
Published as a conference paper at ICLR 2024

APPENDIX

A The Mathematics 13

A.1 The Mathematics of Spherical Harmonics 13

A.2 Equivariant Operation . 15

A.3 Relationship Between Expressive Power and Equivariant Operations . 17

B Model Details 17

B.1 Invariant Branch . 17

B.2 Message Block . 18

B.3 Update Block . 20

C Supplementary Related Works 20

D Details of Experiments 22

D.1 Implementation Details . 22

D.2 Hyper-parameters of Baselines . 22

E Supplementary Experiment 22

E.1 Normalization and Invariant Branch 22

E.2 Structure of MLP . 23

E.3 Update Block . 23

E.4 Impact of Hyper-parameters . 23

E.5 Attention Coefficients . 23

E.6 Training and Inference Time . 24

A THE MATHEMATICS

A.1 THE MATHEMATICS OF SPHERICAL HARMONICS

A.1.1 THE PROPERTIES OF SPHERICAL HARMONICS

The spherical harmonics Y m
l (θ, ϕ) are the angular portion of the solution to Laplace’s equation

in spherical coordinates where azimuthal symmetry is not present. Some care must be taken in
identifying the notational convention being used. In this entry, θ is taken as the polar (colatitudinal)
coordinate with θ in [0, π], and ϕ as the azimuthal (longitudinal) coordinate with ϕ in [0, 2π).

Spherical harmonics satisfy the spherical harmonic differential equation, which is given by the angular
part of Laplace’s equation in spherical coordinates. If we define the solution of Laplace’s equation as
F = Φ(ϕ)Θ(θ), the equation can be transformed as:

Φ(ϕ)

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

Θ(θ)

sin2 θ

d2Φ(ϕ)

dϕ2
+ l(l + 1)Θ(θ)Φ(ϕ) = 0 (14)

Here we omit the derivation process and just show the result. The (complex-value) spherical
harmonics are defined by:

Y l
m(θ, ϕ) ≡

√
2l + 1

4π

(l −m)!

(l +m)!
P l
m(cos θ)eimϕ, (15)

13

Published as a conference paper at ICLR 2024

where P l
m(cos θ) is an associated Legendre polynomial. Spherical harmonics are integral basis,

which satisfy: ∫ 2π

0

∫ π

0
Y l1
m1

(θ, ϕ)Y l2
m2

(θ, ϕ)Y l3
m3

(θ, ϕ) sin θdθdϕ

=
√

(2l1+1)(2l2+1)(2l3+1)
4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
,

(16)

where
(

l1 l2 l3
m1 m2 m3

)
is a Wigner 3j-symbol (which is related to the Clebsch-Gordan coeffi-

cients). We list a few spherical harmonics which are:

Y 0
0 (θ, φ) =

1

2

√
1

π

Y 1
−1(θ, φ) =

1

2

√
3

2π
sin θe−iφ

Y 1
0 (θ, φ) =

1

2

√
3

π
cos θ

Y 1
1 (θ, φ) =

−1

2

√
3

2π
sin θeiφ

Y 2
−2(θ, φ) =

1

4

√
15

2π
sin 2θe−2iφ

Y 2
−1(θ, φ) =

1

2

√
15

2π
sin θ cos θe−iφ

Y 2
0 (θ, φ) =

1

4

√
5

π

(
3 cos2 θ − 1

)
Y 2
1 (θ, φ) =

−1

2

√
15

2π
sin θ cos θeiφ

Y 2
2 (θ, φ) =

1

4

√
15

2π
sin 2θe2iφ

(17)

In this work, we use the real-value spherical harmonics rather than the complex-value one.

A.1.2 FOURIER TRANSFORMATION OVER S2

It is well known that the spherical harmonic Y l
m form a complete set of orthonormal functions and

thus form an orthonormal basis of the Hilbert space of square-integrable function. On the unit sphere
S2, any square-integrable function f can thus be expanded as a linear combination of these:

f(θ, φ) =

∞∑
l=0

l∑
m=−l

f lmY
l
m(θ, φ), (18)

The coefficient f lm can be obtained by the Fourier transformation over S2, which is

f lm =

∫
S2

f(r⃗)Y l∗
m (r⃗)dr⃗ =

∫ 2π

0

∫ π

0

dθ sin θf(θ, ψ)Y l∗

m (θ, ψ). (19)

Usually we define a vector f l = [f l−l, f
l
−l+1, ..., f

l
l] to denote the Fourier coefficients with degree

l. We now investigate how the fourier coefficients transforms if we rotate the input signal. More
precisely, we want to calculate the coefficient f lR of the signal f(Rr⃗), where R ∈ SO(3) is a rotation
matrix.

