

756 A MLP ADAPTATION ON THE SELECTED REPRESENTATION LAYER  
757

758 **MLP head variants.** With the backbone frozen and the working representation layer chosen by  
759 HLS, we attach a small MLP head at that layer to improve support to query correspondence at test  
760 time. We evaluate three variants: M0, no MLP head (apply\_fc=False); M1, MLP branch present but  
761 frozen (apply\_fc=True, zero\_init=True; parameters fixed); and M2, a trainable MLP fine tuned at test  
762 time on the selected layer (apply\_fc=True). Only the MLP head is updated, keeping the fraction of  
763 updated parameters below 2.7%.

764 Table A.1. MLP ablation at the layer selected by HLS with the backbone frozen.  $\Delta$   
765 denotes the improvement relative to the row above.

| Variant           | mIoU@1       | $\Delta$     | mIoU@5       | $\Delta$     |
|-------------------|--------------|--------------|--------------|--------------|
| M0: no MLP        | 65.66        | –            | 75.20        | –            |
| M1: MLP frozen    | 66.33        | +0.67        | 75.78        | +0.58        |
| M2: trainable MLP | <b>68.29</b> | <b>+1.96</b> | <b>77.91</b> | <b>+2.13</b> |

772 **Analysis.** Starting from M0 at 65.66 mIoU in one shot and 75.20 mIoU in five shot, as shown in  
773 Table A, adding a frozen residual MLP branch (M1) raises the means to 66.33 and 75.78 mIoU,  
774 with gains of 0.67 and 0.58 over M0. This suggests that even a fixed projection stabilizes channel  
775 scales and token mixing at the selected layer. Allowing this compact head to adapt at test time (M2)  
776 further increases accuracy to 68.29 and 77.91 mIoU, adding 1.96 and 2.13 over M1. Cumulatively,  
777 M2 improves over M0 by 2.63 in one shot and 2.71 in five shot, which correspond to relative gains of  
778 about 4.0% and 3.6%, while keeping the fraction of updated parameters under 2.7%. These gains are  
779 consistent with the Select Regularize Calibrate design. HLS provides a stable representation. The  
780 small MLP recenters and rescales features to reduce support to query mismatch, and the resulting  
781 representations interact more reliably with PGR and PAC. In practice, a single compact trainable  
782 MLP on the selected layer delivers most of the benefit with minimal overhead.

783 B LOCAL FUSION AROUND THE ROUTED LAYER  
784

785 After HLR selects the best single layer  $\ell_{\text{single}}$  for each episode we form a compact neighborhood  $U$   
786 centered at  $\ell_{\text{single}}$  and we include the last ViT layer  $L_{23}$  to mitigate fragmented shapes. We evaluate  
787 all candidates under the same episodic objective as in Sec. 3.2.1. For any  $U$  let  $r_\ell$  denote the single  
788 layer ETR of layer  $\ell$ . We compute the fusion weights and the fused representation as follows:

$$w_\ell = \frac{\exp(-\beta r_\ell - \text{dist}(\ell, \ell_{23})/\tau)}{\sum_{j \in U} \exp(-\beta r_j - \text{dist}(j, \ell_{23})/\tau)}, \quad F^U = \sum_{\ell \in U} w_\ell F^\ell, \quad (\text{B.1})$$

793 Here  $\beta > 0$  controls reliance on the data evidence  $r_\ell$ , and  $\tau > 0$  is a locality bandwidth that biases  
794 the fusion toward deeper semantically aggregated layers. As  $\tau \rightarrow \infty$  the locality term vanishes and  
795 the solution reduces to single layer routing, that is  $\arg \min_{\ell \in U} r_\ell$ . When evidence spreads across  
796 adjacent layers a moderate  $\tau$  balances data evidence and semantic aggregation and stabilizes routing.

