
Contents

1 Introduction 1

2 Identifying Target Joint Distribution with Data Generation Process 2

2.1 Data Generation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Identifying the Target Joint Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Subspace Identifiability for Latent Variables 3

4 Subspace Identification Guarantee Model 5

4.1 Variational-Inference-based Neural Architecture . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Class-aware Conditional Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Experiments 6

5.1 Experiments on Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2 Experiments on Real-world Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Conclusion 9

7 Acknowledgements 10

A Identify Target Joint Distribution 17

B Proof of the Identification of latent variables 17

B.1 Proof of Subspace Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Proof of Corollary1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.3 Proof of Blockwise Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C Implementation Details 24

D Experiments 25

D.1 Simulation Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.1.1 Model Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D.1.2 Training Hyper-parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.2 Real-world Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.2.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D.2.2 More Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E Sensitive Analysis of Hyper-parameters 26

F Visualization 27

G Related Works 27

16



G.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

G.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Identify Target Joint Distribution

We show how to derive the conditions of identifying the target joint distribution with the help of the
proposed data generation process, which is shown in Equation (10).

px,y|uT

(1)
=

∫
z1

∫
z2

∫
z3

∫
z4

px,y,z1,z2,z3,z4|uT dz1dz2dz3dz4

(2)
=

∫
z1

∫
z2

∫
z3

∫
z4

px,z1,z2,z3,z4|y,uT · py|uT dz1dz2dz3dz4

(3)
=

∫
z1

∫
z2

∫
z3

∫
z4

px|z1,z2,z3,z4
· pz1,z2,z3,z4|y,uT · py|uT dz1dz2dz3dz4.

(10)

The derivation in Equation (10) can be separated into three steps. (1) We introduce the latent variables
z1, z2, z3, and z4, which have mentioned in Section 2.1. (2) We factorize the joint distribution in
(1) into px,z1,z2,,z3,,z4|y,uT and py|uT with the help of Bayes Rule. (3), we further use Bayes Rule
to factorize px,z1,z2,,z3,,z4|y,uT . Since x is independent of u,y given z1, z2, , z3, , z4, we can obtain
px|z1,z2,,z3,,z4

.

The aforementioned factorization tells us that we need to model three distributions to identify the
target joint distribution. First, we need to model px|z1,z2,z3,z4

, implying that we need to model the
conditional distribution of observed data give latent variables, which coincides with a generative
model for observed data. Second, we need to estimate the label pseudo distribution of target domain
py|uT . Third, we need to model pz1,z2,z3,z4|y,uT meaning that the latent variables should be identified
with theoretical guarantees. In the next section, we will introduce how to identify these latent variables
with subspace identification block-wise identification results.

B Proof of the Identification of latent variables

B.1 Proof of Subspace Identification

௦ ௖

Figure 5: A simple data generalization process for introducing subspace identification.

In this subsection, we provide proof of the subspace identification based on the data generation
process in Figure 5.
Theorem 3. (Subspace Identification of zs.) We follow the data generation process in Figure 5 and
make the following assumptions:

• A1 (Smooth and Positive Density): The probability density function of latent variables is smooth
and positive, i.e., pz|u > 0 over Z and U .

• A2 (Conditional independent): Conditioned on u, each zi is independent of any other zj for
i, j ∈ {1, · · · , n}, i ̸= j, i.e. log pz|u(z|u) =

∑n
i qi(zi,u) where qi(zi,u) is the log density of

the conditional distribution, i.e., qi : log pzi|u.
• A3 (Linear independence): For any zs ∈ Zs ⊆ Rns , there exist ns + 1 values of u, i.e., uj with
j = 0, 1, · · · , ns, such that these ns vectors w(z,uj)−w(z,u0) with j = 1, · · · , ns are linearly

17



independent, where vector w(z,uj) is defined as follows:

w(z,u) =

(
∂q1(z1,u)

∂z1
, · · · , ∂qi(zi,u)

∂zi
, · · · ∂qns(zns ,u)

∂zns

)
, (11)

By modeling the aforementioned data generation process, zs is subspace identifiable.

Proof. We begin with the matched marginal distribution px|u to bridge the relation between z and ẑ.
Suppose that ĝ : Z → X is a invertible estimated generating function, we have Equation (12).

∀u ∈ U , px̂|u = px|u ⇐⇒ pĝ(ẑ)|u = pg(z)|u. (12)

Sequentially, by using the change of variables formula, we can further obtain Equation (13)

pĝ(ẑ|u) = pg(z|u) ⇐⇒ pg−1◦g(ẑ)|u|Jg−1 | = pz|u|Jg−1 | ⇐⇒ ph(ẑ)|u = pz|u, (13)

where h := g−1 ◦ g is the transformation between the ground-true and the estimated latent variables,
respectively. Jg−1 denotes the absolute value of Jacobian matrix determinant of g−1. Since we
assume that g and ĝ are invertible, |Jg−1 | ≠ 0 and h is also invertible.

According to A2 (conditional independent assumption), we can have Equation (14).

pz|u(z|u) =
n∏

i=1

pzi|u(zi|u); pẑ|u(ẑ|u) =
n∏

i=1

pẑi|u(ẑi|u). (14)

For convenience, we take logarithm on both sides of Equation (14) and further let qi :=
log pzi|u, q̂i := log pẑi|u. Hence we have:

log pz|u(z|u) =
n∑

i=1

qi(zi,u); log pẑ|u =

n∑
i=1

q̂i(ẑi,u). (15)

By combining Equation (15) and Equation (13), we have:

pz|u = ph(ẑ|u) ⇐⇒ pẑ|u = pz|u|Jh−1 | ⇐⇒
n∑

i=1

qi(zi,u) + log |Jh−1 | =
n∑

i=1

q̂i(ẑi,u), (16)

where Jh−1 are the Jacobian matrix of h−1.