Using the fact Yl(Rr⃗) = Dl(R)Yl(⃗r), and equation 20, we know

f(Rr⃗) =

∞∑
l=0

l∑
m=−l

f lmY
l
m(Rr⃗) =

∞∑
l=0

l∑
m=−l

f lm
∑
m′

Dmm′Y l
m′(r⃗).

14

Published as a conference paper at ICLR 2024

Therefore f lR = DT f l and it is steerable.

It is well known that the spherical harmonic Y l
m form a complete set of orthonormal functions and

thus form an orthonormal basis of the Hilbert space of square-integrable function. On the unit sphere
S2, any square-integrable function f can thus be expanded as a linear combination of these:

f(θ, φ) =

∞∑
l=0

l∑
m=−l

f lmY
l
m(θ, φ), (20)

The coefficient f lm can be obtained by the Fourier transformation over S2, which is

f lm =

∫
S2

f(r⃗)Y l∗
m (r⃗)dr⃗ =

∫ 2π

0

∫ π

0

dθ sin θf(θ, ψ)Y l∗

m (θ, ψ). (21)

Usually we define a vector f l = [f l−l, f
l
−l+1, ..., f

l
l] to denote the Fourier coefficients with degree

l. We now investigate how the fourier coefficients transforms if we rotate the input signal. More
precisely, we want to calculate the coefficient f lR of the signal f(Rr⃗), where R ∈ SO(3) is a rotation
matrix.

Using the fact Yl(Rr⃗) = Dl(R)Yl(⃗r), and equation 20, we know

f(Rr⃗) =

∞∑
l=0

l∑
m=−l

f lmY
l
m(Rr⃗) =

∞∑
l=0

l∑
m=−l

f lm
∑
m′

Dmm′Y l
m′(r⃗).

Therefore f lR = DT f l and it is steerable.

A.1.3 THE RELATIONSHIP BETWEEN SPHERICAL HARMONICS AND WIGNER-D MATRIX

A rotation R sending the r⃗ to r⃗′ can be regarded as a linear combination of spherical harmonics that
are set to the same degree. The coefficients of linear combination represent the complex conjugate of
an element of the Wigner D-matrix. The rotational behavior of the spherical harmonics is perhaps
their quintessential feature from the viewpoint of group theory. The spherical harmonics Y l

m provide
a basis set of functions for the irreducible representation of the group SO(3) with dimension (2l + 1).

The Wigner-D matrix can be constructed by spherical harmonics. Consider a transformation Y l
m(⃗r) =

Y l
m(Rα,β,γ r⃗x), where r⃗x denote the x-orientation. α, β, γ denotes the items of Euler angle. Therefore,
Y l
m(⃗r) is invariant with respect to rotation angle γ. Based on this viewpoint, the Wigner-D matrix

with shape (2l + 1)× (2l + 1) can be defined by:

Dl
m(Rα,β,γ) =

√
2l + 1Y l

m(⃗r). (22)
In this case, the orientations are encoded in spherical harmonics and their Wigner-D matrices, which
are utilized in our cross module.

A.2 EQUIVARIANT OPERATION

A.2.1 EQUIVARIANCE OF CLEBSCH-GORDAN TENSOR PRODUCT

The Clebsch-Gordan Tensor Product shows a strict equivariance for different group representations,
which make the mixture representations transformed equivariant based on Wigner-D matrices. We
use Dm′

1,m1
to denote the element of Wigner-D matrix. The Clebsch-Gordan coefficient satisfies:∑

m′
1,m

′
2
C

(l0,m0)

(l1,m′
1)(l2,m′

2)
Dl1

m′
1m1

(g)Dl2
m′

2m2
(g)

=
∑

m′
0
Dl0

m0m′
0
(g)C

(l0,m′
0)

(l1,m1)(l2,m2)

(23)

15

Published as a conference paper at ICLR 2024

Therefore, the spherical harmonics can be combined equivariantly by CG Tensor Product:

CG
(∑

m′
1
Dl1

m1m′
1
(g)Y l1

m′
1
,
∑

m′
2
Dl2

m2m′
2
(g)Y l2

m′
2

)l0

m0

=
∑

m1,m2
C

(l0,m0)
(l1,m1)(l2,m2)

∑
m′

1
Dl1

m1m′
1
(g)Y l1

m′
1

∑
m′

2
Dl2

m2m′
2
(g)Y l2

m′
2

=
∑

m′
0
Dlo

m0m′
0
(g)

∑
m1,m2

C
(l0,m′

0)
(l1,m1)(l2,m2)

Y l1
m′

1
Y l2
m′

2

=
∑

m′
0
Dl0

m0m′
0
(g)CGl0

m′
0

(
Y l1
m′

1
, Y l2

m′
2
,
)
.

