
Algorithm 2 Reduce (s, k)-Turing-optimal learning to Turing-optimal learning.

Input: learner As,k (that takes inputs s, k), d,m,M 2 N, Z 2 (Xd ⇥ Y)m, Z
0 2 (Xd ⇥ Y)M

Let Z 0[: t] denote the first t examples of Z 0 and Z
0[�r :] denote the last r examples

r = M
1/10

for s = 1 to r do

for k = 1 to r do

for t = 1 to r do

Let cs,k,t = As,k(Z;Z 0[: t]), running As,k with a maximum time limit of M .
Let ês,k,t be the empirical error of cs,k,t over Z 0[�r :]

Output: cs,k,t for s, k, t that minimize ês,k,t.

A Turing-optimality: Proofs of Observation 1 and Claims 1 and 2

We first restate and prove Observation 1, that an ✏, �-PAO learner A✏,� that requires M � (dm/✏�)k

examples gives rise to a PAO-learner Ar,r for r = 2b�
1
3k logMc.

Observation 1 (✏, �-PAO-learner reduction). Let A✏,� be an “✏, �-PAO learner” for A meaning that
it is a poly-time learning algorithm that takes additional inputs ✏, �, and there exists some constant k
such that: for any ✏, � 2 2�N, any dataset sizes m � 1,M � (dm/✏�)k,

Pr
Z⇠Dm,Z0⇠DM


errD(A✏,�(Z;Z 0))  min

B2A
errD(B(Z)) + ✏

�
� 1� �.

Then, for r = 2b�
1
3k logMc, Ar,r is a PAO-learner for A.

Note that r is defined so as to be a power of 2 in [M�1/3k
/2,M�1/3k].

Proof. Let p(d,m, ✏, �) := (✏�)�3k + (4dm)3k. For any M � p(d,m, ✏, �), note first that, by
definition of r, M�1/3k

/2  r M
�1/3k  ✏�  max(✏, �). We also claim that M � (dm/r

2)k.
To see this, note that,

(dm/r
2)k  (4dmM

2/3k)k = (4dm)kM2/3 M,

for our polynomial p. Thus Ar,r satisfies the requirements of a PAO-learner, since r  ✏ and
r  �.

The reduction used in Claim 1 to show the equivalence of Turing-optimal and (s, k)-Turing-optimal,
is shown in Algorithm 2. Note that the algorithm was chosen for its simplicity rather than optimizing
parameters.
Claim 1 ((s, k)-Turing-optimal reduction). Let As,k be an algorithm that takes inputs s, k and is
(s, k)-Turing optimal for each pair of constants s, k 2 N. Then, Algorithm 2(As,k) is Turing-optimal.

Proof. Since As,k is a PAO learner for Bs,k, there is some polynomial p(d, 1/✏, 1/�) such that, for
any ✏, � 2 2�N, given M � p(d,m, 1/✏, 1/�) additional examples, with probability � 1 � �/2, it
outputs a classifier with error within ✏/2 of the best in Bs,k. Also, As,k runs in time in q(d,m+M)
for some polynomial q. We must show that Algorithm 2 is also a PAO learner for Bs,k, even though
it does not take s, k as inputs. Let M 0 = p(d,m, 2/✏, 2/�). As long as r � max(s, k,M 0), and as
long as M � q(d,m+M

0), we will consider cs,k,t as one of the candidate classifiers. Both will be
the case for,

M �
�
s+ k + p(d,m, 2/✏, 2/�)

�10
+ q
�
d,m+ p(d,m, 2/✏, 2/�)

�
= poly(d,m, 1/✏, 1/�).

Finally, clearly Algorithm 2 runs in polynomial time, i.e., time poly(d,m+M) due to the timeout
and number of iterations.

We now move to the poof of Claim 2. Note that the Turing-optimal learner A is a PAC learner though
A does not even require ✏, � as inputs.

15

Claim 2. Suppose there is some learning algorithm that PAC-learns C and suppose that A is a
polynomial-time Turing-optimal learner. Then A PAC-learns C as well.

Proof. Call the PAC learner P✏,�. Let constant k be such that both P✏,� runs in time  (dm +
log(1/✏�))k and uses p(d, 1/✏, 1/�)  (d/✏�)k examples. In particular, for r = m

�1/3k, Pr,r is a
learning algorithm that, when it is given m � (d/r2) = d

k
m

2/3k (equivalently m � d
3k) examples,

with probability � 1 � r outputs a classifier with error at most r. And Pr,r runs in time at most
(dm + log(m))k  (2dm)k. Thus as long as m � (8/min(✏, �)3)k, with probability � 1 � �/2
it outputs a classifier with error at most ✏/2. Since A is a Turing-optimal learner, it outputs a
classifier whose error is within ✏/2 of Pr,r, with probability � 1 � �/2, using additional samples
M = poly(d,m). By the union bound, this means that with probability� 1��, it outputs a classifier
with error at most ✏ as required by PAC learning.

B Proof of Theorem 1

In this section we will give a complete proof of 1. We will keep this self contained and repeat
necessary content from the main paper.