Sequentially, we take the first-order derivative with ẑj on Equation (16), where j ∈ {ns + 1, · · · , n},
and have

n∑
i=1

∂qi(zi,u)

∂zi
· ∂zi
∂ẑj

+
∂ log |Jh−1 |

∂ẑj
=

∂qj(ẑj ,u)

∂ẑj
. (17)

Suppose u = u0, u1, · · · , uns
, we subtract the Equation (17) corresponding to uk with that corre-

sponds to u0, and we have:
n∑

i=1

(
∂qi(zi, uk)

∂zi
− ∂qi(zi, u0)

∂zi

)
· ∂zi
∂ẑj

=
∂q̂j(ẑj , uk)

∂ẑj
− ∂q̂j(ẑj , u0)

∂ẑj
. (18)

Since the distribution of estimated ẑj does not change across different domains, ∂q̂j(ẑj ,uk)
∂ẑj

−
∂q̂j(ẑj ,u0)

∂ẑj
= 0. Since ∂qi(zi,uk)

∂zi
does not change across different domains, ∂qi(zi,uk)

∂zi
= ∂qi(zi,u0)

∂zi

for i ∈ {ns + 1, · · · , n}. So we have
ns∑
i=1

(
∂qi(zi, uk)

∂zi
− ∂qi(zi, u0)

∂zi

)
· ∂zi
∂ẑj

= 0. (19)

Based on the linear independence assumption (A3), the linear system is a ns × ns full-rank system.
Therefore, the only solution is ∂zi

∂ẑj
= 0 for i ∈ {1, · · · , ns} and j ∈ {ns + 1, · · · , n}.

18



Since h(·) is smooth over Z , its Jacobian can be formalized as follows

Jh =

[
A := ∂zs

∂ẑs
B := ∂zs

∂ẑc

C := ∂zc

∂ẑs
D := ∂zc

∂ẑc
.

]
(20)

Note that ∂zi
∂ẑj

= 0 for i ∈ {1, · · · , ns} and j ∈ {ns + 1, · · · , n} means that B = 0. Since h(·) is
invertible, Jh is a full-rank matrix. Therefore, for each zs,i, i ∈ {1, · · · , ns}, there exists a hi such
that zs,i = hi(ẑ).

B.2 Proof of Corollary1.1

Corollary 3.1. We follow the data generation in Section 3.1, and make the following assumptions
which are similar to A1-A3:

A4 (Smooth and Positive Density): The probability density function of latent variables is smooth and
positive, i.e., pz|u,y > 0 over Z , U , and Y .

A5 (Conditional independent): Conditioned on u and y, each zi is independent of any other zj
for i, j ∈ {1, · · · , n}, i ̸= j, i.e. log pz|u,y(z|u,y) =

∑n
i qi(zi,u,y) where qi(zi,u,y) is the log

density of the conditional distribution, i.e., qi : log pzi|u,y.

A6 (Linear independence): For any z ∈ Z ⊆ Rn, there exists n1 + n2 + n3 + 1 combination of
(u,y), i.e. j = 1, · · · , U and c = 1, · · · , C and U ×C +1 = n1 + n2 + n3, where U and C denote
the number of source domains and the number of labels. such that these n′ = n1 + n2 + n3 vectors
w(z,uj ,yc)−w(z,u0,y0) are linearly independent, where w(z,uj ,yc) is defined as follows:

w(z,uj ,yc) =

(
∂q1(z1,u,y)

∂z1
, · · · , ∂qi(zi,u,y)

∂zi
, · · · ∂qn

′(zn′ ,u,y)

∂zn′

)
. (21)

By modeling the aforementioned data generation process, z2 is subspace identifiable, and z1, z3 can
be reconstructed from ẑ1, ẑ2 and ẑ2, ẑ3, respectively.

Proof. We begin with the match marginal distribution px|u,y to bridge the relation between z and ẑ.
Suppose that ĝ : Z → X is an invertible estimated generating function, we have Equation (22).

∀u ∈ U ,y ∈ Y, px̂|u,y = px|u,y ⇐⇒ pĝ(ẑ)|u,y = pg(z)|u,y. (22)

Sequentially, by using the change of variables formula, we can further obtain Equation(23).

pĝ(ẑ)|u,y = pg(z)|u,y ⇐⇒ pg−1◦g(ẑ)|u,y|Jg−1 | = pz|u,y|Jg−1 | ⇐⇒ ph(ẑ)|u,y = pz|u,y, (23)

where h := g−1 ◦ g is the transformation between the ground-true and the estimated latent variables.
Jg−1 denotes the absolute value of Jacobian matrix determinant of g−1. Since we assume that g and
ĝ are invertible, |Jg−1 | ≠ 0 and h is also invertible.

According to A5 (conditional independent assumption), we can have Equation (24).

pz|u,y(z|u,y) =
n∏

i=1

pzi|u,y(zi|u,y); pẑ|u,y(ẑ|u,y) =
n∏

i=1

pẑi|u,y(ẑi|u,y). (24)

For convenience, we take logarithms on both sides of the Equation(24) and further let qi :=
log pzi|u,y, q̂i := log pẑi|u,y. Hence we have:

log pz|u,y(z|u,y) =
n∑

i=1

qi(zi,u,y); log p ˆz,y|u =

n∑
i=1

q̂i(ẑi,u,y). (25)

By combining Equation (25) and Equation (23), we have:

pz|u,y = ph(ẑ|u,y) ⇐⇒ pẑ|u,y = pz|u,y|Jh−1 | ⇐⇒
n∑

i=1

qi(zi,u,y)+log |Jh−1 | =
n∑

i=1

q̂i(ẑi,u,y),

(26)

19



where Jh−1 are the Jacobian matrix of h−1.