(24)

equation 24 represents a relationship between scalar. If we transform the scalar to vector or matrix
like what we do in Section 2 and Section 3, equation 24 is equal to

(Dl1
Ru⊗Dl2

Rv)l = Dl
R(u⊗ v)l. (25)

The tensor CG product mixes two representations to a new representation under special rule equation 5.
For example, 1.two type-0 vectors will only generate a type-0 representations; 2.type-l1 and type-l2
can generate type-l1 + l2 vector at most. Note that some widely-used products are related to tensor
product: scalar product (l1 = 0, l2 = 1, l = 1), dot product (l1 = 1, l2 = 1, l = 0) and cross
product (l1 = 1, l2 = 1, l = 1). However, for each element with l > 0, there are multi mathematical
operation for the connection with weights. The relation between number of operations and degree
is quadratic. Thus, as degree increases, the amount of computation increases significantly, making
calculation of the CG tensor product slow for higher order irreps. This statement can be proven by
the implementation of e3nn (o3.FullyConnectedTensorProduct).

A.2.2 LEARNABLE PARAMETERS IN TENSOR PRODUCT

We utilize the e3nn library (Geiger et al., 2022) to implement the corresponding tensor product. It is
crucial to emphasize that the formulation of CG tensor product is devoid of any learnable parameters,
as CG coefficients remain constant. In the context of e3nn, learnable parameters are introduced into
each path, represented as w(ul1 ⊗ vl2). Importantly, these learnable parameters will not destory
the equivariance of each path. However, they are limited in capturing directional information. In
equivariant models, the original CG tensor product primarily captures directional information. We
have previously mentioned our replacement of the CG tensor product with learnable modules. It is
worth noting that our focus lies on the CG coefficients rather than the learnable parameters in the
e3nn implementation.

A.2.3 GATE ACTIVATION AND NORMALIZATION

The gate activation and normalization used in HDGNN are implement by e3nn code framework.

Gate Activation. In equivariant models, the gate activation combines two sets of group represen-
tations. The first set consists of scalar irreps (l = 0), which are passed through standard activation
functions such as sigmoid, ReLU and SiLU. The second set comprises higher-order irreps ((l > 0)),
which are multiplied by an additional set of scalar irreps that are introduced solely for the purpose of
the activation layer. These scalar irreps are also passed through activation functions.

The gate activation allows for the controlled integration of different types of irreps in the network.
The scalar irreps capture global and local patterns, while the higher-order irreps capture more complex
relationships and interactions. By combining these irreps in a gate-like manner, the gate activation
enables the model to selectively amplify or suppress information flow based on the importance of
different irreps for a given task.

Normalization. Normalization is a technique commonly used in neural networks to normalize the
activations within each layer. It helps stabilize and accelerate the training process by reducing the
internal covariate shift, which refers to the change in the distribution of layer inputs during training.

The normalization process involves computing the mean and variance across the channels. In
equivariant normalization, the variance is computed using the root mean square value of the L2-norm
of each type-l vector. Additionally, this normalization removes the mean term. The normalized
activations are then passed through a learnable affine transformation without a learnable bias, which
enables the network to adjust the mean and variance based on the specific task requirements.

16

Published as a conference paper at ICLR 2024

In our model, normalization provides an additional advantage of calibrating radial features from
different representations. By incorporating layer normalization, the representation produced by
equation 10 becomes more effective, especially for high-order terms.

A.3 RELATIONSHIP BETWEEN EXPRESSIVE POWER AND EQUIVARIANT OPERATIONS

In (Dym & Maron, 2021), Theorem 2 establishes the universality of equivariant networks based on
the TFN structure:

Theorem. For all n ∈ N, lT ∈ N+
∗,

1. For D ∈ N+, every G-equivariant polynomial p : R3×n → Wn
lT

of degree D is in
FTFN
C(D),D.

2. Every continuous G-equivariant function can be approximated uniformly on compact sets
by functions in ∪D∈N+

FTFN
C(D),D.

