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Abstract Popular few-shot Meta-learning (ML) methods presume that a task’s support and query data 5

are drawn from a common distribution. A recent work relaxed this assumption to propose a 6

few-shot setting where the support and query distributions differ, with disjoint yet related 7

meta-train and meta-test support-query shifts (SQS). We relax this assumption further to a 8

more pragmatic SQS setting (SQS+) where the meta-test SQS is unknown and need not be 9

related to the meta-train SQS. The state-of-the-art solution to address SQS is transductive, 10

requiring unlabelled meta-test query data to bridge the support and query distribution 11

gap. In contrast, we propose a theoretically grounded inductive solution - Adversarial 12

Query Projection (AQP) for addressing SQS+ and SQS. AQP can be easily integrated into 13

the popular ML frameworks. Exhaustive empirical investigations on benchmark datasets 14

and their extensions, different ML approaches, and architectures establish AQP’s efficacy in 15

handling SQS+ and SQS. 16

1 Introduction 17

Meta-learning (ML) approaches assume that the meta-train and meta-test tasks are drawn from a 18

common distribution. The shared distribution assumption prevents the use of meta-learned models 19

in evolving test environments deviating from the training set. Recent ML works attempt at relaxing 20

this assumption [15, 13]. However, these ML approaches assume a common distribution inside the 21

tasks, i.e., the task-train and task-test data come from the same distribution. But a distribution 22

shift may exist between the task-train data (support set) and task-test data (query set) because of 23

the evolving or deteriorating nature of real-world objects or environments, differences in the data 24

acquisition techniques from support to query sets, extreme data deficiency from one distribution, 25

etc. Addressing support query shift (SQS) inside a task has gained attention very recently [3]. 26

However, this pioneering work assumes the prior knowledge of SQS in the meta-test set and induces 27

a related although disjoint SQS in the meta-train set. The model trained on such a meta-train 28

set is accustomed to handle the SQS and, to some extent, becomes robust to the related unseen 29

meta-test SQS. In this paper, we consider, SQS+, a more generic SQS problem where the prior 30

knowledge of the meta-test SQS is absent. We expect an unknown SQS in the meta-test set and 31

therefore cannot induce any related SQS in the meta-train set. The earlier work on addressing 32

SQS [3] is a limiting case of SQS+. The solution to SQS proposed by Bennequin et al., [3] uses 33

optimal transport (OT) to bridge the gap between support and query distributions, but assumes 34

the availability of unlabelled query during testing. While this solution can be adopted for our 35

proposed problem, access to unlabelled query data during meta-test may be unrealistic in many 36

real-world scenarios. Our solution to address the support query (SQ) shift problem - Adversarial 37

Query Projection (AQP), does not require transduction during meta-testing and thus is applicable 38

in such real-world scenarios. 39

Overall, we make the following contributions: 40

• We propose, SQS+, a practical SQS setting for few-shot meta-learning. The shift between support 41

and query sets during meta-testing is unknown while meta-training the model. 42
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• We contribute to the FewShiftBed [3] realistic datasets for evaluating methods that address SQS 43

and SQS+. In these datasets, meta-train data lacks SQS while meta-test data contains SQS. 44

• We design an inductive solution for tackling SQS+ using adversarial query projections (AQP). 45

The AQP module is standalone and could be integrated with any few-shot ML episodic training 46

regimen. We verify this capability by integrating AQP into Prototypical (ProtoNet) and Matching 47

Networks (MatchingNet). 48

• Exhaustive empirical investigation validates the effectiveness of the AQP on various settings and 49

datasets, preventing a negative impact even in the absence of SQS. 50

2 Related Work 51

Transductive meta-learning approaches that utilize unlabeled query data in the training process 52

are effective baselines for handling SQS in few-shot learning (FSL). Ren et al., [12] introduce a 53

transductive prototypical network that refines the learned prototypes with cluster assignments 54

of unlabelled query examples. Boudiaf et al. [4] induce transduction by maximizing the mutual 55

information between query features and their predicted labels in conjunction with minimizing 56

cross-entropy loss on the support set. Minimizing the entropy of the unlabeled query instance 57

predictions during adaptation [5] also achieves a similar goal. Liu et al., [10] propose a graph 58

based label propagation from the support to the unlabeled query set that exploits the data manifold 59

properties to improve the efficiency of adaptation . Antoniou et al., [1] show that minimizing a 60

parameterized label-free loss function that utilizes unlabelled query data during training can also 61

bridge SQS. Inspired from learning invariant representations [7, 2, 6], Bennequin et al. [3] use 62

Optimal Transport (OT) [11] during meta-training and meta-testing to address SQS. In contrast, we 63

propose an inductive method to tackle SQS in FSL where access to the unlabelled meta-test query 64

instances is not required. Inductive approaches to tackle train-test domain shifts have relied on 65

adversarial methods for data/task augmentations. Goldblum et al., [8] propose adversarial data 66

augmentation for FSL setup and demonstrate the robustness of the model trained on augmented 67

tasks to adversarial attacks at meta-test time. Wang et al. [15] bridge the shift between meta-train 68

and meta-test domains by adversarial augmentation by constructing virtual tasks learned through 69

adversarial perturbations. A model trained on such virtual tasks becomes resilient to meta-train 70

and meta-test domain shifts. While adversarial perturbations are central to our approach, we use it 71

to tackle a different problem, support query distribution shifts inside a task for FSL. 72