797 Table B.1. Local fusion centered at the routed layer. We report average mIoU for the one shot and  
798 five shot settings, along with the changes relative to using  $L_{23}$  alone and to excluding  $L_{23}$ .

| Variant                                                  | mIoU avg.    |              | $\Delta$ vs. $L_{23}$ | $\Delta$ vs. no $L_{23}$ |
|----------------------------------------------------------|--------------|--------------|-----------------------|--------------------------|
|                                                          | 1 shot       | 5 shot       | 5 shot                | 5 shot                   |
| $F^0 + L_{23}, \tau=0.0$                                 | 66.58        | 75.49        | 0.00                  | 0.00                     |
| $F^0 + L_{23}, \tau=2.0$                                 | <b>68.29</b> | <b>77.85</b> | <b>2.36</b>           | <b>2.36</b>              |
| $F^0 + \text{no } L_{23}, \text{pivot=last}, \tau=0.0$   | 66.45        | 75.29        | -0.20                 | 0.00                     |
| $F^0 + \text{no } L_{23}, \text{pivot}=\ell^*, \tau=2.0$ | 66.83        | 76.34        | 0.85                  | 1.05                     |

807 **Analysis.** Table B.1 compares single layer routing with local fusion. Local fusion centered at  
808  $L_{23}$  with  $\tau=2.0$  outperforms using  $L_{23}$  alone on both one shot and five shot averages. Excluding  
809  $L_{23}$  from the candidate set reduces performance. Redirecting fusion to the routed layer  $\ell^*$  recovers  
part of the performance drop, yet it remains inferior to configurations that include  $L_{23}$ . By dataset,

810  
811 Table B.2. By dataset mIoU comparing  $L_{23}$  alone and local fusion. Including  $L_{23}$  in the candidate  
812 pool and setting  $\tau=2.0$  yields the highest averages, with the largest gains on DeepGlobe and ISIC.  
813

| Backbone (DINOv3)                                        | DeepGlobe    |              | ISIC         |              | Chest X-ray  |              | FSS-1000     |              | Average      |              |
|----------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                                          | 1 shot       | 5 shot       |
| $F^0 + L_{23}, \tau=2.0$                                 | <b>44.59</b> | <b>63.43</b> | <b>61.17</b> | <b>73.64</b> | 85.80        | 87.88        | <b>81.59</b> | <b>86.69</b> | <b>68.29</b> | <b>77.91</b> |
| $F^0 + L_{23}, \tau=0.0$                                 | 42.90        | 61.49        | 55.17        | 66.53        | 87.06        | 88.29        | 81.20        | 85.63        | 66.58        | 75.49        |
| $F^0 + \text{no } L_{23}, \text{pivot=last}, \tau=0.0$   | 42.87        | 61.43        | 54.84        | 66.00        | 87.01        | 88.26        | 81.09        | 85.47        | 66.45        | 75.29        |
| $F^0 + \text{no } L_{23}, \text{pivot}=\ell^*, \tau=2.0$ | 42.32        | 63.11        | 56.41        | 68.25        | <b>87.44</b> | <b>88.41</b> | 81.16        | 85.58        | 66.83        | 76.34        |

818  
819 Table B.2 reports larger gains on DeepGlobe and ISIC, consistent with evidence drift across episodes  
820 and the need for deeper semantic aggregation. Therefore, we adopt local fusion with  $\tau=2.0$  and  
821 retain  $L_{23}$  in the candidate pool by default.

## C PIXELWISE ADAPTIVE CALIBRATION: DETAILS

825 Despite HLS and PGR, residual errors persist along thin boundaries, slender structures, and low  
826 contrast regions. With the backbone frozen, PAC adds three lightweight residual branches in the  
827 logit domain, coupled to the routed layer  $\ell^*$  and to the patch attention calibrated by PGR.

828 **Feature similarity for semantic alignment.** Let  $\mathbf{F}_q(x)$  denote the query feature at  $\ell^*$ . Foreground  
829 and background prototypes,  $\mathbf{P}_{\text{fg}}$  and  $\mathbf{P}_{\text{bg}}$ , are computed by masked averaging over support features  
830 at  $\ell^*$ . We define the prototype difference logit as

$$\ell_{\text{sim}}(x) = \tau_{\text{sim}} [\cos(\mathbf{F}_q(x), \mathbf{P}_{\text{fg}}) - \cos(\mathbf{F}_q(x), \mathbf{P}_{\text{bg}})], \quad (\text{C.1})$$

832 where  $\tau_{\text{sim}}$  is a small temperature. This branch recovers missed regions and sharpens local focus.