Here, n represents the number of input points, lT represents the degree of the approximated G-
equivariant function, C represents the number of channels, and D represents the degree of the TFN
(Tensor Field Network) structure, which is equivalent to the term l used in our HDGNN. The TFN
structure consists of two layers, including convolution and self-interaction. Self-interaction involves
equivariant linear functions. The convolution operation calculates the CG tensor product between
different irreducible representations, which is a fundamental operation for transforming directional
information. Most equivariant models based on group representations use a similar approach (CG
tensor product) to capture directional features. Therefore, the theorem mentioned above also applies
to building blocks based on CG tensor products, such as SEGNN (Brandstetter et al., 2021) and
Equiformer (Liao & Smidt, 2023).

The above theorem demonstrates that achieving an infinite degree in practice is not feasible. However,
equivariant models based on group representations can enhance their expressive power by increasing
the number of maximal degrees (Dym & Maron, 2021). In their evaluation of expressive power, as
presented in (Joshi et al., 2023), the authors utilize the GWL (geometric Weisfeiler-Leman) graph
isomorphism test. In Table 2 of their work, it is evident that equivariant models with a maximal
degree denoted as L are incapable of distinguishing n-fold symmetric structures when n exceeds the
value of L.

To assess the impact of non-equivariant operations on expressive capabilities, we designed several
message modules: 1. Node embeddings, distances, and atomic number information of node i
and node j are fed into a two-layer MLP (MLP0); 2.Building upon MLP0, we add the spherical
harmonics of rij (with a maximum degree of l) into the node embeddings (MLPl). In addition
to these modules, we also tested the HDGNN module. Our observations from Table 6 reveal that
MLPs can distinguish high-order symmetric structures through low-order irreps. However, they are
limited in representing infinite degrees. For example, when l = 1, the model cannot distinguish
the 10-fold structure. Furthermore, the message block of HDGNN exhibits similar performance
characteristics. In practical applications, we cannot directly apply the MLPl model as it tends to
excessively compromise equivariance, resulting in poor generalization performance on unseen data.
Our HDGNN is designed to mitigate the loss of equivariance while retaining the strong representation
capabilities of MLPs.

B MODEL DETAILS

B.1 INVARIANT BRANCH

The purpose of the invariant branch is to support the feedforward propagation of the equivariant
branch. It is important to emphasize that the input fi of the attention module must be invariant to
ensure the equivariance of the model. This assertion is validated in subsequent experiments. To
tackle this issue, we introduce a strictly invariant branch that spans the entire model and employs
invariant message passing. The message block and update block of the invariant branch are depicted
in Figure 1.

17

Published as a conference paper at ICLR 2024

Table 6: Rotationally symmetric structures. The MLP, when fed with low-degree spherical harmonics
of rij , can distinguish between two distinct rotated versions of high-order symmetric structures.

Model 2-fold 3-fold 5-fold 10-fold
TFNl=1 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
TFNl=2 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
TFNl=3 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
TFNl=5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0
TFNl=10 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MLP0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
MLPl=1 97.5.0 ± 2.5 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0
MLPl=2 100.0 ± 0.0 100.0 ± 0.0 87.5 ± 12.5 82.5 ± 17.5
MLPl=3 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MLPl=5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
MLPl=10 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HDGNNl=5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

In message block, we calculate the message used to update the invariant branch:
fij = σ (W[fi; fj ; cij]) , (26)

where W denotes the learnable weight matrix and σ denotes the SiLU activation. In addition, the
concatenation results [fi; fj ; cij] are used to generate attention coefficients in equation 11 by a 2-layer
MLP. The first layer of this MLP is a dimensionality-reduction layer with reduction ratio 4. The
output activation of MLP is Sigmoid. Note that the outputs are channel-wsie atenntion, which means
that the sizes of a1, a2, a3, a4 are all 1 × C. At last, we do channel-wise multiplication for each
message, which is shown in equation 11.

In update block, The invariant branch is updated by:

fk+1
i = σ(W

 ∑
j∈N (i)

fkij

+ fki). (27)

The final embedding of invariant branch is still invariant, but the directional information is lacking.
We use it to assist prediction in QM9 experiments.

B.2 MESSAGE BLOCK

Mean-Extension Tensor Product (METP). The input of METP consists of all the type-l vectors
(l ≤ L), including the type-l vectors with low orders (l ≤ L′). Each path of the tensor product in
METP maintains equivariance. We can also utilize METP to generate higher-order type-l vectors.
However, incorporating higher-order terms significantly increases the computational burden, even
after merging all the channels. An alternative approach is to output a higher-order representation with
a single channel and then share this representation across all the channels of the messages.