3 Methodology 73

3.1 Preliminaries 74

3.1.1 Notations. A typical ML setup has three phases - meta-train𝑀 , meta-validation𝑀𝑣 and meta-test 75

𝑀𝑡 . A model is trained on 𝑀 and evaluated on 𝑀𝑡 . 𝑀𝑣 is used for hyperparameter tuning and 76

model selection. The dataset (𝐶,D) comprising of classes and domains is partitioned into (𝐶𝑀 ,D𝑀 ), 77

(𝐶𝑀𝑣
,D𝑀𝑣

), and (𝐶𝑀𝑡
,D𝑀𝑡

) corresponding to the phases𝑀 ,𝑀𝑣 and𝑀𝑡 , respectively. Each phase 78

is a collection of tasks and every task 𝑇0 is composed of a support set 𝑇𝑆0 and a query set 𝑇𝑄0
. The 79

support set 𝑇𝑆0 and query set 𝑇𝑄0
contain (example 𝑥 , label 𝑦) pairs from 𝑁 -classes with 𝐾 and 𝑄 80

examples per class, with the label of meta-test query instances being used only for evaluation. 81

3.1.2 Support-Query Distribution Shift. In a classical few-shot learning setup, the domain is constant 82

across 𝑀,𝑀𝑣, 𝑀𝑡 phases and within the tasks. So, in addition to a common distribution T0 over 83

tasks, a shared distribution exists even at the task composition level, i.e., T𝑆0 = T𝑄0
, where T𝑆0 and 84

T𝑄0
are the distributions on support and query sets respectively. A more pragmatic case is that of 85

SQS, wherein a distribution mismatch occurs between the support and query sets within a task. 86

Let D𝑀 and D𝑀𝑡
be the set of domains for the𝑀 and𝑀𝑡 phases. We skip𝑀𝑣 for convenience, but 87
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it follows the same characteristics as𝑀 and𝑀𝑡 . We define our version of the support query shift 88

problem termed SQS+ as follows. 89

Definition 1. (SQS+) The support and query sets of every meta-train task come from the domain D𝑀 90

and share a common distribution T𝑆0 = T𝑄0
. Let 𝐷𝑀𝑡

𝑆
, 𝐷

𝑀𝑡

𝑄
∈ D𝑀𝑡

be the support and query domains 91

for a meta-test task. The SQS+ setting is characterized by an unknown shift in the support and query 92

domains of a meta-test task, 𝐷𝑀𝑡

𝑆
≠ 𝐷

𝑀𝑡

𝑄
(introducing a shift in the support and query distributions 93

T𝑆0 ≠ T𝑄0
), along with the standard SQS assumption of disjoint meta-train and meta-test domains - 94

D𝑀 ∩D𝑀𝑡
= ∅. 95

3.2 Adversarial Query Projection (AQP) 96

Without leveraging unlabelled meta-test query instances, our solution induces the hardest distribu- 97

tion shift for the meta-model’s current state. For a task 𝑇0, we simulate the worst distribution shift 98

by adversarially perturbing its query set 𝑇𝑄0
such that the model’s query loss 𝐿∗ maximizes. Let 𝐻 99

be the task composition space, i.e., 𝐻 is the distribution of support and query distributions such 100

that T𝑄0
∼ 𝐻 and T𝑄 ∼ 𝐻 . Let 𝑇𝑄0

and 𝑇𝑄 be the samples belonging to T𝑄0
and T𝑄 respectively 101

(we occasionally denote 𝑇𝑄 ∼ 𝐻 because 𝑇𝑄 ∼ T𝑄 ∼ 𝐻 , to improve readability). Also, let Θ be 102

the parameter space with 𝜃, 𝜙 ∼ Θ, and 𝑑 : 𝐻 × 𝐻 → 𝑅+ be the distance metric that satisfies 103

𝑑 (𝑇𝑄0
,𝑇𝑄0
) = 0 and 𝑑 (𝑇𝑄 ,𝑇𝑄0

) ≥ 0. We consider a Wasserstein ball 𝐵 centered at T𝑄0
with radius 𝜌 104

denoted by 𝐵𝜌 (T𝑄0
) such that: 105

𝐵𝜌 (T𝑄0
) = {T𝑄 ∈ 𝐻 :𝑊𝑑 (T𝑄 , T𝑄0

) ≤ 𝜌}
where𝑊𝑑 (T𝑄 , T𝑄0

) = inf

𝑀 ∈𝜋 (T𝑄 ,T𝑄
0
)
E𝑀

[
𝑑 (𝑇𝑄 ,𝑇𝑄0

)
]
is the Wasserstein distance that measures the 106

minimum transportation cost required to transform T𝑄0
to T𝑄 , and 𝜋 (T𝑄 , T𝑄0

) denotes all joint 107

distributions for (T𝑄 , T𝑄0
) with marginals T𝑄 and T𝑄0

. AQP aims to find the most challenging 108

query distribution T𝑄 for an original query distribution T𝑄0
that lies within or on the Wasserstein 109

ball 𝐵𝜌 (T𝑄0
). The hardest perturbation to the query distribution T𝑄0

is the one that maximizes the 110

model’s query loss 𝐿∗. Updating the model using such difficult query distribution T𝑄 improves its 111

generalizability. Further, the transformation of T𝑄0
into T𝑄 induces a distributional disparity in a 112

new virtual task comprising of the original support set from T𝑆0 and the projected query set from 113

