )

⊗2 − (γ̃Y )
⊗2)⟩. (102)
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Thus, we can continue bound (101):

(101) ≤ ⟨g2Y , (γ∗)⊗2
Y |X(γ̃∗)⊗2

X|Y ((γ̃
∗
Y )

⊗2 − (γ̃Y )
⊗2)⟩ − ⟨g2Y , (γ∗

Y )
⊗2 − γ⊗2

Y ⟩

= ⟨gY , (γ∗)⊗2
Y |X(γ̃∗)⊗2

X|Y (γ̃
∗
Y )

⊗2 − (γ∗
Y )

⊗2⟩︸ ︷︷ ︸
B1

− ⟨gY , (γ∗)⊗2
Y |X(γ̃∗)⊗2

X|Y (γ̃Y )
⊗2 − (γY )

⊗2⟩︸ ︷︷ ︸
B2

, (103)

where B2 = 0 from lemma H.1 (c) and B1 = B2 from lemma H.1(b). Therefore w, we
complete the proof.

H.4 Proof of proposition 3.3

The proposition is directly implied by definition (20) and Proposition 3.1 (3).

I Special Case: Linear Mass-Constrained Partial
Gromov-Wasserstein Distance

In this section, we introduce the linearization technique for the “mass-constraint” partial
Gromov-Wasserstein distance, which can be regarded as a special case of the proposed
LPGW distance.

Mass-constraint Partial Gromov-Wasserstein distance is defined as:

MPGWρ(X,Y) = inf
γ∈Γη

≤(µ,ν)

∫
(X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2dγ⊗, (104)

where η ∈ [0,min(|µ|, |ν1|)] is a fixed number.

Γη
≤(µ, ν) = {γ ∈ M+(X × Y ) : (πX)#γ ≤ µ, (πY )#γ ≤ ν, |γ| = η},

We use Γη
≤(X,Y1) to denote the set of all optimal transportation plans.

Consider the following gm-spaces X = (X, gX , µ),Y1 = (Y 1, gY 1 , ν1),Y2 = (Y 2, gY 2 , ν2),
given η ∈ [0,min(|ν1|, |ν2|) and we suppose |µ| = η. Choose γ1 ∈ Γη

≤(X,Y1), γ2 ∈ Γη
≤(X,Y2).

Suppose the Monge mapping assumption holds and let T 1, T 2 be the corresponding trans-
portation plan. We define

kγ1 : (·1, ·2) 7→ dX(·1, ·2)− dY 1(T1(·1), T1(·2))
as linear MPGW embedding of Y1 given γ1. kγ2 is defined similalry.

Thus, similar to (15) and (7), the linear M-PGW distance between Y1,Y2, given γ1, γ2 is
defined as

LMPGWη(Y1,Y2;X, γ1, γ2) := ∥kγ1 − kγ2∥2µ⊗2 . (105)

and similar to (7),(15), the general case without Monge mapping assumption is

LMPGWη(Y1,Y;X, γ1, γ2) := inf
γ∈Γη

≤(γ1,γ2;µ)

∫
(X×Y )⊗2

|gX − gY |2dγ⊗2, (106)

where Γρ
≤(γ

1, γ2;µ) := {γ ∈ M+(X × Y 1 × Y 2) : (πX,Y 1)#γ ≤ γ1, (πX,Y 2)#γ ≤ γ2, |γ| =
η}. And similar to (10),(20), by applying barycentric projection Tγ1 , Tγ2 , we define the
approximated linear-MPGW distance as follows:

aLMPGWη(Y1,Y2;X) := inf
γ1∈Γρ

≤(X,Y1)

γ2∈Γρ
≤(X,Y2)

LMPGW (Ŷ1, Ŷ2;X)

= inf
γ1∈Γρ

≤(X,Y1)

γ2∈Γρ
≤(X,Y2)

∫
X⊗2

|dY 1(Tγ1(x), Tγ1(x′)− dY 2(Tγ2(x), Tγ2(x′))|dµ⊗2. (107)

Similar to theorem 3.2, we have:
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Proposition I.1. Choose γ∗ ∈ Γρ,∗
≤ (X,Y), γ1 ∈ Γρ,∗

≤ (X,Y1), γ2 ∈ Γρ,∗
≤ (X,Y2), we have:

(1) linear MPGW embedding of Y1 can recover MPGW discrepancy between X and Y1,
i.e.