Randomness in rotation. Note that the roll rotation around the vector r⃗ij is not specified. In the
implementation, we compute three unit vectors, the normalized vector a⃗ij of r⃗ij , the randomly
sampled vector b⃗ij orthogonal to a⃗ij and their cross product result c⃗ij . Rotation matrix produced by

[b⃗ij

T
; c⃗ij

T ; a⃗ij
T] can transform r⃗ij to [0, 0, 1].

Shared MLP. In equation 11, we employ MLPs with two layers, utilizing the SiLU activation
function. The input is flattened into a vector, treating all channels equally. The output dimension
of the first layer is denoted as h, which is a hyperparameter. The output dimension of the second
layer is (2L+ 1)2 ∗ C, which is subsequently transformed into an irreducible representation. It is
important to note that this MLP introduces non-equivariance, as it cannot accurately capture the
function f(x) = x⊗C. However, the learnable MLP may still capture directional information due
to the presence of the Wigner matrix D in the input, which can be seen as an embedding of r⃗ij .

Distance block. In HDGNN, the distance block in meassge block can encode the distance between
two nodes (⃗rij). First, the distance is encoded by a set of Gaussian basis functions Gk with means µk

and standard deviation σ. The means are uniformly sampled from 0 to γ Å, which is a regarded as a

18

Published as a conference paper at ICLR 2024

hyper-parameter. The distance feature is given by:
dk = Gk(∥⃗rij∥ − µk, σ). (28)

At the final step, we concatenate d with the embeddings of zi and zj , resulting in cij . When using
cij as input for the shared MLP, we first pass cij through a fully-connected layer to match the hidden
size h. We then perform element-wise multiplication between the output of the fully-connected
layer and the hidden layer of the MLP. It is important to note that element-wise multiplication is an
approximately equivariant operation. To illustrate this, let’s consider an equivariant operation where
we multiply different equivariant type-l vectors by a series of invariant features. The resulting vector
can still be considered equivariant and can be represented as: [c0 ·Y0; c1 ·Y1; c2 ·Y2; . . .]. It should
be emphasized that if we were to introduce cij using other strategies, such as concatenation, it would
likely compromise the performance of the overall model.

Special Orders. The input to the MLP only preserves specific orders of x and x, namely, m = −l, 0,
and l. This operation offers the advantage of reducing the computational burden without excessive
performance degradation, as these three orders can be used to infer all the remaining orders. Taking
the spherical harmonics in equation 17 as an example, m = 0 contains only cos(θ) terms, while
m = −l and m = l contain sin(θ) terms and ϕ. The value of ϕ can be inferred from the m = −l
and m = l terms. The other orders can be inferred by combining cos(θ), sin(θ), and ϕ.

Equivariance of MLP structure. In equation 8, we perform a transformation of the CG tensor
product into a representation within local coordinate frames. It is crucial to acknowledge that this
approach introduces randomness in the matrix Rij . However, thanks to the strict equivariance of
CG tensor product, the right-hand side of Equation equation 8 remains equivariant. To elaborate, we
express Rij in terms of R̃R̄ij , where R̄ij denotes a well-defined rotation matrix, and R̃ represents a
non-specified rotation matrix satisfying the condition R̃[0, 0, 1] = [0, 0, 1]. Consequently, Equation
equation 8 undergoes the transformation:

D−1(Rij)
(
D(Rij)xi ⊗ S(C⃗)

)
= D−1(R̃R̄ij)

(
D(R̃R̄ij)xi ⊗ S(C⃗)

)
= D−1(R̄ij)D

−1(R̃)
(
D(R̃)D(R̄ij)xi ⊗ S(C⃗)

)
= D−1(R̄ij)D

−1(R̃)
(
D(R̃)D(R̄ij)xi ⊗D(R̃)S(C⃗)

)
.

(29)

Due to the equivarance of CG tensor product shown in equation 25, we finally transform the above
equation to

xi ⊗ SL(⃗rij) = D−1(R̄ij)
(
D(R̄ij)xi ⊗ S(C⃗)

)
. (30)

The introduction of randomness through the term R̃ is effectively mitigated, ensuring that the
equivariance of equation 8 remains unaffected by such randomness. This preservation of equivariance
is similarly observed in equation 9. However, when we substitute the CG tensor product with a MLP,
the equivariance is compromised. It is crucial to note that an untrained MLP does not adhere to the
condition NN(Dx) = DNN(x). Consequently, the compensation strategy employed for the term
R̃ in equation 29 is not applicable in this context, leading to the breakdown of strict equivariance
in equation 10. The loss of equivariance can be mitigated by optimizing the MLP structure through
training.

