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A MLP ADAPTATION ON THE SELECTED REPRESENTATION LAYER

MLP head variants. With the backbone frozen and the working representation layer chosen by
HLS, we attach a small MLP head at that layer to improve support to query correspondence at test
time. We evaluate three variants: MO, no MLP head (apply_fc=False); M1, MLP branch present but
frozen (apply_fc=True, zero_init=True; parameters fixed); and M2, a trainable MLP fine tuned at test
time on the selected layer (apply_fc=True). Only the MLP head is updated, keeping the fraction of
updated parameters below 2.7%.

Table A.1. MLP ablation at the layer selected by HLS with the backbone frozen. A
denotes the improvement relative to the row above.

Variant mloU@1 A mloU@5 A
MO: no MLP 65.66 - 75.20 -
M1: MLP frozen 66.33 +0.67 75.78 +0.58
M2: trainable MLP 68.29 +1.96 77.91 +2.13

Analysis. Starting from MO at 65.66 mIoU in one shot and 75.20 mloU in five shot, as shown in
Table [A] adding a frozen residual MLP branch (M1) raises the means to 66.33 and 75.78 mloU,
with gains of 0.67 and 0.58 over MO. This suggests that even a fixed projection stabilizes channel
scales and token mixing at the selected layer. Allowing this compact head to adapt at test time (M2)
further increases accuracy to 68.29 and 77.91 mloU, adding 1.96 and 2.13 over M1. Cumulatively,
M2 improves over MO by 2.63 in one shot and 2.71 in five shot, which correspond to relative gains of
about 4.0% and 3.6%, while keeping the fraction of updated parameters under 2.7%. These gains are
consistent with the Select Regularize Calibrate design. HLS provides a stable representation. The
small MLP recenters and rescales features to reduce support to query mismatch, and the resulting
representations interact more reliably with PGR and PAC. In practice, a single compact trainable
MLP on the selected layer delivers most of the benefit with minimal overhead.

B LoOCAL FUSION AROUND THE ROUTED LAYER

After HLR selects the best single layer £nglc for each episode we form a compact neighborhood U
centered at sng1e and we include the last ViT layer Lo3 to mitigate fragmented shapes. We evaluate
all candidates under the same episodic objective as in Sec. For any U let r, denote the single
layer ETR of layer . We compute the fusion weights and the fused representation as follows:

Wy =

exp( — Bre — dist(¢, la3)/T) U _ Z wp F* B.1)

Y jev exp( — By — dist(j, £23) /)

Here 5 > 0 controls reliance on the data evidence 74, and 7 > 0 is a locality bandwidth that biases
the fusion toward deeper semantically aggregated layers. As 7 — oo the locality term vanishes and
the solution reduces to single layer routing, that is arg mingeyy 7. When evidence spreads across
adjacent layers a moderate 7 balances data evidence and semantic aggregation and stabilizes routing.

Leu

Table B.1. Local fusion centered at the routed layer. We report average mloU for the one shot and
five shot settings, along with the changes relative to using L3 alone and to excluding Los.

Variant mloU avg. Avs. Laog A vs. no Laos
1 shot 5 shot 5 shot 5 shot
FO4 Los, 7=0.0 66.58 75.49 0.00 0.00
FO4 Los, 7=2.0 68.29  77.85 2.36 2.36
FO%4no Los, pivot=last, 7=0.0 66.45 75.29 —0.20 0.00
F%+4no Los, pivot=£*, 7=2.0 66.83 76.34 0.85 1.05

Analysis. Table compares single layer routing with local fusion. Local fusion centered at
Los with 7=2.0 outperforms using Ly3 alone on both one shot and five shot averages. Excluding
Los from the candidate set reduces performance. Redirecting fusion to the routed layer £* recovers
part of the performance drop, yet it remains inferior to configurations that include Lo3. By dataset,
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Table B.2. By dataset mIoU comparing Lo3 alone and local fusion. Including L3 in the candidate
pool and setting 7=2.0 yields the highest averages, with the largest gains on DeepGlobe and ISIC.