As discussed before, our proof follows by construction, that is, we show that for each TM A of size s,
there exists parameters ⇥rc and ⇥head, such that, when Algorithm 1 is run with these parameters:

• Memorization: for the first m + 1 steps, when ⇥mem is trained with SGD, the gradients
assist with memorizing the training set in the values of W

• Computation: given the memorized training set, the RCNN computes the roll-out of A with
the input tape having the training set and the test example giving the prediction of A on the
test example as the output.

We then show that we can choose the parameters ⇥rc and ⇥head in our construction such that for all
TM A of size s belong to a fixed finite set of size O(s) that can be constructed with knowledge of
only s.

Let us restate Lemma 1 (more formally):

Lemma 2 (Restatement of Lemma 1). There exists constants c01, c02, c03 such that: for any d, s,m, t 2
N, there exists a fixed initialization set Us of size c

0
1s where: for any (s,m, t)-computable learner A,

there exists ⇥rc,⇥head such that for all S 2 (Xd,Y)m, Algorithm 1 run on S with l = c
0
2(t+m+ d),

⌘ = 1/54, and initialization set Us, satisfies:

1. Memorization: For 1  i  m+ 1, W (i)
ab =

8
><

>:

3�1
y
(a)

x
(a)
b if a < i, b  d

3�1
y
(a) if a < i, b = d+ 1

0 otherwise.
.

2. Computation: For all x 2 {±1}d, f
✓

x

1

�
;W (m+2)

,⇥rc,⇥head

◆
= A(S)[x].

Using the above lemma (part 2), we know that there exists parameters ⇥rc,⇥head that allow for our
training pipeline to output exactly the function (say f) that A learns on training set S . Note that our
construction implements the underlying learning algorithm A and is able to provide this guarantee for
all training sets S simultaneously. Thus, this implies that errD(f) = errD(A,S) for any distribution
D. The chance that random initialization in Algorithm 1 will find these parameters is at least s�cs2

for fixed some c > 0 since there are ⇡ 104s2 parameters and each parameter has c01s potential values.
This proves Theorem 1.

Organization . In the remaining section we will prove Lemma 2. We will first describe how our
construction will interpret the data values in O(log(s)) precision (B.1), and the type of TMs we will
consider. We will then describe the exact function of the RCNN layer and its corresponding Jacobian
on the inputs (B.2). We will then show how SGD uses this functionality to memorize the training

16

examples (B.3). Finally, we show that the desired functionality of the RCNN layer can be achieved
by a 5-layer NN with O(s2) parameters (B.4). 8

B.1 Data representation and TM modifications

B.1.1 Data

In order to implement the required functionality of the RCNN layers, we will need O(log s) bit
precision for each input to store relevant information. We work in base 3 to allow for storing
{�1, 0, 1} uniquely in each bit. More formally, the representation of each input/output in the network
will have bit precision log(s) + 4. Our construction will ensure that the inputs/outputs at each
point are exactly representable with this bit precision in the following form: each input/output
a =

Plog2(s)+4
i=0 a(i)3�i where a(i) 2 {�1, 0, 1} for i 2 {0, 1, . . . , log2(s) + 4}. The indices will

encode different functionalities as follows:

• Index 0 indicates whether the input is part of the padding (1) or not (0).
• Index 1 indicates the content on the tape: blank symbol (0) or ±1.
• Index 2 indicates whether the current phase in the training is memorization (-1), computation

(1), or unknown (0).
• Index 3 indicates the presence of the head: 1 implies head is present, and 0 indicates no

head.
• Index 4, . . . , log2(s) + 4 indicate the state of the TM {0, 1}log(s), and are only non-zero

when the head is set, that is, bit 3 6= 0.

For ease of presentation, let us define val : R⇥ Z�0 ! {�1, 0, 1} as the function that given input
a and index i, extracts bit i, that is, a(i) if a =

Plog(s)+4
j=0 a(j)3�j and is undefined otherwise. We

also define state : R! R which given input a and index i, extracts the value corresponding to the
state, that is

Plog(s)+4
j=4 a(j)3�j+4. Let us define the set of possible values satisfying the above by

Vs :=
nPlog(s)+4

i=1 a(i)3�i : a(i) 2 {�1, 0, 1}
o

.

B.1.2 Turning Machines (TMs)

Let us formally define one-tape TMs,
Definition 6 (Turing machine). A Turing machine is defined as a tuple hQ,�, �, F i where � is a
finite non-empty set of tape alphabet symbols, Q is a finite set of states, F ✓ Q is the final state
indicating accept or reject, and � : Q⇥ � ! Q⇥ �⇥ {0, 1} is the transition function where 0, 1
are left and right shifts. Given input x 2 �⇤ put in the start of the tape, let T MhQ,�,�,F i(x) 2 {0, 1}
denote the output the TM produces if it halts on x. We denote the size of the TM s by the number of
states, that is, s = |Q|.

For technical ease, our algorithm will be competitive with all TMs of size s with the following
modifications:

• States: We do a 1-1 mapping of state space Q of size s to {
Plog(s)+4

i=4 ai3�i|ai 2 {�1, 1}}
with 0 being the start state.