Model’s Ability to Learn Equivariance and Directional Information. It is important to highlight
that we incorporate a neural learnable structure based on equation 9 rather than equation 8. Two
primary reasons underscore this choice. Firstly, the efficacy of the equivariance in MLP hinges on their
ability to discern SO(3)-transformations during training. Notably, equation 9 introduces an additional
transformation for the MLP, thereby enhancing its capacity to learn and capture equivariance more
effectively. Secondly, directly feeding D(Rij)x

′ to neural network is not effective in capturing the
directional features in D(Rij) because we cannot infer directional information in D(Rij) from a
whole D(Rij)x

′. In equation 10, we use the original embedding x and D(Rij)− I)x as the inputs
of neural network. This method can easily infer D(Rij).

Complexity. The complexity of the message block is approximately O(CLirrepsL
′
irreps +

CL′
irrepsh), where C is the number of channels, h is the hidden number of MLP. Lirreps = (L+1)2

and L′
irreps = 3L+ 1, where L is the maximal degree.

19

Published as a conference paper at ICLR 2024

B.3 UPDATE BLOCK

To understand our construction, we first present the convolution theorem. For two functions g(x) and
h(x) in the time domain, their Fourier transforms are as follows.

G(s) ≜ F{g}(s) =
∫∞
−∞ g(x)e−i2πsxdx, s ∈ R

H(s) ≜ F{h}(s) =
∫∞
−∞ h(x)e−i2πsxdx, s ∈ R. (31)

Based on convolution theorem, we know
F{g · h} = F{g} ∗ F{h}, (32)

where ∗ denotes the convolution. The convolution theorem is also suitable for correlation ⋆. Inspired
by convolution theorem, we can convert the operation closed to convolution in the frequency domain
to the point-wise operation in the time domain. Note that correlation is negative convolution. To keep
the same order of correlation in the frequency domain in equation 31, we can use g(−x) and h(−x)
in the time domain.

In our update block, the convolution ∗ and correlation ⋆ in steerable space are represented by

m1 ∗m2 =
∑
dl

mdl
1 ml−dl

2 ,m1 ⋆m2 =
∑
dl

mdl
1 mdl−l

2 , (33)

where convolution and correlation correspond to paths l1 + l2 = l and |l1 − l2| = l, respectively.
These paths are not zeros due to the CG rule equation 5. For instance, assuming L = 4, and there are
two irreps m1 and m2. m = m1 ⊗m2 contain type-0, type-1, · · · , type-4 vectors. We use (type-l1,
type-l2) to denote a path based on m1 and m2. Taking type-2 vector of m as an example, it is the
aggregation of paths (1, 1), (0, 2), (2, 0), (1, 3), (3,1), (4,2), and (2,4). However, convolution only
contain (1, 1), (0, 2), and (2, 0) paths. This mehtod will weaken the equivariant interactions on time
domain. We introduce correlation whose corresponding paths are (0, 2), (2, 0), (1,3), (3,1), (4,2), and
(2,4), including extra paths. Therefore, this combination of convolution and correlation enables us to
reduce the loss caused by FFT, as demonstrated by our ablation studies 11.

Structure of MLP. The size of the time domain signal is S × C, where S represents the number of
samples on the unit sphere S2. We apply a 2-layer MLP with SiLU activation to process the channel
axis of the time domain signals. It is important to note that this MLP is shared across all sampling
points. After passing through the MLP, the resulting output, denoted as o, has a size of S × C ′.

Subsequently, we employ a squeeze-and-excitation structure to recalibrate the channel-wise features
of o. Specifically, we first perform global average pooling on o, resulting in a vector of size C ′. This
vector is then fed into a 2-layer MLP with dimensionality reduction, yielding another vector of size
C ′. This vector is multiplied element-wise with the channels of o. Finally, we use a FC layer without
activation to transform the number of channels to C.

Complexity. The number of grids is denoted as sample = (2 ∗ (L+ 1))2. The complexity of the
update block part is approximately O(sample ∗ C + sample ∗ C2), where the latter term represents
the point-wise MLP layers. In an equivariant neural network, the most time-consuming part is the
CG tensor product. The complexity of the tensor product between two channels is O((L6). If we
directly perform CG tensor product for every two channels in the frequency domain, complexity
is O((L6 ∗ C2). This approach does not even include interactions within more than two channels.
Therefore, employing the Fourier transform actually help to capture interactions across all channels
because the complexity of point-wise operation in the time domain is low.