835 **One hop attention for spatial consistency.** Let  $\tilde{A}$  denote the row normalized patch to patch attention  
836 at  $\ell^*$  after PGR. Given the base foreground probability  $p_0(x) = \sigma(\ell_0(x))$ , we propagate once  
837 on the patch grid as

$$\ell_{\text{attn}}(x) = \tau_{\text{attn}}[(\tilde{A} p_0)_x], \quad (\text{C.2})$$

839 This elongates responses along the object extent and suppresses spurious long range peaks, with  
840 limited impact on the global distribution.

841 **Image vector for appearance correction.** Let  $\mathbf{v}(x)$  denote a shallow appearance embedding for  
842 color and texture as

$$\ell_{\text{img}}(x) = \tau_{\text{img}} [\cos(\mathbf{v}(x), \mathbf{u}_{\text{fg}}) - \cos(\mathbf{v}(x), \mathbf{u}_{\text{bg}})], \quad (\text{C.3})$$

845 Here  $\mathbf{u}_{\text{fg}}$  and  $\mathbf{u}_{\text{bg}}$  are image level prototypes, and  $\tau_{\text{img}}$  is a small temperature. This branch provides  
846 light global denoising and prevents over shrinking.

847 **The final logit** is a linear combination in the logit domain:

$$\ell_{\text{final}}(x) = \ell_0(x) + w_{\text{sim}} \ell_{\text{sim}}(x) + w_{\text{attn}} \ell_{\text{attn}}(x) + w_{\text{img}} \ell_{\text{img}}(x), \quad (\text{C.4})$$

850 where  $\ell_0(x)$  is the base logit from the selected representation and  $w$  are fixed scalar weights. A sin-  
851 gle step refine vote gate applies residuals only when the estimated gain is positive, adding negligible  
852 overhead. Together, the three stages realize a hierarchical Select, Regularize, and Calibrate pipeline  
853 that adapts at test time with a frozen backbone.

## D ADAPTIVE GATING FOR PIXELWISE ADAPTIVE CALIBRATION

857 After HLS and PGR, residual errors concentrate along thin boundaries and in low contrast regions.  
858 Pixelwise Adaptive Calibration (PAC) adds three lightweight residual branches in the logit domain,  
859 namely feature similarity, one hop attention propagation, and image appearance, while the backbone  
860 remains frozen.

861 To avoid negative transfer, we enable PAC only when leave one out voting on the supports predicts  
862 a positive gain. Concretely, we treat each support as a pseudo query, compute the  $\Delta\text{mIoU}$  with and  
863 without PAC, and enable PAC on the true query if at least  $T$  votes are positive. In the one shot case,  
we synthesize two augmented views of the support to obtain two votes.

864  
 865  
 866  
 Table D.1. Effect of PAC gating thresholds. We report average mIoU (%) and the trigger rate of  
 the automatic gate. The best policy is to keep the gate always on for one shot, and to use automatic  
 gating with threshold 2/5 for five shot.

| Policy       | 1 shot       | 5 shot       | Trigger rate (auto) |
|--------------|--------------|--------------|---------------------|
| refine = off | 67.54        | 76.67        | -                   |
| auto, $T=1$  | 68.02        | -            | 56.32               |
| auto, $T=2$  | -            | <b>77.91</b> | <b>74.57</b>        |
| auto, $T=3$  | -            | 77.22        | 59.44               |
| always on    | <b>68.29</b> | 77.80        | -                   |

872  
 873  
 874  
 Table D.2. By dataset mIoU and gate trigger rates. The recommended setting (one shot always on,  
 five shot automatic gating with threshold 2/5) yields the highest average mIoU.

| Setting                        | DeepGlobe    |              | ISIC         |              | Chest X-ray  |              | FSS-1000     |              | Average      |              | Avg. trigger rate (%) |              |
|--------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------------|--------------|
|                                | 1 shot       | 5 shot       | 1 shot                | 5 shot       |
| 1 shot auto, 5 shot always     | 44.35        | 63.51        | 60.28        | 73.72        | 86.27        | 87.22        | 81.19        | 86.73        | 68.02        | 77.80        | -                     | -            |
| Trigger rate (%)               | <b>55.83</b> | -            | <b>50.00</b> | -            | <b>19.50</b> | -            | <b>99.95</b> | -            | -            | -            | <b>56.32</b>          | -            |
| 1 shot always, 5 shot auto 2/5 | 44.59        | 63.43        | 61.17        | 73.64        | 85.80        | 87.88        | 81.59        | 86.69        | <b>68.29</b> | <b>77.91</b> | -                     | -            |
| Trigger rate (%)               | -            | <b>25.67</b> | -            | <b>97.83</b> | -            | <b>25.67</b> | -            | <b>84.46</b> | -            | -            | -                     | <b>74.57</b> |
| 1 shot always, 5 shot auto 3/5 | 44.59        | 63.41        | 61.17        | 73.40        | 85.80        | 87.95        | 81.59        | 86.63        | <b>68.29</b> | 77.85        | -                     | -            |
| Trigger rate (%)               | -            | 5.83         | -            | 69.00        | -            | 5.83         | -            | 74.92        | -            | -            | -                     | 59.44        |