Sequentially, we take the first-order derivative with ẑj on Equation (26), where j ∈ {n1 + n2 + n3 +
1, · · · , n}, and have

n∑
i=1

∂qi(zi,u,y)

∂zi
· ∂zi
∂ẑj

+
∂ log |Jh−1 |

∂ẑj
=

∂qj(ẑj ,u,y)

∂ẑj
. (27)

According to A6, there exist n1 + n2 + n3 + 1 conbinations of (u,y), so we subtract the Equation
(27) to uk,yl with that corresponds to u0,y0, and we have:

n∑
i=1

(
∂qi(zi, uk,yl)

∂zi
− ∂qi(zi, u0,y0)

∂zi

)
· ∂zi
∂ẑj

=
∂q̂j(ẑj , uk,yl)

∂ẑj
− ∂q̂j(ẑj , u0,y0)

∂ẑj
. (28)

Since the distribution of estimated ẑj does not change across different domains and labels,
∂q̂j(ẑj ,uk,yl)

∂ẑj
− ∂q̂j(ẑj ,u0,y0)

∂ẑj
= 0. Since ∂qi(zi,uk,yl)

∂zi
does not change across different domains,

∂qi(zi,uk,yl)
∂zi

= ∂qi(zi,u0,y0)
∂zi

for i ∈ {1, · · · , n1 + n2 + n3}. So we have:

n1+n2+n3∑
i=1

(
∂qi(zi, uk,yl)

∂zi
− ∂qi(zi, u0,y0)

∂zi

)
· ∂zi
∂ẑj

= 0. (29)

Based on the linear independence assumption (A3), the linear system is a n × n full-rank system.
Therefore, the only solution is zi

ẑj
= 0 for i ∈ {1, · · · , n1 + n2 + n3} and j ∈ {n1 + n2 + n3 +

1, · · · , n}.

Since h(·) is smooth over Z , its Jacobian can be formalized as follows

Jh =


J1,1
h J1,2

h J1,3
h J1,4

h

J2,1
h J2,2

h J2,3
h J2,4

h

J3,1
h J3,2

h J3,3
h J3,4

h

J4,1
h J4,2

h J4,3
h J4,4

h

 (30)

where J ij := ∂zi

∂ẑj
and i, j ∈ {1, 2, 3, 4}.

Since zi
ẑj

= 0 for i ∈ {1, · · · , n1 +n2 +n3} and j ∈ {n1 +n2 +n3 +1, · · · , n}, J3,4
h = 0,J2,4

h =

0,J1,4
h = 0.

we take the first-order derivative with ẑj on Equation (26), where j ∈ {n1 + n2 + 1, · · · , n}, and
have

n∑
i=1

∂qi(zi,u,y)

∂zi
· ∂zi
∂ẑj

+
∂ log |Jh−1 |

∂ẑj
=

∂qj(ẑj ,u,y)

∂ẑj
. (31)

Then we fix the value of y be y0, so there exist U combinations of (u,y0). We subtract the Equation
(31) corresponds to (uk,y0) with that corresponds to (u0,y0) and have:

n∑
i=1

(
∂qi(zi, uk,y0)

∂zi
− ∂qi(zi, u0,y0)

∂zi

)
· ∂zi
∂ẑj

=
∂q̂j(ẑj , uk,y0)

∂ẑj
− ∂q̂j(ẑj , u0,y0)

∂ẑj
. (32)

Since the distribution of estimated ẑj does not change across different domains, ∂q̂j(ẑj ,uk,y0)
∂ẑj

−
∂q̂j(ẑj ,u0,y0)

∂ẑj
= 0. Since ∂qi(zi,uk,y0)

∂zi
does not change across different domains, ∂qi(zi,uk,y0)

∂zi
=

∂qi(zi,u0,y0)
∂zi

for i ∈ {1, · · · , n1 + n2}. So we have:

n1+n2∑
i=1

(
∂qi(zi, uk,y0)

∂zi
− ∂qi(zi, u0,y0)

∂zi

)
· ∂zi
∂ẑj

= 0. (33)

20



Based on the linear independence assumption (A3), the linear system is a n × n full-rank system.
Therefore, the only solution is zi

ẑj
= 0 for i ∈ {1, · · · , n1 + n2} and j ∈ {n1 + n2 + 1, · · · , n}.

Combining Equation (30), we can find that J1,3
h = 0,J1,4

h = 0,J2,3
h = 0, and J2,4

h = 0.

Similarly, we let j ∈ {1, · · · , n1}
⋃
{n1 + n2 + n3 + 1, · · · , n} and have:

n∑
i=1

∂qi(zi,u,y)

∂zi
· ∂zi
∂ẑj

+
∂ log |Jh−1 |

∂ẑj
=

∂qj(ẑj ,u,y)

∂ẑj
. (34)

Then fix the value of u be u0, so there exist C combinations of (u0,yl). We subtract the Equation
(34) corresponds to (u0,yl) with that corresponds to (u0,y0) and have:

n1+n2+n3∑
i=n1+1

(
∂qi(zi, u0,yl)

∂zi
− ∂qi(zi, u0,y0)

∂zi

)
· ∂zi
∂ẑj

=
∂q̂j(ẑj , u0,yl)

∂ẑj
− ∂q̂j(ẑj , u0,y0)

∂ẑj
. (35)

Based on the linear independence assumption (A3), the linear system is a n × n full-rank system.
Therefore, the only solution is zi

ẑj
= 0 for i ∈ {n1+1, · · · , n1+n2+n3} and j ∈ {1, · · · , n1}

⋃
{n1+

n2 + n3 + 1, · · · , n}. Combining Equation (30), we can find that J2,1
h = 0,J2,4

h = 0,J3,1
h = 0, and

J3,4
h = 0.

In summary, Equation (30) can be written as follows

Jh =


J1,1
h J1,2

h J1,3
h = 0 J1,4

h = 0

J2,1
h = 0 J2,2

h J2,3
h = 0 J2,4

h = 0

J3,1
h = 0 J3,2

h J3,3
h J3,4

h = 0

J4,1
h J4,2

h J4,3
h J4,4

h

 . (36)

Since h(·) is invertible, Jh is a full-rank matrix. Therefore, for each z2,i, i ∈ {n1 +1, · · · , n1 + n2},
there exists a h2,i such that z2,i = hi(ẑ2). Moreover, for each z1,i, i ∈ {1, · · · , n1 + 1}, there exists
a h1,i such that z1,i = h1,i(ẑ1, ẑ2). And for each z3,i, i ∈ {n1 + n2 + 1, · · · , n1 + n2 + n3}, there
exists a h3,i such that z3,i = h3,i(ẑ2, ẑ3).

B.3 Proof of Blockwise Identification

Lemma 4. [30] Following the data generation process in Section 2.1 and the assumptions A4-A6 in
Theorem 3, we further make the following assumption:

• A7 (Domain Variability: For any set Az ⊆ Z) with the following two properties: 1) Az has nonzero
probability measure, i.e. P[z ∈ Az|{u = u′,y = y′}] > 0 for any u′ ∈ U and y′ ∈ Y . 2) Az

cannot be expressed as Bz4
×Z1 ×Z2 ×Z3 for any Bz4

⊂ Z4.