∥kγ∗∥2µ⊗2 = MPGWη(x).

In general, we have:

LMPGWη(X,Y; γ0, γ∗) := MPGWη(X,Y),∀γ0 ∈ Γη,∗
≤ (X,X).

(2) If Monge mapping assumption hold for γ1, γ2, then (106),(105) coincide.

(3) γ̂∗ = (id× Tγ∗)#µ is optimal for MPGWη(X, Ỹγ∗) = GW (X, Ỹγ∗).

(4) When λ is sufficiently large, we have:

LMPGWη(Y1,Y2;X) = LPGWλ(Y1,Y2;X)− λ(|ν1|2 + |ν2|2 − 2η2).

aLMPGWη(Y1,Y2;X) = aLPGWλ(Y1,Y2;X)− λ(|ν1|2 + |ν2|2 − 2η2).

(5) If |µ| = |ν1| = |ν2| = η = 1, LMPGWη, LGW coincide and aLMPGWη, aLGW
coincide.

Proof.

(1) If Monge mapping assumption holds for γ∗, i.e. γ∗ = (id× T )#µ, we have:

MPGWη(X,Y) =
∫
(X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2d(γ∗)⊗2

= ∥kγ∗∥2µ⊗2 .

Without Monge mapping assumption, pick γ0 ∈ Γη,∗
≤ (X,X), since |γ0| = η = |µ|,

we have γ0 ∈ Γ(µ, µ). Thus∫
(X×X)⊗2

|gX(x, x′)− gX(x0, x0′)|2d((γ0)2)⊗2 = MPGWη(X,X) = 0 = GW (X,X).

Therefore γ0 ∈ Γ∗(X,X).

Pick γ ∈ Γη
≤(γ

0, γ∗) = Γ(γ0, γ∗), by (49), we have∫
(X×X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2dγ⊗2

=

∫
(X×Y )⊗2

|gX(x, x′)− gY (y, y
′)|2d(γ∗)⊗2

= MPGWη(X,Y1;X, γ0, γ∗)

It holds for all γ ∈ Γη
≤(γ

0, γ∗), thus

LMPGWη(X,Y;X, γ0, γ∗) = MPGWη(X,Y∗).

(2) Under Monge mapping assumption, we have γ1 = (id× T 1)#µ
′, γ2 = (id× T 2)#µ

′′

for some mappings T 1, T 2, where µ′, µ′′ ≤ µ. Since |µ′| = |µ′′| = η = |µ|, then we
have µ′′ = µ′ = µ. Thus,

Γ≤(γ
1, γ2;µ) = {(id× T 1 × T 2)#µ

′, µ′ ≤ µ, |µ′| = η}
= {(id× T 1 × T 2)#µ}

and we have (106),(105) coincide.
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(3) Since η = |µ|, we have |ν̃γ1 | = |γ∗| = η = |µ|, thus

Γη
≤(µ, ν̃γ1) = Γ(µ, ν̃γ1).

Thus, MPGWη(X, Ỹγ∗) = GW (X, Ỹγ∗). Since γ∗ is optimal in MPGWη(X,Y) =
GW (X,Y), from Proposition 2.1, we have γ̃γ1 is optimal for GW (X,Yγ1) =

MPGWη(X, Ỹγ1) and we complete the proof.

(4) Since X,Y 1, Y 2 are compact, by Lemma E.2 in (Bai et al., 2024) when λ is suffi-
ciently large, for each γ1 ∈ Γ∗

≤,λ(X,Y1), γ2 ∈ Γ∗
≤,λ(X,Y2), we have |γ1| = |γ2| =

η = |µ|. By Proposition M.1. (Bai et al., 2024), we have γ1, γ2 are optimal for
MPGWη(X,Y1),MPGWη(X,Y2). That is

Γ∗
≤,λ(X,Y1) ⊂ Γη,∗

≤ (X,Y1),Γ∗
≤,λ(X,Y2) ⊂ Γη,∗

≤ (X,Y2).

For the other direction, pick γ1 ∈ Γη,∗
≤ (X,Y1), γ′ ∈ Γ∗

≤,λ(X,Y1). Thus |γ′| = η, and
we have

C(γ1;X,Y1, λ)

=

∫
(X×Y 1)⊗2

|gX(x, x′)− gY 1(y1, y1′)|2d(γ1)⊗2 + γ(|µ|2 + |ν1|2 − 2η2)

≤
∫
(X×Y 1)⊗2

|gX(x, x′)− gY 1(y1, y1′)|2d(γ′)⊗2 + γ(|µ|2 + |ν1|2 − 2η2)

= C(γ′;X,Y1, λ)

= PGWλ(X,Y1)

Thus, γ1 ∈ Γ∗
≤,λ(X,Y1).