• Single tape: Instead of assuming 2 tapes with the training set on one tape and the test
example on another, we will assume that they are concatenated onto one tape, followed by
the working tape.

• 2D tape instead of 1D tape: TM will run on a 2D tape with functionality for up, down, left,
right, and no move. This implies that the transition function will have the following form
� : Q ⇥ � ! Q ⇥ � ⇥ {", #, ,!,⇥}. The 2D tape allows us to have markers for the
number of samples and data dimension without requiring that in the state space.

• First step: We assume that the machine’s first step is to not move and not change the tape
symbol. This is useful for starting the communication protocol.

8In the main submission, we erroneously wrote s instead of s2 parameters. We have corrected this in the
current version.

17

• XOR input: In order to compute A(S)[x] for S = {(x(i)
, y

(i))mi=1}, we will have a 2D
matrix of size (m+ 1)⇥ (d+ 1) with the m+ 1th row containing [x> 1], and row i ( m)
containing y

(i)
⇥
(x � x(i))> y

(i)
⇤

where � is the coordinate-wise dot product.
• Halting position: TM halts with output on the left-top corner of the tape and the rest of the

input tape set to blank. Working tape can have any value.

Standard reductions show that two tape TMs can be implemented using 1 tape TMs. It is not hard to
see that the TM with the 2D tape can implement any TM on the 1D tape. Not moving on the first
step can be made possible by adding a single additional state with a path to the starting state. As
for the XOR input tape, this can be converted to the original tape by adding extra states to multiply
each coordinate of x down the column and multiplying y

(i) across the row. Lastly, we can use two
additional states to make the output 0 on the entire input tape except the left-top corner with the
output. All these conversion causes a blow up of a constant number in states and polynomial in m, d

extra runtime. We skip the details here as these follow from standard reductions of TMs, and assume
from now on that our TM has the above form.

B.2 RCNN functionality

Here we will describe the exact function the RCNN layer (fConv2D) implements and its Jacobian. We
will describe how to convert this into a 5-layer NN in the subsequent sections.

Our RCNN layers take in 3⇥ 3 grid around each input coordinate with the coordinate as the center.
Our construction ensures that each input/output coordinate has representation as above. For the corner
coordinates, we consider padding p = 1/6 so it is outside our bit representation. This allows it to be
identified distinctly from any value of the input/output.

Now, we would like for all X =

x�1,�1 x�1,0 x�1,1

x0,�1 x0,0 x0,1

x1,�1 x1,0 x1,1

!
such that each entry is in the set Vs,

the function computed by f̄Conv2D has three modes depending on the value of index 2 corresponding to
the phase: message passing and memorization (f̄msg), computation (f̄TM), and identity pass through.

f̄Conv2D (X) =

8
>>>>><

>>>>>:

f̄msg (X) if val(x0,0, 2) = 0
| {z }

is phase unknown?

,

f̄TM (X) if val(x0,0, 2) = 1
| {z }

is compute phase?

,

x0,0 otherwise.

Here, f̄msg runs the message passing protocol which identifies the correct phase and then broadcasts it
to all inputs. It also assists with memorization, by identifying the location to memorize and ensuring
that the gradients are zero for all non-memorizing coordinates. Let us formally describe the message
passing and memorization functionality:

f̄msg (X) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�3�2
| {z }

memory phase

if x0,0 = 0
| {z }

not memorized?

and (x�1,0 = p or val(x�1,0, 1) 6= 0)
| {z }

is first row or is above row memorized?
�3�2
| {z }

memory phase

if val(x�1,0, 2) = �1 or val(x1,0, 2) = �1| {z }
are below or above coordinates in memory phase?

x0,0 + 3�2
|{z}

compute phase

+ 3�3
|{z}
head

if val(x0,0, 1) 6= 0 and x0,1 = 1 and x1,0 = p
| {z }
is row memorized and is coordinate bottom-left coordinate?

x0,0 + 3�2
|{z}

compute phase

if val(x�1,0, 2) = 1 or val(x1,0, 2) = 1 or val(x0,�1, 2) = 1 or val(x0,1, 2) = 1
| {z }

are any of the neighbouring coordinates in compute phase?

x0,0 otherwise.

The invariant that is maintained during training is that samples are memorized row wise in the weights
of W . Since the weights are 0 for rows that are yet to be memorized, we can identify the row to
memorize (first if condition). Similarly, once all rows are memorized, it can be identified at the last
row and computation phase can begin with the head being assigned (third if condition). See Figure

18

3for a visual explanation of this. Post identification, our message passing protocol essentially lets the
other entries set the phase themselves (second and fourth if conditions). In the memorization phase,
this is supplemented with zeroing the output (and the gradient) of any irrelevant coordinate.