∃u1,u2 ∈ U and y1,y2 ∈ Y , such that
∫
z∈Az

pz|u1,y1
dz ̸=

∫
z∈Az

pz|u2,y2
dz. By modeling the data

generation process in Section 2.1, the z4 is block-wise identifiable.

Proof. We divide the proof into four steps for better understanding.

In Step 1, we leverage the properties of the data generation process and the marginal distribution
matching condition to express the marginal invariance with the indeterminacy transformation h :
Z → Z between the estimated and the ground-truth latent variables. The introduction of h(·) allows
us to formalize the block-identifiability condition.

In Step 2 and Step 3, we show that the estimated ẑ4 does not depend on the ground-truth changing
variables, i.e., z1, z2, z3, that is, h4(z) does not depend on the input {z1, z2, z3}. To this end, in Step
2, we derive its equivalent statements which can ease the rest of the proof and avert technical issues
(e.g. sets of zero probability measures). In Step 3, we prove the equivalent statement by contradiction.
Specifically, we show that if ẑ4 depends of z1, z2, z3, the invariance derived in Step 1 would break.

In Step 4, we use the conclusion in Step 3, the smooth and bijective properties of h(·), and the
conclusion in Corollary 1.1, to show the invertibility of the indeterminacy function between the
ground-truth z4 and estimated ẑ4, i.e. the mapping ẑ4 = h4(z4) being invertible.

21



Step 1. As the data generation process in Section 2.1 establishes the independence between the
generation process ẑ4 ∼ pẑ4

and u it follows that for any Az4 ⊆ Z4, we let ns = n1 +n2 +n3, then
we have:

∀u1,u2 ∈ U ,y1,y2 ∈ Y
P
[
{ĝ−1

ns:n(x̂) ∈ Az4}|{u = u1,y = y1}
]
= P

[
{ĝ−1

ns:n(x̂) ∈ Az4}|{u = u2,y = y2}
]

⇐⇒
∀u1,u2 ∈ U ,y1,y2 ∈ Y
P
[
x̂ ∈ (ĝ−1

ns:n)
−1(Az4

)|{u = u1,y = y1}
]
= P

[
x̂ ∈ (ĝ−1

ns:n)
−1(Az4

)|{u = u2,y = y2}
]
,

(37)

where ĝ−1
ns:n : X → Z4 denotes the estimated transformation from the observation to the z4 latent

variables; and (ĝ−1
ns:n)

−1(Az4
) ⊆ X is the pre-image set of Az4

, that is , the set of estimated
observations x̂ originating from z4 in Az4

.

Because of the matching observation distributions between the estimated model and the true model,
the relation in the Equation (37) can be extended to observation x from the true generating process,
i.e.,

P
[
{x ∈ (ĝ−1

ns:n)
−1(Az4)}|{u = u1,y = y1}

]
= P

[
{x ∈ (ĝ−1

ns:n)
−1(Az4)}|{u = u2,y = y2}

]
⇐⇒

P
[
{ĝ−1

ns:n(x) ∈ Az4}|u = u1,y = y1

]
= P

[
{ĝ−1

ns:n(x) ∈ Az4}|u = u2,y = y2

]
.

(38)

Since g and ĝ are smooth and injective, there exists a smooth and injective h = ĝ−1 ◦ g : Z → Z .
We note that by definition h = h where h is introduced in the proof of Theorem 3. Expressing
ĝ−1 = h ◦ g−1 and h4(·) := hns:n(·) : Z → Z4 in Equation (38) yields

P
[
{h4(z) ∈ Az4

}|{u = u1,y = y1}
]
= P

[
{h4(z) ∈ Az4

}|{u = u2,y = y2}
]

⇐⇒

P
[
{z ∈ h

−1

4 (Az4
)}|{u = u1,y = y1}

]
= P

[
{z ∈ h

−1

4 (Az4
)}|{u = u2,y = y2}

]
⇐⇒∫

z∈h
−1
4 (Az4 )

pz|u,y(z|u1,y1)dz =

∫
z∈h

−1
4 (Az4 )

pz|u,y(z|u2,y2)dz,

(39)

where h
−1

4 (Az4
) = {z ∈ Z : h4(z) ∈ Az4

} is the pre-image of Az4
, i.e., those latent variables

containing z4 in Az4
after the indeterminacy transformation h.

Based on the proposed generation process in Section 2.1, we rewrite Equation (39) as follows:

∀Az4
⊆ Z4,∫

[z⊤
1 ,z⊤

2 ,z⊤
3 ,z⊤

4 ]⊤∈h
−1
4 (Az4 )

pz4
(z4)(pz1,z2,z3|u,y(z1, z2, z3|u1,y1)

− pz1,z2,z3|u,y(z1, z2, z3|u2,y2))dz1dz2dz3dz4 = 0

(40)

Step 2.In order to show the block-identifiability of z4, we would like to prove that zc :=
h([z⊤1 , z

⊤
2 , z

⊤
3 , z

⊤
4 ]

⊤) does not depend on z1:ns . To this end, we first develop one equivalent state-
ment (i.e., State 3 below) and prove it in a later step instead. By doing so, we are able to leverage the
full-support density function assumption to avert technical issues.

• Statement 1: h4([z
⊤
1 , z

⊤
2 , z

⊤
3 , z

⊤
4 ]

⊤) does not depend on z1:ns

• Statement 2: ∀z4 ∈ Z4, it follows that h
−1

4 = Bz4 × Z1 × Z2 × Z3 where Bz4 ̸= ∅ and
Bz4

⊆ Z4.

• Statement 3: ∀z4 ∈ Z4, r ∈ R+, it follows that h
−1

4 (Br(z4)) = B+
z4
×Z1×Z2×Z3 where

Br(z4) := {z′4 ∈ Z4 : ||z′4 − z4||2 < r}, B+
z4

̸= ∅, and B+
z4

⊆ Z4.

22



Statement 2 is a mathematical formulation of Statement 1. Statement 3 generalizes singletons z4
in Statement 2 to open, non-empty balls Br(z4). Later, we use Statement 3 in Step 3 to show the
contraction to Equation (40).