Backbone (DINOV3) DeepGlobe ISIC Chest X-ray FSS-1000 Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
FO4 Los, 7=2.0 44.59 63.43 61.17 73.64 85.80 87.88 81.59 86.69 68.29 77.91
FO+4 Los, 7=0.0 42.90 61.49 55.17 66.53 87.06 88.29 81.20 85.63 66.58 75.49

FO4no Laa, pivot=last, 7=0.0  42.87 61.43 54.84 66.00 87.01 88.26 81.09 85.47 66.45 75.29
F° 410 Lag, pivot=£*, 7=2.0 42.32 63.11 56.41 68.25 87.44 88.41 81.16 85.58 66.83 76.34

Table[B.2Jreports larger gains on DeepGlobe and ISIC, consistent with evidence drift across episodes
and the need for deeper semantic aggregation. Therefore, we adopt local fusion with 7=2.0 and
retain L3 in the candidate pool by default.

C PIXELWISE ADAPTIVE CALIBRATION: DETAILS

Despite HLS and PGR, residual errors persist along thin boundaries, slender structures, and low
contrast regions. With the backbone frozen, PAC adds three lightweight residual branches in the
logit domain, coupled to the routed layer £* and to the patch attention calibrated by PGR.

Feature similarity for semantic alignment. Let F,(z) denote the query feature at £*. Foreground
and background prototypes, P¢; and Py, are computed by masked averaging over support features
at /*. We define the prototype difference logit as

Liim () = Tsim [cos (Fq(r), Pfg) — cos(Fq(x)7 Pbg)] , (C.1)
where Ty, is a small temperature. This branch recovers missed regions and sharpens local focus.

One hop attention for spatial consistency. Let A denote the row normalized patch to patch atten-
tion at £* after PGR. Given the base foreground probability po(z) = o(fo(x)), we propagate once
on the patch grid as

gattn(x) = Tattn[(Ava)wL (CZ)
This elongates responses along the object extent and suppresses spurious long range peaks, with
limited impact on the global distribution.

Image vector for appearance correction. Let v(x) denote a shallow appearance embedding for
color and texture as

limg (Z) = Timg [cos (v(m), Ufg) — cos (v(x), ubg)] , (C.3)
Here ug, and uy, are image level prototypes, and 7y, is a small temperature. This branch provides
light global denoising and prevents over shrinking.

The final logit is a linear combination in the logit domain:

eﬁnal(x) = EO(J)) + Wsim Ksim(x) + Wattn gattn(x) + Wimg Kimg(x)v (C4)
where {y(x) is the base logit from the selected representation and w. are fixed scalar weights. A sin-
gle step refine vote gate applies residuals only when the estimated gain is positive, adding negligible

overhead. Together, the three stages realize a hierarchical Select, Regularize, and Calibrate pipeline
that adapts at test time with a frozen backbone.

D ADAPTIVE GATING FOR PIXELWISE ADAPTIVE CALIBRATION

After HLS and PGR, residual errors concentrate along thin boundaries and in low contrast regions.
Pixelwise Adaptive Calibration (PAC) adds three lightweight residual branches in the logit domain,
namely feature similarity, one hop attention propagation, and image appearance, while the backbone
remains frozen.

To avoid negative transfer, we enable PAC only when leave one out voting on the supports predicts
a positive gain. Concretely, we treat each support as a pseudo query, compute the AmIoU with and
without PAC, and enable PAC on the true query if at least T" votes are positive. In the one shot case,
we synthesize two augmented views of the support to obtain two votes.
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Table D.1. Effect of PAC gating thresholds. We report average mIoU (%) and the trigger rate of
the automatic gate. The best policy is to keep the gate always on for one shot, and to use automatic
gating with threshold 2/5 for five shot.