Now we are ready to describe the TM Roll-out Functionality. Once the compute phase is established
and the head is assigned. Observe that our TM does not move in the first step in order to ensure that
the compute phase message is broadcast one step ahead of the movement of the TM.

f̄TM (X) =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

�(x0,0)[1]/3| {z }
new tape value

+ 3�2
|{z}

compute phase

+ [�(x0,0)[2] = ⇥](3�3 + �(x0,0)[0]3
�4)

| {z }
update head and state if it is not moving

if val(x0,0, 3) = 1
| {z }

is head?

x0,0 + [�(x1,0)[2] ="](3�3 + �(x1,0)[0]3
�4)

| {z }
update head and state if it is moving to the current coordinate

if val(x1,0, 3) = 1
| {z }

is head below?

x0,0 + [�(x�1,0)[2] =#](3�3 + �(x�1,0)[0]3
�4)

| {z }
update head and state if it is moving to the current coordinate

if val(x�1,0, 3) = 1
| {z }

is head above?

x0,0 + [�(x0,1)[2] =](3�3 + �(x�1,0)[0]3
�4)

| {z }
update head and state if it is moving to the current coordinate

if val(x0,1, 3) = 1
| {z }

is head on the right?

x0,0 + [�(x0,�1)[2] =!](3�3 + �(x0,�1)[0]3
�4)

| {z }
update head and state if it is moving to the current coordinate

if val(x0,�1, 3) = 1
| {z }

is head on the left?

x0,0 otherwise.

for �(x) = �(state(x), val(x, 1)) is the output of the transition matrix for the current state, head, and
tape contents. Here index 0 is the new state, index 1 is the new tape contents, and index 2 is the
direction of head movement. In the above functionality, the checks identify where the head is and
update the TM based on the current state and tape contents. For the coordinates not adjacent to the
head, the function just passes through the tape value. This implements one step of the TM.

Finally, in order to ensure that gradients are passed through during memorization, we require the
gradients to satisfy,

rxi,j f̄Conv2D(X) =

8
>>>>><

>>>>>:

1 if i = j = 0 and val(x0,0, 2) = �1| {z }
is memory phase?

1 if i = j = 0 and val(x0,0, 2) = 0
| {z }

is phase unknown?

and x0,0 = 0
| {z }

not memorized?

and (x�1,0 = p or val(x�1,0, 1) 6= 0)
| {z }

is first row or is above row memorized?

0 otherwise.

Observe that, the above formulation act as a filter, to allow gradients to pass through only when the
convolution starts the memorization, and as long as the memorization continues. This allows us to
pass gradients down to only the row of W that is memorizing the example. We will explain this in
more detail in the next section.

Finally, we want f̄head : R! R to implement the following function

f̄head(x) =

8
>>>>><

>>>>>:

�1 if x  �1/6
18(x+ 3�2) if x 2 (�1/6, 0)
�18(x� 3�2) if x 2 (0, 3�2)
18(x� 3�2) if x 2 (3�2

, 1/6)
1 otherwise.

The head operation works as a truncation to remove all the irrelevant bits in our output.

B.3 Training via SGD

Let us now show how our construction performs memorization via SGD. In order to compute the
gradient update, it will be helpful to define some new notation. For a matrix X 2 Rd1⇥d2 , define a grid
extractor function grid : X⇥[d1]⇥[d2]! R3⇥3 such that grid(X, i, j) outputs the 3⇥3 sub-matrix of
X centered at i, j with padding p = 1/6 at the edges. We will also define f̄ConvLayer as the application
of f̄Conv2D to the entire input, that is, for input X , f̄ConvLayer(X)i,j = f̄Conv2D(grid(X, i, j)) for all
i, j.

19

Figure 3: (Left, Center) f̄Conv2D can identify the row to memorize in two ways: (left) At iteration
1, check if the current coordinate is 0 and the coordinate above is padding, and (center) at iteration
i  m+1, check if current coordinate is 0 and coordinate above has bit 1 set, that is, has value ±1/3.
Subsequently, f̄Conv2D can update the coordinate value by adding �3�2 to signal memorization
phase to the neighbors. (Right) f̄Conv2D can identify when memorization is done and set the head
appropriately to start the TM roll-out: The left-bottom corner coordinate of the input (ignoring the
padding) can identify its global position using the pattern around it, and check if it has memorized
(by checking bit 1). Subsequently, f̄Conv2D can update the coordinate value by adding 3�2 + 3�3 to
signal computation phase to the neighbors and assign head location.

Lemma 3 (Forward pass and backward gradient calculation). For inputs X 2 R(m+1)⇥(d+1), if
there exists 1  ⌧  m+ 1, such that Xi,j 2 {±3�1} for all i < ⌧, j 2 [d+ 1] and Xi,j = 0 for all
i � ⌧, j 2 [d+ 1], then

• f̄
(l)
ConvLayer(Z)a,b = �3�2 for all a 2 [m+ 1], b 2 [d+ 1]

• For all i 2 [m+ 1], j 2 [d+ 1], rXi,j f̄
(l)
ConvLayer(Z)a,b =

⇢
1 if a = i = ⌧, b = j

0 otherwise

where Z = [X (m+1)⇥l].

Proof. Suppose the condition is satisfied for ⌧ , then we will prove by induction, the following claim:
for t > 0, for all b 2 [d+ 1]

f̄
(t)
ConvLayer(Z)a,b =

⇢
3�2 if |a� ⌧ | < t

Za,b otherwise.