Leveraging the continuity of h4(·), we can show the equivalence between Statement 2 and Statement
3 as follows. We first show that Statement 2 implies Statement 3. ∀z4, r ∈ R+, h

−1

c (B(z4)) =⋃
z′
4∈Br(z4)

h−1
4 (z′4). Statement 2 indicates that every participating sets in the union satisfies

h−1
4 (z′4) = B′

z4
×Z1 ×Z2 ×Z3, thus the union h

−1

c (Br(z4)) also satisfies this property, which is
Statement 3.

Then, we show that Statement 3 implies Statement 2 by contradiction. Suppose that Statement
2 is false, then ∃ẑ4 ∈ Z4 such that there exist ẑB4 ∈ {zns:n : z ∈ h

−1

4 (ẑ4)} and ẑBns
∈ Zns

resulting in h4(ẑ
B) ̸= ẑ4 where ẑB = [(ẑB4 )⊤, (ẑBns

)⊤]⊤. As h4(·) is continuous, there exists
r̂ ∈ R+ such that h4(ẑ

B) /∈ Br̂(ẑ4). That is, ẑB /∈ h−1
4 (Br̂(ẑ4)). Also, Statement 4 suggests

that h−1
4 (Br̂(ẑc)) = B̂z4

× Zns
. By definition of ẑB , it is clear that ẑBns:n ∈ B̂z4

. The fact that
ẑB /∈ h−1

4 (Br̂(ẑ4)) contradicts Statement 3. Therefore, Statement 2 is true under the premise of
Statement 3. We have shown that Statement 3 implies Statement 2. In summary, Statement 2 and
Statement 3 are equivalent, and therefore proving Statement 3 suffices to show Statement 1.

Step 3. In this step, we prove State 3 by contradiction. Intuitively, we show that if h4(·) depended on
ẑ1, ẑ2, ẑ3, the preimage h

−1

4 (Br(z4)) could be partitioned into two parts (i.e. B∗
z and h

−1

4 (A∗
z4
)\B∗

z

defined below). The dependency between h4(·) and ẑ4 is captured by B∗
z , which would not emerge

otherwise. In contrast, h
−1

4 \B∗
z also exists when h4(·) does not depend on ẑ1, ẑ2, ẑ3. We evaluate the

invariance relation Equation (40) and show that the integral over h
−1

4 (A∗
z4
)\B∗

z is always 0, however,
the integral over B∗

z is necessarily non-zero, which leads to the contraction with Equation (40) and
thus show the h4(·) cannot depend on ẑ1, ẑ2, ẑ3,

First, note that because Br(z4) is open and h4(·) is continuous, the pre-image h
−1

4 (Br(z4)) is open.
In addition, the continuity of h(·) and the matched observation distributions ∀u′ ∈ U ,P[{x ∈
Ax}|{u = u′,y = y′}] = P[{x̂ ∈ Ax}|{u = u′,y = y′}] lead to h(·) being bijection as shown
in [29], which implies that h

−1

4 (Br(z4)) is non-empty. Hence, h
−1

4 (Br(z4)) is both non-empty and
open. Suppose that ∃A∗

z4
:= Br∗(z

∗
4 where z∗4 ∈ Z4, r

∗ ∈ R+, such that B∗
z = {z ∈ Z : z ∈

h
−1

c (A∗
z4
), {zns:n} × Zns

⊈ h
−1

4 (A∗
z4
)} ≠ ∅. Intuitively, B∗

z contains the partition of the pre-image
h
∗
4(A

∗
z) that the style part z1:ns

can not take on any value in Z1,Z2,Z3. Only certain values of the
style part were able to produce specific outputs of indeterminacy h4(·). Clearly, this would suggest
that h4(·) depends on z4. To show contraction with Equation (40), we evaluate the LHS of Equation
(40) with such a A∗

z4
:

∫
[z⊤1 ,z⊤2 ,z⊤3 ,z⊤4 ]⊤∈h

−1
4 (A∗

z4
)

Pz4(z4)
(
pz1,z2,z3|u,y(z1, z2, z3|u1,y1)− pz1,z2,z3|z,y(z1, z2, z3|u2,y2)

)
dz1dz2dz3dz4

=

∫
[z⊤1 ,z⊤2 ,z⊤3 ,z⊤4 ]⊤∈h

−1
4 (A∗

z4
)\B∗

z

Pz4(z4)
(
pz1,z2,z3|u,y(z1, z2, z3|u1,y1)− pz1,z2,z3|u,y(z1, z2, z3|u2,y2)

)
dz1dz2dz3dz4︸ ︷︷ ︸

T1

+

∫
[z⊤1 ,z⊤2 ,z⊤3 ,z⊤4 ]⊤∈B∗

z

Pz4(z4)
(
pz1,z2,z3|u,y(z1, z2, z3|u1,y1)− pz1,z2,z3|u,y(z1, z2, z3|u2,y2)

)
dz1dz2dz3dz4︸ ︷︷ ︸

T2

(41)

We first look at the value of T1. When h
−1

4 (A∗
z4
)\B∗

z = ∅, T1 evaluates to 0. Otherwise, by definition,

we can rewrite h
−1

4 (A∗
z4
)\B∗

z as C∗
z4

× Z1 × Z2 × Z3 where C∗
z4

⊂ Z4. With this expression, it

23



follows that∫
[z⊤1 ,z⊤2 ,z⊤3 ,z⊤4 ]⊤∈C∗

C∗
z

Pz4(z4)
(
pz1,z2,z3|u,y(z1, z2, z3|u1,y1)− pz1,z2,z3|u,y(z1, z2, z3|u2,y2)

)
dz1dz2dz3dz4

=

∫
z4∈C∗

z4

pz4(z4)

∫
z1∈Z1

∫
z2∈Z2

∫
z3∈Z3

(pz1,z2,z3|u,y(z1, z2, z3|u1,y1)− pz1,z2,z3|u,y(z1, z2, z3|u2,y2))dz1dz2dz3dz4

=

∫
z4∈Cz∗4

pz4(z4)(1− 1)dz4 = 0.

(42)

Therefore, in both cases T1 evaluates to 0 for A∗
z4

.