Therefore,

Γ∗
≤,λ(X,Y1) = Γη,∗

≤ (X,Y1),Γ∗
≤,λ(X,Y2) = Γη,∗

≤ (X,Y2).

Pick γ1 ∈ Γ∗
≤,λ(X,Y1) = Γη,∗

≤ (X,Y1), γ2 ∈ Γ∗
≤,λ(X,Y2) = Γη,∗

≤ (X,Y2), we have

MLPGWη(Y1,Y2;X, γ1, γ2) = LPGWλ(Y1,Y2;X, γ1, γ2)− λ(|ν1|+ |ν2| − 2η2)

Take the infimum over all γ1, γ2, we obtain

MLPGWη(Y1,Y2;X) = LPGWλ(Y1,Y2;X)− λ(|ν1|2 + |ν2|2 − 2η2)

Similarly, we have

aMLPGWη(Y1,Y2;X) = aLPGWλ(Y1,Y2;X)− λ(|ν1|2 + |ν2|2 − 2η2) (108)

(5) In this case, we have Γη
≤(µ, ν

1) = Γ(µ, ν1),Γη
≤(µ, ν

2 = Γ(µ, ν2). Thus

Γη,∗
≤ (X,Y1) = Γ∗(X,Y1),Γη,∗

≤ (X,Y2) = Γ∗(X,Y2).

Thus LMPGW,LGW coincide, aLMPGW, aLGW coincide.

J Numerical implementation of LOT, LGW, LPGW distance.

LOT distance In previous sections, we introduce LOT distance (31), aLOT distance (34)
and its approximation formulation (35). Their relationship can be described as follows:

• LOT distance (31) is proposed to approximate OT distance.

• aLOT distance (34) is proposed to approxiamte LOT distance.
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(a) Shapes in ellipse dataset.

(b) Reference spaces.

Figure 2: In the first figure, we visualize the ellipse dataset (Beier et al., 2022). For each
ellipse shape X ⊂ Rn×2, we normalize the scaling of the shape such that maxi,i′∈[1:n] ∥X[i, :
] −X[i′, :]∥ = 1. The sizes of these shapes range from 90 to 650. In the second figure, we
visualize the reference spaces. In each shape, the color represents the value of the probability
mass at the corresponding location.
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• Formulation (35) is proposed to approximate aLOT distance.

However, in practice, it is not a multi-layer approximation. The distance LOT (31) and the
distance LOT (34) are only proposed for theoretical completeness and are not computation-
ally feasible. In practice, formulation (35),

∥Tγ1 − Tγ2∥L(µ),

is used to approximate OT distance between ν1 and ν2 and in most of the reference which
cite (Wang et al., 2013), (34) is refereed as LOT distance, the original formulation (31),(34)
are not mentioned.

A similar convention is adapted to LGW and LPGW.

LGW distance The relation between LGW distance (39), aLGW distance (10) and its
approximation formulation (11) can be described as follows:

• LGW distance (39) is proposed to approximate GW distance.

• aLGW distance (10) is proposed to approximate LGW distance.

• Formulation (11) is proposed to approximate aLGW distance.

Similarly, it is not a multi-layer approximation. LGW distance (39) and aLGW distance
(??) are only proposed for theoretical completeness and are not computationally feasible.
In practice, formulation (11),

|gY 1(Tγ1(·1), Tγ2(·2))− gY 2(Tγ2(·1), Tγ2(·2))|2L(µ⊗2),

is used to approximate GW distance.

LPGW distance The relation between LPGW distance (16), aLGW distance (20) and
its approximation formulation (22) can be described as follows:

• LPGW distance (16) is proposed to approximate PGW distance.

• aLGW distance (20) is proposed to approximate LPGW distance.

• Formulation (22) is proposed to approximate aLPGW distance.