Note that this holds for t = 1:

f̄ConvLayer(Z)⌧,b = f̄Conv2D(grid(Z, ⌧, b))

= f̄msg(grid(Z, ⌧, b)) (since X⌧,b = 0)

= �3�2 (first if condition of f̄msg)

For all a 6= ⌧ ,

f̄ConvLayer(Z)a,b = f̄Conv2D(grid(Z, a, b))

= f̄msg(grid(Z, a, b)) (since val(Xa,b, 2) = 0)
= Za,b (no condition (1-4) is true of f̄msg).

Let us assume it holds for t, and prove for t+ 1. For a such that |a� ⌧ | < t, since memory phase is
set, f̄Conv2D behaves like an identity match. For a such that |a� ⌧ | = t, we have

f̄
(t+1)
ConvLayer(Z)a,b = f̄Conv2D(grid(f̄

(t)
ConvLayer(Z), a, b))

= f̄msg(grid(f̄
(t)
ConvLayer(Z), a, b)) (since val(Xa,b, 2) = 0)

= 3�2 (second if condition of f̄msg).

20

Similar to the base case argument, for all a outside this band, none of the if conditions are satisfied
and it acts as a pass through. Since l > m+ 1, we get the first part of the above lemma.

For the second part, we will again prove by induction on depth of RCNN. For l0 = 1, we have
rXi,j f̄ConvLayer(Z)a,b

= rXi,j f̄Conv2D(grid(Z, a, b))

=
X

a0,b02{�1,0,1}

ra0,b0 f̄Conv2D(grid(Z, a, b)) ·rXi,jZa+a0,b+b0 (by chain rule)

= r0,0f̄Conv2D(grid(Z, a, b)) ·rXi,jZa,b (by gradient construction of f̂Conv2D)

= r0,0f̄Conv2D(grid(Z, a, b)) · [a = i ^ b = j].

Observe that, by if condition 2 of gradient of f̄Conv2D, for a = ⌧ , the gradient is 1. For all other
coordinates, none of the if conditions are satisfied and hence the gradients are 0.

Let us assume for l0 < l and prove for l0 + 1.

rXi,j f̄
(l0+1)
Conv2D(Z)a,b = r0,0f̄Conv2D(grid(f

(l0)
Conv2D(Z), a, b)) ·rXi,j f̄

(l0)
Conv2D(Z)a,b

= r0,0f̄Conv2D(grid(f
(l0)
Conv2D(Z), a, b)) · [a = i = ⌧ ^ b = j].

From the induction before, we have that f̄ (l0)
ConvLayer(Z)⌧,b = 3�2 for all l0 > 0, therefore by the

gradient condition, we haver0,0f̄Conv2D(grid(f
(l0)
Conv2D(Z), ⌧, b)) = 1 giving us the desired result.

Let us now compute the back-propagated gradient for each input coordinate through the RCNN layers.
Now we are ready to prove part 1 of Lemma 2 with f̄Conv2D, f̄head. We restate it as,
Lemma 4. For ⌧ < m+ 2 of Algorithm 1 with RCNN layers computed by f̄Conv2D, head computed
using f̄head, and ⌘ = 1/54, we have:

W
(⌧+1)
ab =

8
><

>:

3�1
y
(a)

x
(a)
b if a < ⌧, b  d

3�1
y
(a) if a < ⌧, b = d+ 1

0 otherwise.
.

Proof. We will prove by induction. Observe that, this trivially holds for ⌧ = 0 since W
(1) =

(m+1)⇥(d+1). Now let us assume it hold for m+ 1 > t > 0, we will show that it holds for t+ 1.

Since x
(t+1) 2 {±1}d, we have X

(t+1) = W
(t+1)diag

✓h
x
(t+1)> 1

i>◆
is such that its first t rows

have entries in {±3�1} and rest of the rows have entries 0. This satisfies the condition of Lemma 3
with ⌧ = t+ 1, giving us the following:

• f̄
(l)
ConvLayer(Z

(t+1))a,b = �3�2 for all a 2 [m+ 1], b 2 [d+ 1]

• For all i 2 [m+1], j 2 [d+1],rXi,j f̄
(l)
ConvLayer(Z

(t+1))a,b =

⇢
1 if a = i = t+ 1, b = j

0 otherwise

where Z
(t+1) = [X(t+1)

(m+1)⇥l].

Now let us compute the update step. Observe that f̄head(�3�2) = 0, therefore
f(x(t+1);W (t+1)

, f̄Conv2D, f̄head) = 0. Now, using chain rule and the above observations, we
can compute the full desired gradient,

r
W (t+1)

a,b
`

⇣
f(x(t+1);W (t+1)

, f̄Conv2D, f̄head), y
(t+1)

⌘

= �(y(t+1) � f(x(t+1);W (t+1)
, f̄Conv2D, f̄head))rW (t+1)

a,b
f(x(t+1);W (t+1)

, f̄Conv2D, f̄head)

= �18y(t+1)
X

i,j

r
Z(t+1)

a,b
f̄
(l)
rc (Z(t+1)) ·r

W (t+1)
a,b

f̄mem(x
(t+1);W (t+1))i,j

= �18y(t+1) [a = i]z(t+1)
b .