Now, we address T2. As discuss above, h
−1

4 (A∗
z4
) is open and non-empty. Because of the continuity

of h4(·), ∀zB ∈ B∗
z , there exists r(zB) ∈ R+ such that Br(zB)(zB) ⊆ B∗

z . As pz|u,y > 0 over
(u, z,y), we have P[{z ∈ B∗

z}|{u = u′,y = y′}] ≥ P[{z ∈ Br(zB)(zB)}|{u = u′,y = y′}] > 0
for any z′ ∈ U ,y ∈ Y . Assumption A7 indicates that ∃u∗

1,u
∗
2, such that

T2 :=

∫
[z⊤

1 ,z⊤
2 ,z⊤

3 ,z⊤
4 ]⊤∈B∗

z

Pz4(z4)
(
pz1,z2,z3|u,y(z1, z2, z3|u1,y1)

− pz1,z2,z3|u,y(z1, z2, z3|u2,y2)
)
dz1dz2dz3dz4 ̸= 0.

(43)

Therefore, for such A∗
z4

, we would have T1 + T2 ̸= 0 which leads to contradiction with Equation
(40). We have proved by contradiction that Statement 3 is true and hence Statement 1 holds, that is,
h4(·) does not depend on the changing variables z1, z2, z3.

Step 4.With the knowledge that h4(·) does not depend on the changing variables z1, z2, z3, we now
show that there exists an invertible mapping between the true z4 and the estimated z4.

As h(·) is smooth over Z , its Jacobian can written as:

Jh =


J1,1

h
J1,2

h
J1,3

h
J1,4

h

J2,1

h
J2,2

h
J2,3

h
J2,4

h

J3,1

h
J3,2

h
J3,3

h
J3,4

h

J4,1

h
J4,2

h
J4,3

h
J4,4

h

 , (44)

in which J i,j

h
denotes ∂ẑi

∂ẑj
, i, j ∈ {1, 2, 3, 4}; and we use notation ẑ4 = h(z)ns:n, ẑ1 = h(z)1:n1

,

ẑ2 = h(z)n1+1:n2
, ẑ3 = h(z)n1+n2+1:n3

. As we have shown that ẑ4 does not depend on the
changing variables z1, z2, z3, if follows J4,1

h
= 0,J4,2

h
= 0,J4,3

h
= 0. On the other hand, as h(·)

is invertible over Z , Jh is non-singular. Therefore, J4,4

h
must be non-singular. We note that J4,4

h

is the Jacobian of the function h
′
4 := hc(z) : Z4 → Z4, which takes only the z4 of the input z into

h4. According to Corollary 1.1, we also find that J1,4

h
= 0,J2,4

h
= 0,J3,4

h
= 0. Together with the

invertibility of h, we can conclude that h
′
4 is invertible. Therefore, there exists an invertible function

h
′
4 between the estimated and the true variables such that ẑ4 = h

′
4(z4), which concludes the proof

that z4 is block identifiable via ĝ−1(·).

C Implementation Details

The implementation details of the proposed SIG model are shown in Table 1. For Office-Home
and ImageCLEF datasets, we employ the pre-trained ResNet50 as the backbone networks. For the
PACS dataset, we use the pre-trained ResNet18 as the backbone network. It is noted that we employ
a ResNet101-based cross-attention network (CAN) as the backbone network, which is shown in
Figure 6. In CAN, we inject a cross-attention module into each block of the pre-trained ResNet.
Technologically, we use the input feature (e.g. f1 in Figure 6) and the domain index to calculate the
weights wc. Sequentially, we take wc ⊙ f1 as the input of the pre-trained ResNet Layers and obtain
the output of each block.

24



Table 5: Implementation details of the SIG model in different datasets.

Datasets Office-Home ImageCLEF PACS DomainNet

Encoder 2-layers MLPs 2-layers MLPs 2-layers MLPs 1-layers MLPs

Decoder 2-layers MLPs 2-layers MLPs 2-layers MLPs 2-layers MLPs

learning rate 0.008 0.01 0.01 0.001

α 1.00E-05 1.00E-05 1.00E-05 1.00E-05

β 0.1 0.1 0.1 0.1

z1 dimension 2 4 2 2

z2 dimension 128 128 60 2048

z3 dimension 128 10 24 32

z4 dimension 10 4 2 2

Optimizer SGD SGD SGD SGD

Momentum 0.9 0.9 0.9 0.9

batch size 32 32 32 100

backbone ResNet50 ResNet50 ResNet18 ResNet101-based CAN

BlockBlock Block
…x 𝑓௡

u
𝑓ଶ𝑓ଶ𝑓ଵ

u
𝑤௖⊙𝑓ଵ

Average Pooling
+1-Layer MLP
+ 1-Layer CNN 

𝑓ଵ
1-Layer 

MLP 
𝑤௖

1-Layer MLP 

Pre-trained 
ResNet Layers

𝑓ଶ

Figure 6: A illustrate framework of the ResNet101-based cross-attention networks (CAN). In each
block of the ResNet101, we use the domain information and the inputs of each block to calculate the
weights wc of each dimension of the feature, which dynamically selects the most relevant features.

D Experiments

D.1 Simulation Data Experiments

We provide more details for the simulation experiments. First, we introduce the details of model
architecture for simulation experiments. Second, we further provide the training hyper-parameters.

D.1.1 Model Architecture.

For the model architecture of our simulation experiments, the variational auto-encoder (VAE) encoder
and decoder are 1-layer MLPs with a hidden dimension of 200, a ReLU activation function, a batch
normalization layer, and a dropout layer.

25



D.1.2 Training Hyper-parameters.

We use an SGD optimizer with a momentum of 0.9 to train VAE models with 50 epochs. We also use
a learning rate of 0.0035 with a batch size of 768. For the VAE training, we set the hyper-parameters
of the KL loss to 1.

D.2 Real-world Data Experiments

We provide implementation details of real-world data experiments. First, we provide detailed
descriptions of Office-Home, ImageCLEF, PACS, and DomainNet datasets. Second, we show more
experiment results, including more baselines, the mean, and the standard deviation of the results.