Similarly, it is not a multi-layer approximation. LPGW distance (16) and aLGW distance
(20) are only proposed for theoretical completeness and are not computationally feasible.
In practice, formulation (22),

|gY 1(Tγ1(·1), Tγ2(·2))− gY 2(Tγ2(·1), Tγ2(·2))|2L((γ1
X∧γ2

X)⊗2) + λ(|ν|1 + |ν2|2 − 2|γ1
X ∧ γ2

X |2)

is used to approximate PGW distance.

K Details of Elliptical Disks Experiment

In this section, we present the details of the elliptical disks experiment.

Dataset and numerical setting details. The dataset we used is the ellipse dataset given
by (Beier et al., 2022), which consists of 100 distinct ellipses. Each ellipse is represented as
an n×2 matrix, where n ranges from 90 to 600. For reference shapes, we selected 9 different
2D shapes, including disks, squares, triangles, and others. See Figure 2 for a visualization
of the dataset and the reference spaces. In this experiment, each shape is modeled with an
empirical measure

∑n
i=1

1
nδxi

.

Performance analysis

We present the results in Table 4. As mentioned in the main text, LPGW is significantly
faster than PGW, as it requires only N = 100 PGW computations, while PGW requires(
N
2

)
computations. Furthermore, we observe that for some reference spaces (e.g., S5, S7,
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PGW S1 S2 S3 S4 S5 S6 S7 S8 S9

λ
points 441 676 625 52 289 545 882 882 317

0.05

time (mins) 45.34 0.86 3.8 3.08 0.66 0.63 1.43 1.89 2.1 0.69

MRE — 0.1982 0.1263 0.1428 0.6315 0.4732 0.1454 0.0394 0.0793 0.0245

PCC — 0.5774 0.5741 0.5884 0.5584 0.6514 0.7698 0.9303 0.8711 0.9944

0.08

time (mins) 43.86 1.02 3.33 3.55 0.34 0.99 1.25 1.29 1.55 1.22

MRE — 0.1941 0.1264 0.1431 0.2542 0.0705 0.0444 0.0205 0.0198 0.0245

PCC — 0.5781 0.5738 0.5881 0.8581 0.8741 0.993 0.9952 0.9954 0.9949

0.1

time (mins) 46.97 0.76 3.78 3.13 0.08 0.62 1.56 1.91 1.98 0.71

MRE — 0.1941 0.1264 0.1431 0.2542 0.0538 0.0444 0.0205 0.0198 0.0245

PCC — 0.5781 0.5738 0.5881 0.8581 0.9871 0.993 0.9952 0.9954 0.9949

0.5

time (mins) 44.77 0.74 3.68 3.02 0.08 0.61 1.51 1.89 1.98 0.69

MRE — 0.1932 0.1262 0.1428 0.2542 0.0538 0.0443 0.0205 0.0198 0.0246

PCC — 0.5779 0.5737 0.5879 0.8583 0.9871 0.993 0.9952 0.9953 0.9949

Table 4: In the first column, the values 0.05, 0.08, 0.1, 0.5, represent the selected λ values.
For each λ, the first row shows the wall-clock time for PGW and LPGW. The second and
third rows display the MRE (mean relative error) and PCC (Pearson correlation coefficient),
respectively.

S9), the MRE is relatively lower. Moreover, for most reference spaces, including S7, S8,
and S9, LPGW admits a PCC greater than 0.85. Finally, when λ is larger, the PCC tends
to be higher, and the MRE is lower across all reference spaces, as discussed further in the
next section. These results highlight the importance of the choice of reference space, as is
commonly the case for linear OT-based methods.

Relative error analysis Given ν1, ν2, . . . , νK and reference measure µ, the relative error
is defined as:

MRE =
1(
K
2

) ∑
i ̸=j

|PGW (νi, νj)− LPGW (νi, νj ;µ)|
PGW (νi, νj)

. (109)

Remark K.1. For numerical stability, when λ is small (i.e., λ = 0.05, 0.08), we remove the
PGW/LPGW distance whenever PGW ≤ 1 · 10−10 since 1 · 10−10 is the tolerance in the
PGW algorithm. In this case, PGW ≈ 1 · 10−10 and LPGW ≈ 1 · 10−11 which renders the
relative error uninformative.

We decompose this error into the following four aspects:

• The transportation plan induced by LPGW may not necessarily be the optimal
transportation plan for the PGW problem.

• In practice, we use the barycentric projected measure ν̂i to approximate νi for each
i. These two measures can be distinct, especially when the optimal transportation
plan is not generated by the Monge mapping.