883  
 884  
 885  
 886  
 887  
 888  
 889  
 890  
**Analysis.** Relative to HLS at 76.7 mIoU, PGR raises the mean to 77.3 (+0.6), PAC to 77.2 (+0.5),  
 and using PGR together with PAC yields 77.9 (+1.2), confirming complementarity (see Table 2).  
 For PAC gating, Table D.1 shows that in the one shot setting the best policy is to keep PAC on for  
 all episodes (68.29 mIoU). In the five shot setting, the automatic gate with threshold  $T=2$  out of  
 5 achieves the highest mean mIoU (77.91) with a moderate trigger rate (74.6%), whereas  $T=3$  out  
 of 5 reduces the trigger rate and lowers accuracy to 77.22 to 77.85 mIoU. The per dataset study in  
 Table D.2 supports the same recommendation: one shot with PAC on for all episodes and five shot  
 with automatic gating at  $T=2$  out of 5.

891  
 892  
 893  
 894  
 895  
 Decomposing PAC on top of HLS plus PGR at 77.27 mIoU, the similarity residual  $\ell_{\text{sim}}$ , the one hop  
 attention propagation  $\ell_{\text{attn}}$ , and the image appearance cue  $\ell_{\text{img}}$  contribute +0.30, +0.22, and +0.18  
 mIoU. Using all three reaches 77.91 mIoU, a further +0.64 (see Table 3). Together, HLS stabilizes  
 the routed layer, PGR sharpens locality, and PAC corrects pixel level logits, yielding a cumulative  
 gain under a frozen backbone.

## 896 E ALTERNATIVE LAYER SELECTION CRITERIA AND DINOV2 RESULTS

### 897 E.1 EPISODE NOTATION AND SETTING

900  
 901  
 902  
 903  
 904  
 Let  $\ell \in \mathcal{C}$  index a ViT layer, and let  $\mathbf{F}_q^\ell(x) \in \mathbb{R}^{d_\ell}$  denote the query feature at pixel  $x$  from layer  
 $\ell$ . Support features are pooled using masks to form foreground and background prototypes  $\mathbf{P}_{\text{fg}}^\ell$  and  
 $\mathbf{P}_{\text{bg}}^\ell$ . Given a baseline foreground probability  $p_0(x) \in [0, 1]$  for the query, we build soft masked  
 query prototypes as

$$905 \quad \mathbf{Q}_{\text{fg}}^\ell = \frac{\sum_x p_0(x) \mathbf{F}_q^\ell(x)}{\sum_x p_0(x)}, \quad \mathbf{Q}_{\text{bg}}^\ell = \frac{\sum_x (1 - p_0(x)) \mathbf{F}_q^\ell(x)}{\sum_x (1 - p_0(x))}. \quad (\text{E.1})$$

907  
 908  
 909  
 Unless noted otherwise, all scalar layer scores are range normalized *within each episode* across  $\mathcal{C}$ ,  
 so different selectors are comparable:

$$910 \quad \tilde{s}_\ell = \frac{s_\ell - \min_{j \in \mathcal{C}} s_j}{\max_{j \in \mathcal{C}} s_j - \min_{j \in \mathcal{C}} s_j + \varepsilon}, \quad \varepsilon = 10^{-8}. \quad (\text{E.2})$$

### 913 E.2 SELECTORS OTHER THAN HLS: DEFINITIONS, INTUITION, AND CAVEATS

914  
 915  
 916  
 917  
 We group the non episodic selectors in Table 4 into two families: a heuristic static rule built from  
 prototype and mask scores, and gradient based proxies. Unless noted, *all scalar layer scores are*  
*range normalized across the candidate set  $\mathcal{C}$  within each episode*. Prototypes and the baseline mask  
 $p_0$  follow the definitions in Sec. E.