Policy 1 shot 5 shot Trigger rate (auto)
refine = off 67.54 76.67 -

auto, T'=1 68.02 - 56.32

auto, T'=2 - 77.91 74.57
auto, T'=3

- 77.22 59.44
always on 68.29 77.80 -

Table D.2. By dataset mloU and gate trigger rates. The recommended setting (one shot always on,
five shot automatic gating with threshold 2/5) yields the highest average mIoU.

DeepGlobe ISIC Chest X-ray FSS-1000 Average Avg. trigger rate (%)
Setting 1shot 5shot 1shot 5shot 1shot 5shot 1shot 5shot 1shot 5shot 1 shot 5 shot

1 shot auto, 5 shot always 44.35 63.51 60.28 T73.72 86.27 87.22 81.19 86.73 68.02 77.80
Trigger rate (%) 55.83 - 50.00 - 19.50 - 99.95 - -

1 shot always, 5 shot auto 2/5  44.59  63.43 61.17 73.64 85.80 87.88 81.59 86.69 68.29 77.91 - -
Trigger rate (%) - 25.67 - 97.83 - 25.67 - 84.46 - - 74.57

1 shot always, 5 shot auto 3/5 44.59 63.41 61.17 73.40 85.80 87.95 81.59 86.63 68.29 77.85 - -
Trigger rate (%) - 5.83 - 69.00 - 5.83 - 74.92 - 59.44

56.32

Analysis. Relative to HLS at 76.7 mloU, PGR raises the mean to 77.3 (+0.6), PAC to 77.2 (+0.5),
and using PGR together with PAC yields 77.9 (+1.2), confirming complementarity (see [Table 2).
For PAC gating, shows that in the one shot setting the best policy is to keep PAC on for
all episodes (68.29 mloU). In the five shot setting, the automatic gate with threshold 7T'=2 out of
5 achieves the highest mean mloU (77.91) with a moderate trigger rate (74.6%), whereas 7'=3 out
of 5 reduces the trigger rate and lowers accuracy to 77.22 to 77.85 mloU. The per dataset study in
Table D.2| supports the same recommendation: one shot with PAC on for all episodes and five shot
with automatic gating at 7'=2 out of 5.

Decomposing PAC on top of HLS plus PGR at 77.27 mloU, the similarity residual /g;,,, the one hop
attention propagation {,t¢y, and the image appearance cue i, contribute +0.30, +0.22, and +0.18
mloU. Using all three reaches 77.91 mloU, a further +0.64 (see [Table 3)). Together, HLS stabilizes
the routed layer, PGR sharpens locality, and PAC corrects pixel level logits, yielding a cumulative
gain under a frozen backbone.

E ALTERNATIVE LAYER SELECTION CRITERIA AND DINOV2 RESULTS

E.1 EPISODE NOTATION AND SETTING

Let ¢ € C index a ViT layer, and let Ff;(x) € R denote the query feature at pixel 2 from layer
£. Support features are pooled using masks to form foreground and background prototypes Pfg and

Pﬁg. Given a baseline foreground probability po(x) € [0, 1] for the query, we build soft masked
query prototypes as

Q< ZM@FE) o0 | Tl nl@) Fila)

o Po(x) > (1= po(x))

Unless noted otherwise, all scalar layer scores are range normalized within each episode across C,
so different selectors are comparable:

(E.1)

- Sy —min;cc S; _
50 = JEC . e=10"%. (E.2)
maXjec S — MiNjec S5 + €

E.2 SELECTORS OTHER THAN HLS: DEFINITIONS, INTUITION, AND CAVEATS

We group the non episodic selectors in Table ] into two families: a heuristic static rule built from
prototype and mask scores, and gradient based proxies. Unless noted, all scalar layer scores are
range normalized across the candidate set C within each episode. Prototypes and the baseline mask
po follow the definitions in|Sec. E
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Table E.1. Notation for layer selection in the episodic setting. All scalar layer scores are range
normalized across the candidate set C unless noted.