• The solvers for both PGW and LPGW rely on the Frank-Wolfe algorithm. Due to
the non-convexity of these problems, the Frank-Wolfe algorithm may yield a local
minimizer instead of a global one. Therefore, the computed PGW transportation
plan might not be optimal.

• In practice, we approximate the original LPGW distance (16) (or (10)) using the
approximation formulation (22). This introduces a gap between the real LPGW
distance and the approximation.

It is important to note that the first issue arises from a theoretical perspective, while the
remaining aspects are due to the numerical implementation. The first two errors are also
present in other linear OT-based methods (Wang et al., 2013; Cai et al., 2022; Bai et al.,
2023; Beier et al., 2022). The third issue stems from the non-convexity of GW/PGW,
affecting both LGW and LPGW similarly. The final error is specific to LPGW due to the
approximation formulation used.

45



Published as a conference paper at ICLR 2025

In practice, several methods can be employed to reduce these errors. For example, the
dataset can be represented as empirical measures with equal mass at each point. This
approach is effective for unbalanced linear OT techniques (e.g., (Bai et al., 2023; Cai et al.,
2022)), as these methods do not require mass normalization. With high probability, this
will result in a Monge mapping, reducing the second error. Additionally, to minimize the
last error, as stated in Theorem 3.2, using a higher λ leads to a lower error, and when λ is
sufficiently large, this error becomes zero.

MDS visualization and analysis. We visualize the multi-dimensional scaling (MDS)
embeddings for both PGW and LPGW with respect to each reference space in Figure 3. We
observe that when λ is large (i.e. λ = 0.1, 0.5), LPGW with reference space S5,S6,S7,S8,S9
admit similar patterns. When λ = 0.05 or λ = 0.08, we observe LPGW with reference
S7,S8,S9 and PGW admit similar patterns. From this figure, we observe that S7,S8,S9
admit better performance than other reference spaces.

Summary. Although LPGW methods are subject to potential errors, the high PCC ob-
served between LPGW and PGW (when, e.g., the reference space is S7,S8,S9), suggests
that LPGW can serve as a good proxy for PGW, rather than simply as an approximation.
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(a) λ = 0.05

(b) λ = 0.08

(c) λ = 0.1

(d) λ = 0.5

Figure 3: MDS visualization for λ = 0.05, 0.08, 0.10, 0.50. Each subfigure shows the MDS
visualization for PGW and LPGW based on different reference spaces. In each figure, the
first subfigure in the first row is the MDS visualization of PGW.
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L Details of Shape Retrieval Experiment

(a) 2D Dataset

(b) 3D Dataset

Figure 4: Datasets for shape retrieval experiment.

Dataset details. We test two
datasets in this experiment: a 2D
dataset and a 3D dataset. The vi-
sualization of the two datasets is
presented in Figure 4.

In addition, for each shape X =
{x1, . . . xn}, we normalize the scal-
ing such that maxi ̸=j ∥xi−xj∥ = 1.
For the 3D dataset, we apply the
k-means clustering to reduce the
size of each shape to 500, from its
original size 2048.

Numerical details. We
represent the shapes in each
dataset as mm-spaces Xi =(
Rd, ∥ · ∥2, µi =

∑ni

k=1 α
iδxi

k

)
.

We use αi = 1
ni to compute

the GW/LGW distances for the
balanced mass constraint setting.

For the PGW/LPGW distances,
we set α = 1

N , where N is the
median number of points across all
shapes in the dataset.

For the SVM experiments, we
use exp(−σD) as the kernel for
the SVM model. Here, we normalize the matrix D and choose the best σ ∈
{0.001, 0.01, 0.1, 1, 5, 8, 10, 100} for each method used in order to facilitate a fair comparison
of the resulting performances. We note that the resulting kernel matrix is not necessarily
positive semidefinite.

Parameter selection for PGW and LPGW. The parameter λ for PGW and LPGW is
chosen as follows. For the 2D dataset, we set λ such that λ ≤ λmax = 1

2 maxi (|Ci|2) = 0.5,
since all shapes are normalized to a scale of 1. We perform a line search for λ over the set
{0.2, 0.3, 0.5} and select λ = 0.2 for both PGW and LPGW.

For the 3D dataset, we randomly select 2-3 shapes and compute the PGW distance between
these shapes and the reference space. We find that λmax ≈ 0.15. Thus, we conduct a line
search for λ over the range {0.02, 0.03, 0.05, 0.06, 0.070.08, 0.080.1, 0.15} and choose λ = 0.06
for both PGW and LPGW.