918 Table E.1. Notation for layer selection in the episodic setting. All scalar layer scores are range  
 919 normalized across the candidate set  $\mathcal{C}$  unless noted.

| 920 | 921 | 922 | 923 | 924 | 925 | 926 | 927 | Symbol                                                     | Description                                                  |
|-----|-----|-----|-----|-----|-----|-----|-----|------------------------------------------------------------|--------------------------------------------------------------|
|     |     |     |     |     |     |     |     | $\ell \in \mathcal{C}$                                     | Candidate ViT layer index                                    |
|     |     |     |     |     |     |     |     | $\mathbf{F}_q^\ell(x) \in \mathbb{R}^{d_\ell}$             | Query feature at pixel $x$ from layer $\ell$                 |
|     |     |     |     |     |     |     |     | $\mathbf{P}_{\text{fg}}^\ell, \mathbf{P}_{\text{bg}}^\ell$ | Support foreground and background prototypes at layer $\ell$ |
|     |     |     |     |     |     |     |     | $\mathbf{Q}_{\text{fg}}^\ell, \mathbf{Q}_{\text{bg}}^\ell$ | Soft masked query prototypes (see Eq. equation E.1)          |
|     |     |     |     |     |     |     |     | $p_0(x) \in [0, 1]$                                        | Baseline foreground probability on the query                 |
|     |     |     |     |     |     |     |     | $\text{mIoU}_{\text{sup}}(\ell)$                           | Support only pseudo query mIoU at layer $\ell$ (risk proxy)  |

928 **Static heuristic selector (Static-Max).** This rule blends three normalized scores, namely semantic  
 929 agreement, structure separation, and a complexity term combining texture and uncertainty, and  
 930 selects the layer with the largest weighted sum:

$$931 \quad \ell_{\text{static}}^* = \arg \max_{\ell \in \mathcal{C}} [\alpha' S_{\text{sem}}(\ell) + \beta' S_{\text{str}}(\ell) + \gamma' C(\ell)], \quad \alpha', \beta', \gamma' \geq 0, \alpha' + \beta' + \gamma' = 1. \quad (\text{E.3})$$

933 *Caveat:* weights are domain and task specific, and the objective is a surrogate not directly tied to  
 934 episode level mIoU risk.

936 **Component scores of Static-Max.**

937 

- 938 **Semantic agreement**

$$939 \quad S_{\text{sem}}(\ell) = \alpha \cos(\mathbf{P}_{\text{fg}}^\ell, \mathbf{Q}_{\text{fg}}^\ell) + (1 - \alpha) \cos(\mathbf{P}_{\text{bg}}^\ell, \mathbf{Q}_{\text{bg}}^\ell), \quad \alpha \in [0, 1]. \quad (\text{E.4})$$

940 *Intuition:* encourages higher agreement between support and query prototypes. *Caveat:*  
 941 depends on the baseline mask  $p_0$ , which can be biased under shift.

942 

- 943 **Structure separation**

$$944 \quad S_{\text{str}}(\ell) = 1 - \frac{1}{2} [\cos(\mathbf{Q}_{\text{fg}}^\ell, \mathbf{Q}_{\text{bg}}^\ell) + \cos(\mathbf{P}_{\text{fg}}^\ell, \mathbf{P}_{\text{bg}}^\ell)]. \quad (\text{E.5})$$

945 *Intuition:* encourages foreground and background orthogonality in the query and support  
 946 spaces. *Caveat:* measures feature geometry rather than final mask quality.

947 

- 948 **Texture and uncertainty complexity**

$$949 \quad C(\ell) = \text{Var}(\mathbf{Q}_{\text{fg}}^\ell) + \text{Ent}(p_0), \quad \text{Ent}(p_0) = -\frac{1}{|\mathcal{Q}|} \sum_x [p_0 \log p_0 + (1 - p_0) \log(1 - p_0)]. \quad (\text{E.6})$$

951 Here  $\text{Var}(\cdot)$  denotes the per dimension variance of query features relative to the corre-  
 952 sponding prototype, weighted by  $p_0$ . *Caveat:* an indirect proxy that may penalize layers  
 953 that are confident and correct.