Symbol Description

ltecC Candidate ViT layer index

Ff;(at) € R*  Query feature at pixel « from layer ¢

P, Pﬁg Support foreground and background prototypes at layer £
Qfy»s Qﬁg Soft masked query prototypes (see Eq. equation

po(z) € [0,1] Baseline foreground probability on the query
mIoUgp(¢) Support only pseudo query mloU at layer £ (risk proxy)

Static heuristic selector (Static-Max). This rule blends three normalized scores, namely seman-
tic agreement, structure separation, and a complexity term combining texture and uncertainty, and
selects the layer with the largest weighted sum:

Chaic = argmax [ o Seem(£) + B'Sse(€) +4'C(0) ], o, B,¥>0,ad+8 ++4 =1. (E3)
LeC

Caveat: weights are domain and task specific, and the objective is a surrogate not directly tied to
episode level mlIoU risk.

Component scores of Static-Max.

* Semantic agreement
Ssem(f) = & cos(Pfg7 Qfg) +(1—-a) cos(Pf;g, Qﬁg), a € [0,1]. (E.4)

Intuition: encourages higher agreement between support and query prototypes. Caveat:
depends on the baseline mask pg, which can be biased under shift.

* Structure separation

Ser(f) =1 — %[cos(Qfg, Qf;g) + cos(Pfg,Pf)g)] ) (E.5)

Intuition: encourages foreground and background orthogonality in the query and support
spaces. Caveat: measures feature geometry rather than final mask quality.

¢ Texture and uncertainty complexity
C(¢) = Var(Qf,) + Ent(po), Ent(po) = — gy >_[pologpo + (1 — po) log(1 — po)].

(E.6)
Here Var(-) denotes the per dimension variance of query features relative to the corre-
sponding prototype, weighted by pg. Caveat: an indirect proxy that may penalize layers
that are confident and correct.

Gradient based proxies. These rules favor layers with large loss sensitivity or sharp changes
across adjacent layers.

Gradient magnitude (Grad-Max).

(E.7)

*
egrad = argmax HVF(‘; Lbase
tec 2

Intuition: select the layer to which the base loss is most sensitive. Caveat: residual paths and
normalization in ViTs can amplify gradients in later layers, biasing the choice.

Interlayer gradient change (Grad A-Max).

Chgraa = arg max H HVFg Lpase (E.8)

- HVFchaSC
ecC 2 4

M

Intuition: detect transition points across adjacent layers. Caveat: still a gradient scale proxy, only
weakly coupled to episode level decisions.

Implementation notes. All rules reuse a single forward pass of backbone activations. Gradient
based proxies require one backward pass without parameter updates. The per episode cost is domi-
nated by a single backpropagation through the frozen backbone.
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E.3 TASK ALIGNED HLS (ETR)

We select the routed layer by minimizing an episode level selection risk:

Riayer(€) = 1 — miougp(l), s = argmin Ryyye(¢) = argmaxmiougp(£). (E.9)
lec lec

Here mioug,p(¢) is computed within the episode by a leave one out procedure at layer ¢. Each sup-
port image is treated as a pseudo query and segmented using prototypes formed from the remaining
supports, and the result is averaged over the K supports.

Rationale. The criterion in equation directly measures episode level matching risk at the rep-
resentation to be adapted, rather than optimizing a handcrafted surrogate. This makes it robust to
layer level transfer variability and domain shift. In practice, HLS is parameter free, reuses the same
forward features, and adds negligible overhead.

E.4 SELECTOR ANALYSIS AND TAKEAWAY

Why the three non episodic selectors underperform. Table[d compares per episode layer selectors
with a frozen backbone. The Static Max rule blends three normalized cues and selects the layer with
the largest ' Sem(€) + B'Sqe(£) + ' C(£) (see Egs. equation [E.4] to equation [E.6). These scores
measure representation quality in feature space, including semantic agreement, structure separation,
and texture or uncertainty, but they do not measure task fit for the episode. They lack episode
level feedback and are therefore unstable across domains. Specifically, S, inherits bias from the
baseline mask pg, Sy, rewards orthogonality that does not guarantee correct masks, and C'(¢) can
penalize layers that are confident and correct. The mixture weights o, 3’,~’ are domain specific.
Consequently, Static Max averages 71.9 mloU.