C SUPPLEMENTARY RELATED WORKS

There are a bunch of works related to message passing neural networks, equivariant neural networks
and computational chemistry. We have listed equivariant neural networks closely related to ours in
Section 4. Here, we discuss other molecular models. Besides, we discuss some methods to relax
equivariance.

Molecular models. Gilmer et al. (2017) propose a message passing neural network that can effectively
describe the interactions between atoms and model the chemical properties of molecules. However,
this network just considers the permutation invariance and omits the rotational invariance. Cohen et al.
(2018) design spherical CNNs to analyze spherical images where they propose a definition of the

20

Published as a conference paper at ICLR 2024

Table 7: Hyper-parameters for OC20 (IS2RE) dataset.

Hyper-parameters Value or description

Learning rate scheduling ×0.3 at 10, 14, 16, 18 epochs
Warmup steps 100
Maximum learning rate 4× 104

Batch size 56
Number of epochs 20
Weight decay 0.5× 103

Cutoff radius Å 8
Hidden sizes of MLPs 512
K 16
L 6
L′ 2
λ 0
max number of neighbors 40

Table 8: Hyper-parameters for QM9 dataset.

Hyper-parameters Value or description

Learning rate scheduling Cosine learning rate with linear warmup
Warmup epochs 5
Maximum learning rate 1.5× 104

Batch size 128
Number of epochs 400
Weight decay 0.5× 103

Cutoff radius Å 5
Hidden sizes of MLPs 512
K 12
L 4
L′ 3
λ 0.05

spherical cross-correlation that is rotation-equivariant. To efficiently compute the cross-correlation,
they resort to the fast fourier transformation. The nonlinearity of the networks stems from activation
function over spatial signals. Schütt et al. (2018); Lubbers et al. (2018) make use of the interatomic
distances and atomic property as the inputs so that the output is invariant to the rotation. Gasteiger
et al. (2020); Liu et al. (2021) expand on using pairwise interactions to include angular terms, while
the representation of nodes remains rotationally invariant, as oppose to the steerable vectors in this
paper. PaiNN (Schütt et al., 2021) considers the equivariant embedding beyond the invariant one,
while they just make use of l = 1 type vector.

Relaxing equivariance. Equivariance is a pervasive property in real-world scenarios. However, strict
equivariant models may not always be effective due to noisy or equivariance-breaking features (Wang
et al., 2022). Here, we list some works that investigate the relaxing equivariance, although their
motivations and tasks are different from ours. The work in (van der Ouderaa et al., 2022; Romero &
Lohit, 2022) introduce non-equivariance in group convolutional networks (Cohen & Welling, 2016)
and learn layer-wise levels of equivariance from data. However, these methods are designed for
convolutional neural networks (CNNs) and are not easily applicable to the feedforward architecture
of GNNs. In contrast, the work (Finzi et al., 2021) proposes a method that relaxes equivariance using
residual pathway. While our approach also utilizes the residual pathway, our strategy for achieving
soft equivariance differs significantly. Moreover, these existing methods primarily focus on adjusting
the weight distribution, whereas our approach centers on transforming the input to alleviate the
equivariant constraints imposed on the learnable modules.

21

Published as a conference paper at ICLR 2024

Table 9: Ablation studies for normalization and invariant branch.

Model ID Energy MAE (meV) ↓
Baseline 554
(No norm) 570
(Approximately invariant branch) 635

Table 10: Ablation studies for structure of MLP.

Model ID Energy MAE (meV) ↓
Baseline 554
Var 1 551
Var 2 562
Var 3 550

D DETAILS OF EXPERIMENTS

D.1 IMPLEMENTATION DETAILS

Here, we provide some commonly used configurations that were employed in our comparative
experiments. In HDGNN, the channel size of the embedding is set to 128. The sampling rate of
the distance block is 128. For the FFT sampling in the update block, we use a sampling size of
(2× L+ 1)× (2× L+ 2). The length of the invariant feature fi is set to 256.

During training, we utilize the AdamW optimizer and apply the L1 loss for all experiments. The
HDGNN model is implemented using PyTorch, and the transformations on the sphere are implemented
using the e3nn library.

OC20. For our experiments on the OC20 dataset, we follow the official PyTorch benchmark. The
hyperparameters of HDGNN used in the OC20 experiments are summarized in Table 7. In the
comparative experiments, we evaluate HDGNN on 8 NVIDIA A100 GPUs. In the ablation studies,
we evaluate HDGNN on 4 NVIDIA V100 GPUs.