955 **Gradient based proxies.** These rules favor layers with large loss sensitivity or sharp changes  
 956 across adjacent layers.

957 **Gradient magnitude (Grad-Max).**

$$959 \quad \ell_{\text{grad}}^* = \arg \max_{\ell \in \mathcal{C}} \left\| \nabla_{\mathbf{F}_q^\ell} \mathcal{L}_{\text{base}} \right\|_2. \quad (\text{E.7})$$

961 *Intuition:* select the layer to which the base loss is most sensitive. *Caveat:* residual paths and  
 962 normalization in ViTs can amplify gradients in later layers, biasing the choice.

963 **Interlayer gradient change (Grad $\Delta$ -Max).**

$$965 \quad \ell_{\Delta \text{grad}}^* = \arg \max_{\ell \in \mathcal{C}} \left\| \left\| \nabla_{\mathbf{F}_q^\ell} \mathcal{L}_{\text{base}} \right\|_2 - \left\| \nabla_{\mathbf{F}_q^{\ell-1}} \mathcal{L}_{\text{base}} \right\|_2 \right\|_2. \quad (\text{E.8})$$

967 *Intuition:* detect transition points across adjacent layers. *Caveat:* still a gradient scale proxy, only  
 968 weakly coupled to episode level decisions.

970 **Implementation notes.** All rules reuse a single forward pass of backbone activations. Gradient  
 971 based proxies require one backward pass *without* parameter updates. The per episode cost is domi-  
 nated by a single backpropagation through the frozen backbone.

972 E.3 TASK ALIGNED HLS (ETR)  
973

974 We select the routed layer by minimizing an episode level selection risk:

975 
$$R_{\text{layer}}(\ell) = 1 - \text{miou}_{\text{sup}}(\ell), \quad \ell^*_{\text{HLS}} = \arg \min_{\ell \in \mathcal{C}} R_{\text{layer}}(\ell) = \arg \max_{\ell \in \mathcal{C}} \text{miou}_{\text{sup}}(\ell). \quad (\text{E.9})$$
  
976

977 Here  $\text{miou}_{\text{sup}}(\ell)$  is computed within the episode by a leave one out procedure at layer  $\ell$ . Each support  
978 image is treated as a pseudo query and segmented using prototypes formed from the remaining  
979 supports, and the result is averaged over the  $K$  supports.  
980981 *Rationale.* The criterion in equation E.9 directly measures episode level matching risk at the rep-  
982 resentation to be adapted, rather than optimizing a handcrafted surrogate. This makes it robust to  
983 layer level transfer variability and domain shift. In practice, HLS is parameter free, reuses the same  
984 forward features, and adds negligible overhead.  
985986 E.4 SELECTOR ANALYSIS AND TAKEAWAY  
987988 **Why the three non episodic selectors underperform.** Table 4 compares per episode layer selectors  
989 with a frozen backbone. The *Static Max* rule blends three normalized cues and selects the layer with  
990 the largest  $\alpha' S_{\text{sem}}(\ell) + \beta' S_{\text{str}}(\ell) + \gamma' C(\ell)$  (see Eqs. equation E.4 to equation E.6). These scores  
991 measure representation quality in feature space, including semantic agreement, structure separation,  
992 and texture or uncertainty, but they do not measure *task fit* for the episode. They lack episode  
993 level feedback and are therefore unstable across domains. Specifically,  $S_{\text{sem}}$  inherits bias from the  
994 baseline mask  $p_0$ ,  $S_{\text{str}}$  rewards orthogonality that does not guarantee correct masks, and  $C(\ell)$  can  
995 penalize layers that are confident and correct. The mixture weights  $\alpha', \beta', \gamma'$  are domain specific.  
996 Consequently, Static Max averages 71.9 mIoU.  
997998 Gradient based proxies capture loss sensitivity rather than alignment. *Grad Max* selects the layer  
999 with the largest gradient norm (see Eq. (E.7)), and *Grad $\Delta$  Max* looks for sharp inter layer gradient  
1000 changes (see Eq. (E.8)). In ViT backbones such as DINOV2 and DINOV3, blocks are architec-  
1001 turally homogeneous and connected by residual paths and layer normalization. This can cause gra-  
1002 dients to grow toward the last blocks, so both rules tend to collapse to deep layers irrespective of the  
1003 episode semantics. This Grad CAM style assumption therefore fails, and the selected layer often has  
1004 the largest perturbation rather than being the most suitable for segmentation. These proxies correlate  
1005 weakly with support and query matching quality and yield 73.1 and 73.2 mIoU on average.  
10061007 **Why HLS (ETR) is better.** Our *HLS* uses a task aligned criterion that directly minimizes the  
1008 episode level selection risk  $\ell^*_{\text{HLS}} = \arg \min_{\ell \in \mathcal{C}} (1 - \text{miou}_{\text{sup}}(\ell))$  (see equation E.9). It performs  
1009 a self prediction evaluation within the episode. Each support is treated as a pseudo query and is  
1010 segmented using prototypes from the remaining supports, and the score is the support only mIoU at  
1011 layer  $\ell$ . This provides dynamic, episode aware feedback aligned with the target objective, with low  
1012 variance, no extra parameters, and negligible overhead. HLS reaches 76.7 mIoU, which is +4.8 over  
1013 Static Max and +3.5 over the best gradient proxy. The gain is especially large on ISIC (from 48.2  
1014 to 73.6 mIoU, +25.4), and the gap widens on other VFM backbones such as DINOV2.  
10151016 E.5 DINOV2: COMPONENT ABLATION (1-/5-SHOT) AND TAKEAWAYS  
10171018 Table E.2. Component ablation on DINOV2 (average mIoU).  $\Delta_{\text{V0}}$  denotes the improvement over  
1019 the V0 baseline, and  $\Delta_{\text{prev}}$  denotes the improvement relative to the row above. Best scores in bold.  
1020