Reference space setting for LGW and LPGW. Similar to the classical OT method
(Wang et al., 2013), the ideal reference space should represent the “center” of the tested
measures. In practice, we typically use the GW barycenter (Peyré et al., 2016) or the PGW
barycenter (Bai et al., 2024).

For each dataset, we randomly select one point cloud from each class. Specifically, for
the 2D dataset, we select 8 shapes, and for the 3D dataset, we select 4 shapes. We then
compute the GW/PGW barycenter between these selected shapes. The wall-clock time for
this computation on the 2D dataset is about 10 seconds, and for the 3D dataset, it is about
5 minutes. For fairness in comparison, we apply the same reference space for both the LGW
and LPGW methods in all experiments.

Nearest neighbor classification. Once the pairwise distance matrices have been com-
puted between the shapes using each method, we use the computed distances for a nearest-
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(a) 2D Dataset.
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Figure 5: Confusion matrices computed from nearest neighbor classification experiments.

neighbor classification experiment. We choose a single representative at random from each
class in the dataset and classify each shape according to its nearest representative. This is
repeated over 10,000 iterations, and we generate a confusion matrix for each distance used.

Performance analysis. The pairwise distance matrices are visualized for each dataset in
Figure 7, and the confusion matrices from the nearest neighbor classification experiment
on each dataset are shown in Figure 5. Finally, the classification accuracy with the SVM
experiments is reported in Table 2. The results indicate that the LPGW distance is able to
obtain high performance across both data sets consistently.

Figure 6: We visualize the accuracy of
LPGW for different λ. For each λ, we
select the best σ to compute the accuracy.
We observe that when λ ≥ 0.08, LPGW
and LGW have the same accuracy.

From Figure 7, we observe that PGW and
LPGW qualitatively admit a more reasonable
similarity measure compared to the other consid-
ered methods. For example, on the 2D dataset,
class “bone” and “rectangle” should have a rel-
atively smaller distance than “bone” and “an-
nulus”. Ideally, a reasonable distance should
satisfy the following: 0 < d(bone, rectangle) <
d(bone, anulus). However, we do not observe this
relation in GW or LGW.

In the 3D dataset, the main challenge is the pres-
ence of incomplete shapes, which represent only
a part of the corresponding complete shape and
can have a large dissimilarity to each other. In
this experiment, we observe that PGW/LPGW
admits slightly better performance. We sus-
pect due the the unbalanced setting of these two
methods, these two methods are more robust to
the incomplete shape classification.
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(a) 2D Dataset.

(b) 3D Dataset.

Figure 7: Visualization of pairwise distance matrices resulting from each of the considered
methods: GW, PGW, LGW, and LPGW (ours). In (b), the label “inc. airplane” denotes
the incomplete airplane shape class, and similarly for each of the other 3 such classes.

Note that in this dataset all shapes have the same size. Thus, when λ is sufficiently large
(i.e. λ = 0.5), LPGW can recover the performance of LGW. We refer to Figure 6 for
visualization.

M Details of Learning with Transform-Based Embeddings
Experiment

Reference space. Similar to the shape retrieval experiment, for each class/digit, we select
one shape from the training set and compute the GW barycenter based on the selected
shapes. Note, in this step, the reference space we obtain is (M0 ∈ Rn0×n0 , p0), where
n0 ∈ N is the size of the reference space, M0 denotes the pairwise distance matrix, and p0 is
the PMF of the reference measure. Here, n0, p

0 are inputs to the GW barycenter algorithm,
and in this experiment, we set n0 to be the mean of the sizes of the selected shapes, and p0

is set to be p0 = 1
n0

1n0 .

However, M0 cannot be applied as reference space for the LOT method. Thus, we apply the
MDS method for M0 and obtain the supported points X0 = {x0

1, . . . x
0
n0
} of the reference

space, i.e.,

X = argmin
X

n∑
i=1

∥(M0)i,j − ∥xi − xj∥∥2,where xi = X[i, :],∀i.

We use (M0, p
0,
∑n

i=1 xi) as the reference space for LOT/LGW/LPGW. The wall-clock time
of barycenter computation is 26 seconds.