D.2.1 Dataset Description

Office-Home is a benchmark dataset with 4 domains, where each domain contains 65 categories.
These four domains are shown as follows: Art contains artistic images in the form of sketches,
paintings, ornamentation, etc.; Clipart contains the collection of clipart images; Product contains
images of objects without a background and Real-World contains images of objects captured with
a regular camera. ImageCLEF is a standard domain adaptation benchmark dataset for image
classification, consisting of three domains: Caltech-256(C), ImageNet ILSVRC(I), and Pascal
VOC2012(P), consisting of 12 classes. PACS is a domain adaptation dataset with 9991 images from
4 domains of different styles: Photo, Artpainting, Cartoon, and Sketch. It is noted that these domains
are shared with the same 7 categories. DomainNet is a challenging domain adaptation benchmark
with 0.6 million images of 345 categories of 6 different styles: clipart, infograph, painting, quickdraw,
real, and sketch.

D.2.2 More Experimental Results

To show the effectiveness of the proposed SIG model, we further consider more compared methods.
Experiment results for Office-Home, ImageCLEF, PACS, and DomainNet are shown in Table 6, 7, 8,
and 9, respectively. Note that We report the mean and the standard deviation of our method over 3
random seeds (i.e. 3,4,5).
Table 6: Classification results on the Office-home datasets. We employ ResNet50 as the backbone
network. Baseline results are taken from ([30]).

Models Art Clipart Product RealWorld Average

Source Only [16] 64.5 (0.68) 52.3 (0.63) 77.6 (0.23) 80.7 (0.81) 68.8

DANN [11] 64.2 (0.59) 58.0 (1.55) 76.4 (0.47) 78.8 (0.49) 69.3

DANN+BSP [7] 66.1 (0.27) 61.0 (0.39) 78.1 (0.31) 79.9 (0.13) 71.2

DAN [40] 68.2 (0.45) 57.9 (0.65) 78.4 (0.05) 81.9 (0.35) 71.6

MCD [50] 67.8 (0.38) 59.9 (0.55) 79.2 (0.61) 80.9 (0.18) 71.9

DCTN [69] 66.9 (0.60) 61.8 (0.46) 79.2 (0.58) 77.7 (0.59) 71.4

MIAN-γ [45] 69.8 (0.35) 64.2 (0.68) 80.8 (0.37) 81.4 (0.24) 74.1

iMSDA [30] 75.4 (0.86) 61.4 (0.73) 83.5 (0.22) 84.4 (0.38) 76.1

SIG 76.4 (0.37) 63.9 (0.34) 85.4 (0.36) 85.8 (0.22) 77.8

E Sensitive Analysis of Hyper-parameters

We also consider the sensitive analysis of α and β, which is shown in Figure 7(a) and 7(b). In detail,
we consider different values of α ({0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3}). According to the experiment
results, we find that the model performance is stable with α. We also try different values of β
({1e− 5, 3e− 5, 5e− 5, 7e− 5, 9e− 5, 1e− 4, 5e− 4, 1e− 3}), we find that the model performance

26



Table 7: Classification results on the ImageCLEF datasets. We employ ResNet50 as the backbone
network. Baseline results are taken from ([47]).

Mode I,C→P I,P→C P,C→I Average

Source Only [16] 77.2 92.3 88.1 85.8

DAN [40] 77.6 93.3 92.2 87.7

ADDA [61] 76.5 94.0 93.2 87.0

DANN [11] 77.9 93.7 91.8 87.8

D-CORAL [57] 77.1 93.6 91.7 87.5

DSBN [4] 77.7 (0.2) 94.1 (0.3) 91.9 (0.1) 87.9

DSAN [82] 77.6 (0.2) 95.1 (0.1) 91.4 (0.6) 88.1

MFSAN [81] 79.1 95.4 93.6 89.4

PTMDA [47] 79.1 (0.2) 97.3 (0.3) 94.1 (0.3) 90.1

SIG 79.3 (0.57) 97.3 (0.34) 94.3 (0.07) 90.3

Table 8: Classification results on the PACS datasets. We employ ResNet18 as the backbone network.
Baseline results are taken from ([30]).

Model A C P S Average

Source Only [16] 74.9 (0.88) 72.1 94.5 64.7 (1.53) 76.7

DANN [11] 81.9 (1.13) 77.5 (1.26) 91.8 (1.21) 74.6 (1.03) 81.5

MDAN [79] 79.1 (0.36) 76.0 (0.73) 91.4 (0.85) 72.0 (0.80) 79.6

WBN [43] 89.9 (0.28) 89.7 (0.56) 97.4 (0.84) 58.0 (1.51) 83.8

MCD [50] 88.7 (1.01) 88.9 (1.53) 96.4 (0.42) 73.9 (3.94) 87

M3SDA [46] 89.3 (0.42) 89.9 (1.00) 97.3 (0.31) 76.7 (2.86) 88.3

CMSS [70] 88.6 (0.36) 90.4 (0.80) 96.9 (0.27) 82.0 (0.59) 89.5

LtC-MSDA [63] 90.1 90.4 97.2 81.5 89.8

T-SVDNet [33] 90.4 90.6 98.5 85.4 91.2

iMSDA [30] 93.7 (0.32) 92.4 (0.23) 98.4 (0.07) 89.2 (0.73) 93.4

SIG 94.0 (0.07) 93.6 (0.49) 98.6 (0.06) 89.5 (0.71) 93.9

is stable in the range of 1e− 5 ∼ 5e− 4, but it drop slightly when the value of β becomes too large,
e.g. 1e− 3.

F Visualization

To evaluate the effectiveness of the SIG model qualitatively, we also provide the visualization results
in t-SNE as shown in Figure 8. According to the visualization, we can find that our SIG model can
generate the features with a more clear class boundary.

G Related Works

G.1 Domain Adaptation

Domain adaptation [3, 77, 36, 30, 75, 76, 65, 54, 49] leverages the knowledge from the labeled source
data and unlabeled target data to build a model with ideal generalization. Several researchers solve the

27



Table 9: Classification results on the DomainNet datasets. We employ ResNet101 as the backbone
network. Baseline results are taken from ([34] and [64]).