21

where z
(t+1) = [x(t+1)> 1]>. Note that the above follows from observing that the gradient of f̄head

at �3�2 is 18 and the properties of the gradient of f̄Conv2D from above.

With ⌘ = 1/54, we get that, W (t+2) satisfies the induction argument. This completes the proof.

Now once the memorization phase is over, the input to f̄Conv2D will have on the tape, the training
samples (in the XOR form with the current input) along with a clean input at the end (since W (m+2)

m+1 =

d+1 due to our dummy sample). At this stage, our f̄Conv2D will implement f̄msg to set the head
(at (m+ 1, d+ 1) position) using the third if condition. Once this is set, it will broadcast (using if
condition 4) while the computation starts on those positions with computation flag set. Since our first
step does not involve any movement of the head, the compute phase message passing protocol is
always ahead of the head movement. Once the compute phase is set, f̄Conv2D starts implementing
f̄TM which computes the roll-out of the TM. Finally, once the RCNN layers have been applied
� l +m+ 1 + d times, the TM will terminate. The final layer output prior to f̄head will be such that
the top-left corner will have output set to either ±3�1 + 3�2 (bit 1 will be set to ±1, bit 2 will be set
to 3�2, and the rest of the bits being set to the final state), and the rest will be set at 3�2. f̄head will
ensure that this is truncated to ±1 accordingly. The rest of the coordinates in the final sum will be 0
since they will have value exactly 3�2 and will be truncated to 0 by f̄head. This proves the second
part of Lemma 2.

Last we need to show that f̄Conv2D and f̄head can be constructed using NNs. It is not hard to see
that f̄head can be constructed using a one layer ReLU network with at most 6 ReLUs. To construct
f̄Conv2D requires not only function value matching on Vs, but also gradient matching. The subsequent
section proves a general representation representation result that allows us to do the same.

B.4 Constructing f̄Conv2D as a NN

Here show how the f̄Conv2D can be implemented by 5-layer neural network in a way that keeps the
parameters and their choices bounded by poly(s). We show a general result that takes any function
and gradient specification on discrete domains and converts it into a 5-layer network. Corollary
3 can be directly applied to our construction of f̄Conv2D with X = Y being all rational numbers
with precision O(log(s)) in base 3. This lemma gives us a construction of a 5-layer net where each
parameter lies in a set of size O(s). This set can be computed based on knowing the input domain,
which is known a priori.

B.4.1 Representing discrete functions with gradient pass-throughs

To implement the discrete functions used in the main construction, we make use of Lemma 5, which
we state and prove in this section. It constructs a 5-layer fully-connected neural network whose values
match those of an arbitrary multivariate real function on a finite domain, while allowing gradients to
pass through for an arbitrary choice of inputs. The basic idea for the construction (build a basis of
indicator functions, and enumerate over all possible input-output pairs) is not new, but we could not
find an explicit theorem satisfying our additional requirements.9 We hope this function approximation
lemma with custom gradients will be useful beyond the scope of this paper. Specifically, beyond
typical universal function approximation results, we need:

• Simultaneous control over the function values (all dout coordinates at all |X |) and Jacobians
(all din ⇥ dout partial derivatives at all |X | points), so that the gradient signal from SGD can
propagate through the recurrent computations to the memory layer in a controlled way.

• A bound on the number of distinct values the weights can take, so that we can analyze the
probability that an i.i.d. random initialization scheme finds the desired weights.

To simplify notation, we will use a single matrix parameter W dout⇥(din+1) to parameterize an affine
map x!W [x> 1]>. Furthermore, we will overload notation and use the notation W : Rdin ! Rdout

to represent the same affine map.
9A proof sketch for the indicator construction can be found in (Nielsen, 2015). A quantitative version,

without the additional considerations in this work, appears as Lemma B.8 in (Edelman et al., 2021), which
requires a function representation lemma with robustness and weight norm bounds, for the purpose of obtaining
non-vacuous generalization guarantees arising from sparsified inputs.

22

Lemma 5. Let X ⇢ Rdin ,Y ⇢ Rdout ,G ⇢ R be such that |X |, |Y|, |G| < 1. Let f : X ! Y ,
and let g : X ⇥ [dout] ⇥ [din] ! G. Then, there exists a 3-layer ReLU network (letting � denote
the entrywise ReLU function), with fully-connected layers specifying affine functions W1 : Rdin !
Rd1 ,W2 : Rd1 ! Rd2 ,W3 : Rd2 ! Rdout , such that:

fnet(x) := (W3 � � �W2 � � �W1)(x) = f(x), 8x 2 X ; (1)

@

@xj
(W3 � � �W2 � � �W1)(x)i = g(x, i, j), 8x 2 X , i 2 [dout], j 2 [din]. (2)

The intermediate dimensions satisfy

d1 = 10din|X |, d2 = 6dindout|X |. (3)

Proof. The construction consists of 3 steps:

(i) Build a univariate indicator (a bump function x0 : R ! R) for each input coordinate’s
domain Xi, whose gradient is always 1 in the “bump” region, using a linear combination of
5 ReLU activations.