Numerical details. Note, since the goal of this experiment is to test the performance
of learning from embeddings under corruption by random rotation/flipping and noise, we
remove digits {5, 9} from the data since the rotated and flipped digit “2” is highly similar
to “5”. Similarly, rotated “6” is nearly identical to “9”.

The classification model we selected is the logistic regression model as provided by the scikit-
learn package. For the LOT and LGW methods, due to the balanced mass requirement, we
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Figure 8: We visualize the interpolation between two shapes using GW, PGW, LGW, and
LPGW. In the first column, the three shapes shown are the source shape, the target shape,
and the reference space used in LGW and LPGW. The target shape, digit “4”, is corrupted
by the addition of noise points, with a total mass of η = 0.3.

normalize the PMF of all shapes in the testing dataset. For LPGW, this normalization is
not applied.

Parameter setting for LPGW. Note that in this case, the training data is not cor-
rupted. Thus, we can set λ = λmax = 1

2 maxi C
2
i where Ci is the cost matrix for shape

i. In this experiment, we set λ = 40. In addition, to improve the computational speed
of LGW/LPGW, the augmented training data obtained by rotation and flipping is NOT
contained in these two methods since the rotated shape is equivalent to the original shape
in the setting of GW/PGW.

Performance analysis. The LOT method achieves 51.3% accuracy when η = 0. This
indicates that even with the addition of rotated/flipped data to the training set, the LOT
embedding method struggles to classify the rotated digits with high accuracy. In contrast,
LGW/LPGW achieve 82.5% accuracy, indicating that these two embedding techniques are
more robust to corruption by rotation/flipping.

When η ≥ 0.1, the accuracy of both LOT and LGW drops to 10-20%. However, we observe
that the LPGW embedding maintains a strong accuracy between 70% and 85%. This
demonstrates that the LPGW embedding is more robust to corrupted test data.

M.1 Toy Example: Point Cloud Interpolation

In this subsection, we select one shape from the training data and a noise-corrupted shape
from the testing data (with rotation and flipping removed). We demonstrate the inter-
polation between these two shapes using the GW barycenter (Peyré et al., 2016), PGW
barycenter (Bai et al., 2024), LGW geodesic (Beier et al., 2022), and our LPGW interpo-
lation. The goal is to intuitively visualize the LGW/LPGW embeddings for the reader’s
understanding.

Our method and baseline methods. Let X be the reference mm-space applied in the
classification experiment. Note, numerically, it can be described by (C0, X0, p0), where
p0 ∈ Rn0

+ is the PMF; n0 is the size of p0; X0 ∈ Rn0×2 is the set of 2D supported points;
and C0 = [∥X0

i −X0
j ∥2i,j∈[1:n0]

] is the corresponding cost matrix.

That is, we can use (C0, p0) to represent X3. Similarly, we use (C1, p1) and (C2, p2) to
represent the source and target mm-spaces (shapes).

3X0 is not required as C0 contains all the information of X0 in the GW/PGW problem.

51



Published as a conference paper at ICLR 2025

Now we introduce the GW barycenter method. For each time t ∈ {0, 1/6, . . . , 6/6 = 1}, we
solve the barycenter problem

C∗ = argmin
C∈Rn0×n0

(
(1− t)GW ((C, p0), (C1, p1)) + tGW ((C, p0), (C2, p2))

)
.

When t = 0, (C∗, p0) and (C1, p1) represent similar shapes. In fact, if p0 = p1, the two
shapes are identical. Similarly, if t = 1, (C∗, p1) is similar to the target (C2, p2). For
t ∈ (0, 1), (C∗, p0) represents an interpolation shape between the source shape (C1, p1) and
the target shape (C2, p2).

The PGW barycenter method is defined similarly.

In the LGW geodesic method, let
∑n

i=1 δŷ1
i
p0i denote the barycentric projection obtained

by γ, where γ is the optimal transportation plan for the GW problem between (C0, p0) and
(C1, p1). The numerical implementation of the LGW embedding is given by

E1 = C0 − [∥ŷ1i − ŷ1j ∥2]i,j∈[1:n0] ∈ Rn0×n0

(we refer to (5) for the original formulation). Similarly, we can define the LGW embedding
for the target shape (C2, p2), denoted as E2 ∈ Rn0×n0 .

Then for each t, the interpolation/geodesic of LGW is defined by

C0 + (1− t)E1 + tE2. (110)

For the LPGW interpolation method, the numerical LPGW embeddings E1, E2 ∈ Rn0×n0

are defined similarly, and we refer to (24) for details. We use (110) for the interpolation.