Model Clipart Infograph Painting Quickdraw Real Sketch Average

Source Only [16] 52.1 (0.51) 23.4 (0.28) 47.6 (0.96) 13.0 (0.72) 60.7 (0.23) 46.5 (0.56) 40.6

ADDA [61] 47.5 (0.76) 11.4 (0.67) 36.7 (0.53) 14.7 (0.50) 49.1 (0.82) 33.5 (0.49) 32.2

MCD [50] 54.3 (0.64) 22.1 (0.70) 45.7 (0.63) 7.6 (0.49) 58.4 (0.65) 43.5 (0.57) 38.5

DANN [11] 60.6 (0.42) 25.8 (0.43) 50.4 (0.51) 7.70.68) 62.0 (0.66) 51.7 (0.19) 43.0

DCTN [69] 48.6 (0.73) 23.5 (0.59) 48.8 (0.63) 7.2 (0.46) 53.5 (0.56) 47.3 (0.47) 38.2

M3SDA-β [46] 58.6 (0.53) 26.0 (0.89) 52.3 (0.55) 6.3 (0.58) 62.7 (0.51) 49.5 (0.76) 42.6

ML_MSDA [35] 61.4 (0.79) 26.2 (0.41) 51.9 (0.20) 19.1 (0.31) 57.0 (1.04) 50.3 (0.67) 44.3

meta-MCD [32] 62.8 (0.22) 21.4 (0.07) 50.5 (0.08) 15.5 (0.22) 64.6 (0.16) 50.4 (0.12) 44.2

LtC-MSDA [63] 63.1 (0.5) 28.7 (0.7) 56.1 (0.5) 16.3 (0.5) 66.1 (0.6) 53.8 (0.6) 47.4

CMSS [70] 64.2 (0.18) 28.0 (0.20) 53.6 (0.39) 16.9 (0.12) 63.4 (0.21) 53.8 (0.35) 46.5

DRT+ST [34] 71.0 (0.21) 31.6 (0.44) 61.0 (0.32) 12.3 (0.38) 71.4 (0.23) 60.7 (0.31) 51.3

SPS [64] 70.8 24.6 55.2 19.4 67.5 57.6 49.2

PFDA [10] 64.5 29.2 57.6 17.2 67.2 55.1 48.5

SIG 72.7 (0.42) 32.0 (0.71) 60.9 (0.87) 20.5 (0.71) 72.4 (0.14) 59.5 (0.70) 53.0

��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

����

����

�
�
�
�
�
�
�
�

(a) Sensitive results of α

���� ���� ���� ���� ���� ���� ���� ����

����

����

����

����

����

����

����

����

����

�
�
�
�
�
�
�
�

(b) Sensitive results of β

Figure 7: Sensitive analysis of α and β on the → Task in Office-Home.

challenges of domain adaptation from different perspectives. One of the most conventional directions
is to learn the domain-invariant representation [2], which is raised by [11]. Specifically, the key
idea of these methods is to extract the domain-invariant representation by aligning the features from
different domains. Some researchers [41] use maximum mean discrepancy (MMD) to realize the
domain alignment. Tzeng et.al [62] extract the domain-invariant representation by using an adaptation
layer and a domain confusion loss. Another type of idea assumes that the conditional distributions
P (z|y) are stable across domains and extract the domain-invariant representation condition on each
class [6, 5, 26]. Specifically, Xie et.al [68] minimize the domain discrepancy of inter-class features;
Shu et.al [53] consider that the decision boundaries should not cross high-density data regions so
they propose the virtual adversarial domain adaptation model. Target shift [77, 37, 66, 12, 48] is
also common in domain adaptation, which assumes py|u varies with different domains. Shui et.al
[54] propose a unified framework to select relevant sources based on the similarity of the conditional
distribution. And Remi et.al [58] analyze the generalized label shift and further provide theoretical
guarantees on the transfer performance of any classifier. Recently, several researchers address the
domain adaptation problem from the lens of causality [30, 42, 59, 8, 13, 55]. Zhang et.al [77]
assume that P (y) and P (x|y) change independently, and raise the target shift, conditional shift,
and generalized target shift assumptions. Cai et.al [3] employ the causal generation process to

28



(a) iMSDA (b) SIG

Figure 8: The t-SNE visualizations of learned features on the → Art task in Office-Home. Red:
source domains, Blue: target domain.

extract the disentangled semantic representation. Based on the causal analysis, Petar et.al [56] find
that the domain-invariant should be extracted with the help of domain knowledge, so they propose
domain-specific adversarial networks. Despite the outstanding performance of the aforementioned
methods, these methods are built on the ad-hoc causal generation process and can not identify the
latent variables. In the paper, the proposed SIG method is built on a more general causal generation
process and identifies the latent variables with the help of the subspace identification guarantee.

G.2 Identification

To endow more explanation and generalization for the deep generative model, causal representation
learning [51, 31, 38, 39, 80, 60], which captures the underlying factors and describe the latent
generation process, is receiving more and more attention. One of the most classical approaches to
learn the causal representation is the independent component analysis (ICA) [19, 18, 74, 73, 67, 9],
in which the generation process is assumed to be a linear mixture function. However, the nonlinear
ICA is a challenging task since the latent variables are not identifiable without any extra assumptions
on the distribution of latent variables or the generation process [23, 80, 20, 28]. Recently, Aapo
et.al [21, 22, 24, 27, 15, 14] provide the identification theories by introducing auxiliary variables,
e.g. domain indexes, time indexes, and class label. These methods usually assume that the latent
variables are conditionally independent and follow the exponential families. Recently, Zhang et.al
[30, 67] break the restriction of exponential families assumption and propose the component-wise
identification results for nonlinear ICA with a certain number of auxiliary variables. Following these
theoretical results, Yao et.al [71, 72] recover time-delay latent causal variables and identify their
relations from sequential data under the stationary environment and different distribution shifts. Xie
et.al [67] employ the nonlinear ICA to reconstruct the joint distribution of images from different
domains; and Kong et.al [30] use the component-wise identification results to solve the domain
adaptation problem. However, existing identification results heavily rely on a sufficient number of
domains and the too-strong monotonic transformation of latent variables, which is hard to satisfy
in practice. In this paper, we propose the subspace identification results, which only rely on fewer
auxiliary variables compared with component-wise identification and do not rely on any monotonic
transformation assumptions.

29