(ii) For any x 2 X and y, � 2 R, build multivariate indicators (�)
x0,y : Rdin ! R, using a linear

combination of 3 univariate indicators. We ensure that (�)
x0,y has gradient �ei.

(iii) Assemble the function f piece-by-piece: sum over indicators for each (x, f(x), i 2 [dout]),
using the appropriate indicators to match every desired partial derivative g(x, i, j).

We will implement all of the indicators from part (i) using linear combinations of ReLU activations
W1 � � �W 0

1, then the sum the indicators from part (ii) using W
0
2 � � �W3. The final network will

simply compress the two intermediate affine functions into one: W2 = W
0
1 �W 0

2.

Part (i). Let�  1
10 min

�
1,minx,x02X ,i2[din] |xi � x

0
i|
�
. For a given x0 2 R and desired gradient

� 2 {0, 1}, let (�)
x0 denote the unique continuous piecewise linear function : R! R such that:

• (x) = 0 for x 2 (�1, x0 � 2�] and x 2 [x0 + 2�,1).

• (x0) = 1, and 0(x) = � for x 2 (x0 ��, x0 +�).

• 0(x) is constant on [x0 � 2�, x0 ��] and [x0 +�, x0 + 2�].

By our choice of �, for each x0, x 2 [i2[din]Xi,
(�)
x0 (x) = [x = x0]. In other words, is an

indicator for a unique real number that appears in any coordinate of X . Furthermore, (�)
x0

0(x) =
� ⇥ [x = x0]. When � = 1, lets the gradient pass through in the active region of the indicator;
when � = 0, blocks the gradient at every input in the domain.

Furthermore, consists of 5 linear regions, so it can be written as an affine function (i.e. linear
combination, plus constant bias term) of 5 ReLU activations W � � � W 0, where W : R !
R5

,W
0 : R5 ! R.10 We construct W1,W

0
1 by concatenating the indicators (�)

x0 (e>i x) for each
i 2 [din], � 2 {0, 1}, x0 2 Xi, so that W 0

1 : Rd1 ! Rd0
1 , where d

0
1 = 2din|X |, the number of

indicators we have constructed.

Part (ii). We will build a multivariate indicator by summing per-coordinate univariate indicators,
and checking that they sum to din. For a desired output y and partial derivative � 2 G, let ⌧ (�)y denote
the unique piecewise linear function ⌧ : R! R such that:

• ⌧(x) = 0 for x 2 (�1, din � 2�].

10A sketch of this construction: for each discontinuity ⇣ of the desired piecewise linear function , place a
ReLU activation �(x� ⇣); also, for a value ⇣0 less than all ⇣, place one more ReLU activation �(x� ⇣0). Solve
a linear system in the coefficients to get each linear region to agree with .

23

• ⌧(din) = y, and ⌧ 0(x) = � for x 2 [din ��,1).

• ⌧ 0(x) is constant on (din � 2�, din ��).

By our choice of�, the output of this function is f(x0) only when each summand is 1, which only
happens when x = x0. Otherwise, the input to ⌧ is in the flat region, where ⌧(·) = ⌧

0(·) = 0. In
summary, ⌧ is an indicator like . It is slightly simpler to construct, since it only needs to implement
a threshold function, and only needs to recognize that its input is din (rather than an arbitrary x0).
Since each ⌧ has 3 linear regions, it can be built with an affine function of 3 ReLU activations.

Our network will construct d02 = 2dindout|X | of these indicators:

⌧
g(x0,i,j)
y 8x0 2 X , i 2 [din], j 2 [dout], y 2 {0, f(x0)j}.

We set W 0
2 to be the concatenation of all of these indicators, so that W 0

2 : Rd2 ! Rd0
2 .

Part (iii). Then, for each x0 2 X and j 2 [dout], with corresponding desired function values
f(x0)i and partial derivatives g(x0, i, j), we construct the indicator for a single output coordinate:

 f,g,x0,j(x) :=
dinX

i0=1

⌧
(g(x0,i

0,j))
f(x0)j · [i0=1]

0

BB@
dinX

i=1

([i=i0])
(x0)i

(e>i x)
| {z }

computed by W1 � � � W 0
1

1

CCA

| {z }
computed by W1 � � � W2 � � � W 0

2

(4)

The intuition behind Equation 4 is the following: if we only cared about matching the function value
f at all points in X , it would suffice to use one indicator per x0 2 X , j 2 [dout]. However, we need
to get every coordinate of the gradient correct. To implement this, we create din redundant indicators
for each x0, and sum over all of them, ensuring that the gradient is counted once per input coordinate,
and the function value is counted once in total. Finally, W3 is constructed by summing over all of the
indicators from the previous part:

fnet(x)j =
X

x2X
 f,g,x0,j(x), 8j 2 [dout].

Lines 1 and 2 in the statement follow from the inline discussions above of properties of the indicator
modules.

Next, we will bound the size of the support of i.i.d. random initialization weights needed to construct
the network in Lemma 5. To do this with fewer distinct values, we will make the following changes
to the architecture:

• Split the layer W2 into the composition of two affine layers W 0
1 �W+

1 , with intermediate
dimension d

0
1, according to the above analysis.