To visualize these interpolations, for each Ct, we adapt the MDS method, and the solution
Xt ∈ Rn0×2 is a point cloud. We visualize these point clouds in Figure 8.

Performance comparison. In this experiment, the size of these shapes is in the range
of 200–250. GW/PGW requires 230–270 seconds, while LGW/LPGW requires 1–2 seconds.
In Figure 8, we observe that the shapes generated by GW/LGW contain more noise points.
Additionally, at times such as t = 3/6 and t = 4/6, the generated shapes are difficult to
distinguish due to the noise points.

In contrast, the shapes generated by the PGW/LPGW methods contain significantly fewer
noise points.

Note that at t = 0 and t = 1, the shapes generated by the LGW/LPGW methods can be
treated as visualizations of the corresponding embeddings for the source shape (C1, p1) and
target shape (C2, p2), respectively.

M.2 Other baselines OT/GW/PGW

Note that OT, GW, and PGW methods cannot be directly applied to this experiment since
we use a linear model (logistic regression) as the classifier. However, we can adapt the
kernel-SVM methods described in the shape retrieval experiment for this classification task
as well. The primary distinction between these three methods and LOT, LGW, and LPGW
lies in their computational complexity.

Suppose Ntrain and Ntest represent the sizes of the training and testing datasets, respectively.
Let n and d denote the average size and dimension of all the point clouds or digits. Addi-
tionally, let N represent the average number of iterations required by the FW algorithms
for GW and PGW.

The computational cost of these methods is summarized as follows:

In methods OT and LOT, the term (n3 + n2d) refers to the complexity of computing one
OT distance, while nd represents the complexity of computing one LOT distance given two
embeddings.
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Method Training Process Testing Process

OT O(N2
train · (n3 + n2d)) O(NtrainNtest(n

3 + n2d))
LOT O(Ntrain · (n3 + n2d)) O(Ntest · (n3 + n2d) +NtestNtrain · (nd))
GW O(N2

train · (n3N + n2d)) O(NtestNtrain · (n3N + n2d))
LGW O(Ntrain(n

3N + n2d)) O(Ntest(n
3N + n2d) +NNtesttrain · (n2))

PGW O(N2
train · (n3N + n2d)) O(NtestNtrain · (n3N + n2d))

LPGW O(Ntrain(n
3N + n2d)) O(Ntest(n

3N + n2d) +NtestNtrain(n
2))

Table 5: Computational complexity of different methods.

Similarly, in methods GW and LGW, the term (n3N + n2d) refers to the computational
complexity of computing one GW distance, and the term (n2) represents the complexity of
computing one LGW distance given two embeddings.

The complexities for PGW and LPGW follow a similar pattern.

In this experiment, Ntrain = 8000 and Ntest = 1000. OT-based methods require approx-
imately 50 hours (2–3 days) to train the model, while GW and PGW require about 400
hours (over 15 days). In contrast, LOT, LGW, and LPGW take only 3–5 minutes.

N Complemental results MNIST classification experiment

Data reconstruction. We visualize the reconstructed digits using LOT, LGW, and
LPGW embeddings under two settings: η = 0 and η = 0.2 (See figure 1b). When the
data is not corrupted by noise points (η = 0), the reconstructed digits from all methods
closely resemble the original data. However, when 20% of noise points are added (η = 0.2),
LPGW’s reconstructed digits effectively exclude most of the noise points. In contrast,
the embeddings produced by OT and LGW retain information from the noisy data. This
demonstrates that the LPGW embedding leverages the partial matching property of PGW,
ensuring that most of the noise points are excluded during the embedding process. This
explains the robustness of LPGW embeddings to noise corruption.

t-SNE. From the figure 9, we can observe that when η ≥ 0.1, LPGW embeddings show
greater separability than those of LOT or LGW.

O Compute Resources

All experiments presented in this paper are conducted on a computational machine with an
AMD EPYC 7713 64-Core Processor, 8 × 32GB DIMM DDR4, 3200 MHz, and an NVIDIA
RTX A6000 GPU.
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Figure 9: t-SNE visualization of embeddings. In the first column, the label “orig” indicates
the experimental results for the original testing dataset without random rotations/flips or
noise. In the remaining columns, random rotations/flips are applied to the testing data,
and η denotes the total mass of noise points.
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