Gradient based proxies capture loss sensitivity rather than alignment. Grad Max selects the layer
with the largest gradient norm (see[Eq. (E.7)), and GradA Max looks for sharp inter layer gradient
changes (see [Eq. (E.8)). In ViT backbones such as DINOV2 and DINOV3, blocks are architec-
turally homogeneous and connected by residual paths and layer normalization. This can cause gra-
dients to grow toward the last blocks, so both rules tend to collapse to deep layers irrespective of the
episode semantics. This Grad CAM style assumption therefore fails, and the selected layer often has
the largest perturbation rather than being the most suitable for segmentation. These proxies correlate
weakly with support and query matching quality and yield 73.1 and 73.2 mloU on average.

episode level selection risk {j;,q = arg mingec (1 — MI0Usyp (E)) (see equation . It performs
a self prediction evaluation within the episode. Each support is treated as a pseudo query and is
segmented using prototypes from the remaining supports, and the score is the support only mloU at
layer ¢. This provides dynamic, episode aware feedback aligned with the target objective, with low
variance, no extra parameters, and negligible overhead. HLS reaches 76.7 mloU, which is +4.8 over
Static Max and +3.5 over the best gradient proxy. The gain is especially large on ISIC (from 48.2
to 73.6 mloU, +25.4), and the gap widens on other VFM backbones such as DINOV2.

Why HLS (ETR) is better. Our HLS uses a task aligned criterion that directly minimizes the
E3)

E.5 DINOV2: COMPONENT ABLATION (1-/5-SHOT) AND TAKEAWAYS

Table E.2. Component ablation on DINOv2 (average mloU). Ay denotes the improvement over
the VO baseline, and A, denotes the improvement relative to the row above. Best scores in bold.

Setting Avg. 1-shot Avg. 5-shot Avo (1s/5s) Aprey (1s/55)
V0 baseline (fusion=off, refine=off) 57.03 68.49 0.00/0.00 0.00/0.00

+ HLS (enable fusion and routing) 60.34 72.64 +3.31/+4.15 +3.31/+4.15
+ PGR (Gaussian prior for attention) 61.10 73.28 +4.07 / +4.79 +0.76 / +0.64
+ PAC (auto refine) 62.58 73.42 +5.55/+4.93 +1.48/+0.14

Analysis. The sequence Select — Regularize — Calibrate yields monotonic improvements. HLS
provides the dominant gain by stabilizing the chosen adaptation layer for each episode. PGR reduces
attention noise, such as spurious far field peaks, while preserving global coverage. PAC then corrects
residual artifacts along thin boundaries and in low contrast regions. Gains are larger in the one shot
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regime, where supervision is scarcer, which is consistent with the design intent. These results show
that the hierarchical refinements generalize from DINOv3 to DINOv2 and to other VFMs, indicating
effectiveness that is agnostic to the backbone.

Practical remarks. All selectors reuse cached features. HLS uses pseudo query scoring on the
support only and therefore adds negligible overhead. PGR has no trainable parameters. PAC op-
erates as a lightweight residual fusion and is gated automatically in five shot episodes. Conse-
quently, the overall parameter and runtime budgets remain low while providing improvements that
are aligned with the task.

F DISCLOSURE OF LARGE LANGUAGE MODEL (LLM) USAGE

We used large language models (LLMs) only to assist with writing. Specifically, LLMs were em-
ployed to polish wording, improve clarity, and refine the presentation (grammar, coherence, and
flow) of certain sections. All scientific ideas, methodology, experiments, analyses, and conclusions
were conceived and executed exclusively by the authors. LLM assistance was limited to language-
related edits and suggestions. All outputs were reviewed and revised by the authors. The use of
LLMs did not contribute to the research design, data collection, data analysis, or the intellectual
content of the findings.
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