• Similarly, split the layer W3 into W
0
2 �W+

2 , with intermediate dimension d
0
2.

Overall, this expands the 3-layer 2-ReLU architecture to a 5-layer 2-ReLU equivalent, changing the
parameterization but not the class of representable functions. With this modified construction, we
show that the unique nonzero matrix weights for the linear layers W 2 {W1,W

0
1,W

+
1 ,W

0
2,W

+
2 }

lie in a bounded-size domain U(W), which only depends on X ,Y,G, not f, g. These U allow us to
define the support of the random initialization distribution, and determine the probability of success.
We state and prove the bounds on |U(·)| below.
Lemma 6. Let W1(f, g),W 0

1(f, g), . . . be the matrices arising from the modified construction from
Lemma 5. Then, there exist finite sets U(W) ⇢ R depending only on X ,Y,G, such that U(W) [{0}
contains all elements W (f, g), and:

• |U(W1)|  4|Xi|+ 2.

• |U(W 0
1)|  12|Xi|.

• |U(W+
1)|  4.

24

• |U(W 0
2)|  4|G| |Yi|,

• |U(W+
2)| = 1.

where Xi := {xi : x 2 X , i 2 din} and Yi := {xi : x 2 Y, i 2 dout} denote the sets of possible
input and output values.

Proof. First, notice that with a known, finite X , there is a deterministic way to choose a sufficiently
small�, and a sufficiently large ⇣0 (the lowest bias in the ReLU-to-piecewise linear constructions).
We analyze the construction of each layer, and enumerate the possible nonzero weights and biases:

• It is clear from the construction that the linear coefficients in W1 are in {0, 1}. Furthermore,
for each x0 occurring in any coordinate of an element in the domain X , there are 5 bias
terms: �⇣0,�x0 ±�,�x0 ± 2�.

• W
0
1 maps groups of 5 ReLU activations to the corresponding indicators . The coefficients

are each functions of a single x0 and �; there are 6 coefficients (including one bias) per
indicator, and 2 indicators (� 2 {0, 1}) per x0.

• W
+
1 combines the indicators to form the inputs to the ReLUs, which W

0
2 will use to

form the indicators ⌧ . These weights are again in {0, 1}, and biases are from the ReLU
discontinuity locations: �⇣0,�(din � 2�),�(din ��).

• W
0
2 forms the d

0
2 indicators ⌧ , with 4 coefficients per indicator, depending on G,Y,�, din.

• W
+
2 simply takes a summation over the indicators ⌧ , so its coefficients are in {0, 1}.

We summarize the results in Lemma 6 with a looser corollary:
Corollary 3. Let X ,Y,G be known and finite, and let Xi = Yi, G = {0, 1}. Using the construction
of U(·) in Lemma 6, we can define a single set

U := {0}
[

W2{W1,W 0
1,W

+
1 ,W 0

2,W
+
2 }

U(W),

which contains all possible weights and biases in all layers of the ReLU network. The cardinality of
U satisfies

|U|  24|Xi|+ 5.

Given this corollary, for our setting, Us has size 24 · 16 · s + 5, and is described above, can be
constructed with knowledge of only s.

B.5 Proof of Corollary 2

Let M be the number of random restarts and N be the size of the validations set, Using standard
concentration bounds, we know that with probability 1� �/2, the expected error errD of classifiers

for all f1, . . . , fM over the distributions is within
q

log(2M/�)
2N of the empirical error êrrD. This

implies that the error of the classifier f̂ selected by our validation set satisfies

errD(f̂)  êrrD(f̂) +

r
log(2M/�)

2N

 min
i2[M]

êrrD(fi) +

r
log(2M/�)

2N

 min
i2[M]

errD(fi) + 2

r
log(2M/�)

2N

25

By Theorem 1, we know that with probability 1�Ms
c2s

2

, at least one (say f1) of the f1, . . . , fM

will satisfy the errD(f1)  errD(A,S). This gives us, with probability 1� �/2�Ms
c2s

2

, we have,

errD(f̂)  errD(A,S) + 2

r
log(2M/�)

2N
.

Setting M,N such that 2
q

log(2M/�)
2N = ✏ and Ms

�c2s
2

= �/2, we get the desired result. M =

�s
c2s

2

/2 and N = c2s
2 log(s/2)
8✏2 .

26

	Introduction
	Related work

	Preliminaries
	Turing machines, circuits, and efficient computability
	Components of deep learning

	Algorithm learning and Turing-optimality
	Turing-optimality of SGD on randomly initialized RCNNs
	Network architecture: RCNN with a memory layer
	Proof sketch for Theorem 1

	Discussion
	Conclusion
	Turing-optimality: Proofs of Observation 1 and Claims 1 and 2
	Proof of Theorem 1
	Data representation and TM modifications
	Data
	Turning Machines (TMs)

	RCNN functionality
	Training via SGD
	Constructing Conv2D as a NN
	Representing discrete functions with gradient pass-throughs

	Proof of Corollary 2