QM9. We adopt the same data partition as TorchMD-NET (Thölke & Fabritiis, 2022) for our
experiments on the QM9 dataset. The hyperparameters of HDGNN used in the QM9 experiments
are summarized in Table 8. In the QM9 experiments, we set a constant value of cons = 0.1 for the
attention coefficient in equation 11 to manually adjust the ratio of non-equivariant operations. This
constant is multiplied with a1, a2, and a3.

D.2 HYPER-PARAMETERS OF BASELINES

In Table 1, the results of baselines is from (Zitnick et al., 2022). We follow the Open Catalyst Project
framework 2 to construct our experiment. In the QM9 experiments, for most of baselines we directly
use the results from their paper.

E SUPPLEMENTARY EXPERIMENT

In this sectin, we construct ablation experiments to investigate HDGNN comprehensively.

E.1 NORMALIZATION AND INVARIANT BRANCH

We conducted an evaluation to assess the impact of normalization and the invariant branch on
HDGNN. Both components play a crucial role in facilitating the computation of equivariant messages.
In HDGNN, equation 10 is based on the property (u+ v)⊗ b = u⊗ b+ v ⊗ b, but larger radial
values can disrupt this equation during implementation. To address this, we introduce normalization
to control the radial size. The ”No norm” setting refers to the removal of normalization.

2https://github.com/Open-Catalyst-Project/ocp

22

Published as a conference paper at ICLR 2024

Figure 2: We show the trendency of expressiveness, equivariance and generalization. The x-axis is
the ratio of non-equivariant operation. When we increase the ratio, the equivariance (measured by
the negative test MAD) of the whole network decreases as expected. The generalization (measured
by the negative test MAE) increases first and then decreases; the expressiveness (measured by the
negative training MAE) always increases. We use 1/1000 of the original unit to represent the results.

Table 11: Ablation studies for FFT in update block.

Model ID Energy MAE (meV) ↓
Baseline (Both) 554
(Conv) 563
(Corr) 566
(No FFT) 598

Additionally, we investigated the performance of the invariant branch, as discussed in Section 5.2.
We designed a new set of experiments to test one of our arguments: ”If the invariant branch fails
to maintain strict invariance, the performance of HDGNN will significantly degrade.” In these
experiments, we updated the invariant branch with the type-0 vector of xi. From the results presented
in Table 9, we made the following observations: 1. Suitable layer normalization can enhance the
performance of HDGNN; 2. The invariant branch alone cannot introduce approximately invariant
features.

E.2 STRUCTURE OF MLP

The structure of the MLP has a significant impact on the performance of HDGNN. In particular,
we focused on the MLPs in equation 11. We constructed three variants: 1. input-1024-output; 2.
input-256-output; 3. input-512-512-output. The results, presented in Table 10, demonstrate that the
performance of the baseline model is close to saturation.

E.3 UPDATE BLOCK

In these experiments, ”Conv” and ”Corr” represent using only convolution or correlation, respectively.
”No FFT” indicates directly using mi as the new embedding after aggregating the messages mij .
From Table 11, it is evident that the combination of convolution and correlation yields the best results.

E.4 IMPACT OF HYPER-PARAMETERS

We investigate the impact of hyperparameters in this section, and the results are presented in Table 12.
We observe that the number of layers has a relatively significant impact on HDGNN. As mentioned
by Dym & Maron (2021), increasing the number of layers enhances the expressiveness of the model,
which aligns with our experimental findings. However, we do not observe a clear correspondence
between the other hyperparameters and expressiveness in our experiments.

E.5 ATTENTION COEFFICIENTS

We manually adjust the attention coefficients on QM9 µ task where the baseline HDGNN use the
setting C = 64, K = 6, L′ = 3 and L = 4. The results are shown in Figure 2, where we observe
that the best result require both equivariant operations and learnable modules.

23

Published as a conference paper at ICLR 2024

Table 12: Ablation studies for hyper-parameters.

K C L L′ ID Energy MAE (meV) ↓
8 64 6 2 554
8 128 6 2 557

12 64 6 2 548
8 64 4 2 579
8 64 8 2 563
8 64 6 4 551

Table 13: Comparison of training and inference time.

Model Training time (hour/epoch) Inference time (minute/epoch)

SCN 4.5 5.7
HDGNN 4.2 5.5

E.6 TRAINING AND INFERENCE TIME

In this section, we reproduced SCN based on the official code and compared the training and inference
time. The SCN we used is the SOTA model shown in Table 1. All the experiments are conducted on
8 NVIDIA A100 with batch size 56. The results are shown in Table 13.

24