| Setting                              | Avg. 1-shot  | Avg. 5-shot  | $\Delta_{\text{V0}}$ (1s / 5s) | $\Delta_{\text{prev}}$ (1s / 5s) |
|--------------------------------------|--------------|--------------|--------------------------------|----------------------------------|
| V0 baseline (fusion=off, refine=off) | 57.03        | 68.49        | 0.00 / 0.00                    | 0.00 / 0.00                      |
| + HLS (enable fusion and routing)    | 60.34        | 72.64        | +3.31 / +4.15                  | <b>+3.31 / +4.15</b>             |
| + PGR (Gaussian prior for attention) | 61.10        | 73.28        | +4.07 / +4.79                  | +0.76 / +0.64                    |
| + PAC (auto refine)                  | <b>62.58</b> | <b>73.42</b> | <b>+5.55 / +4.93</b>           | +1.48 / +0.14                    |

1021 **Analysis.** The sequence *Select*  $\rightarrow$  *Regularize*  $\rightarrow$  *Calibrate* yields monotonic improvements. HLS  
1022 provides the dominant gain by stabilizing the chosen adaptation layer for each episode. PGR reduces  
1023 attention noise, such as spurious far field peaks, while preserving global coverage. PAC then corrects  
1024 residual artifacts along thin boundaries and in low contrast regions. Gains are larger in the one shot  
1025

1026 regime, where supervision is scarcer, which is consistent with the design intent. These results show  
1027 that the hierarchical refinements generalize from DINOv3 to DINOv2 and to other VFM<sub>s</sub>, indicating  
1028 effectiveness that is agnostic to the backbone.  
1029

1030 **Practical remarks.** All selectors reuse cached features. HLS uses pseudo query scoring on the  
1031 support only and therefore adds negligible overhead. PGR has no trainable parameters. PAC op-  
1032 erates as a lightweight residual fusion and is gated automatically in five shot episodes. Con-  
1033 sequently, the overall parameter and runtime budgets remain low while providing improvements that  
1034 are aligned with the task.  
1035

## 1036 F DISCLOSURE OF LARGE LANGUAGE MODEL (LLM) USAGE 1037

1038 We used large language models (LLMs) only to assist with writing. Specifically, LLMs were em-  
1039 ployed to polish wording, improve clarity, and refine the presentation (grammar, coherence, and  
1040 flow) of certain sections. All scientific ideas, methodology, experiments, analyses, and conclusions  
1041 were conceived and executed exclusively by the authors. LLM assistance was limited to language-  
1042 related edits and suggestions. All outputs were reviewed and revised by the authors. The use of  
1043 LLMs did not contribute to the research design, data collection, data analysis, or the intellectual  
1044 content of the findings.  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079