T𝑄 . A model adapted to such virtual tasks is compelled to extract the shift-invariant representations 114

from𝑇𝑆0 ∼ T𝑆0 transferable to𝑇𝑄 ∼ T𝑄 to reduce the query loss 𝐿∗. As adversarial perturbations are 115

adaptive to the model’s state, they do not have a monotonic structure throughout the meta-training 116

phase. The evolving augmentations expose the model to diverse SQS. A model meta-trained on 117

such virtual tasks with different SQ shifts learns to extract diverse shift-invariant representations 118

increasing the model’s endurance to unknown meta-test SQS. The simultaneous restrain of T𝑄 to a 119

Wasserstein ball radius 𝜌 ensures T𝑄 does not deviate extensively from T𝑄0
, and T𝑄 , T𝑄0

share the 120

label space, and T𝑄0
, T𝑄 ∈ 𝐻 is maintained. Thus the newly-framed meta-objective is: 121

min

𝜃 ∈Θ
sup

𝑊𝑑 (T𝑄 ,T𝑄
0
) ≤𝜌

E(𝑇𝑄∼ T𝑄 )
[
𝐿∗(𝜙,𝑇𝑄 )

]
(1)

where 𝜙 ← 𝜃 − 𝛼∇𝜃𝐿(𝜃 ;𝑇𝑆0). Note that ML approaches such as ProtoNet [9] and MatchingNet [14] 122

do not require adaptation, and hence 𝜃 = 𝜙 . As equation 1 is intractable for an arbitrary 𝜌 , we use 123

Langragian relaxation for a fixed penalty parameter 𝛾 ≥ 0 to convert this constrained objective to 124

an unconstrained objective. 125

min

𝜃 ∈Θ
sup

T𝑄

{
ET𝑄 [𝐿∗(𝜙,𝑇𝑄 )] − 𝛾𝑊𝑑 (T𝑄 , T𝑄0

)
}

(2)

This unconstrained objective (equation 2) is strongly concave and hence easy to optimize. It involves 126

maximizing the loss 𝐿∗ on adversarial query projections 𝑇𝑄 while simultaneously restraining 𝑇𝑄 to 127

a 𝜌 distance from 𝑇𝑄0
. 128
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Table 1: Comparison of ML methods with their Ind_OT and AQP counterparts across Cifar 100,

miniImagenet, tieredImagenet, FEMNIST datasets, and their SQS and SQS+ variants. The

results are obtained on 5-way tasks with 5 support and 8 query instances per class except for

FEMNIST and its variants, which contains only one support and one query instance per class.

The ± represents the 95% confidence intervals over 2000 tasks. AQP outperforms classic, and

Ind_OT-based ML approaches approximately on all datasets.

Method
Test Accuracy

No SQS SQS SQS+ No SQS SQS SQS+

Cifar 100 miniImagenet

ProtoNeT 48.07 ± 0.44 43.15 ± 0.48 40.59 ± 0.69 64.56 ± 0.42 41.68 ± 0.76 35.17 ± 0.78

Ind_OT+

ProtoNeT
48.62 ± 0.44 43.62 ± 0.49 41.74 ± 0.65 63.74 ± 0.42 39.84 ± 0.78 34.75 ± 0.80

AQP+

ProtoNeT
48.70 ± 0.42 45.09 ± 0.46 45.06 ± 0.46 66.81 ± 0.42 42.65 ± 0.57 40.61 ±0.60

MatchingNet 46.03 ± 0.42 39.89 ± 0.44 36.63 ± 0.45 59.68 ± 0.43 39.66± 0.54 35.40 ±0.52
Ind_OT+

MatchingNet
45.77 ± 0.42 40.82 ± 0.45 37.13 ± 0.47 59.64 ± 0.44 38.25± 0.54 33.22± 0.50

AQP+

MatchingNet
46.53 ± 0.43 42.40 ± 0.46 41.26 ± 0.46 62.29 ± 0.42 42.32 ± 0.52 37.90 ± 0.53

tieredImagenet FEMNIST

ProtoNeT 71.04 ± 0.45 41.59 ± 0.57 38.57 ± 0.65 93.09 ± 0.51 84.36 ± 0.74 82.67 ± 0.77

Ind_OT+

ProtoNeT
69.56 ± 0.46 40.08 ± 0.56 35.81 ± 0.58 91.66 ± 0.55 79.64 ± 0.80 76.37 ± 0.84

AQP+

ProtoNeT
69.62 ± 0.45 45.34 ± 0.60 40.94 ± 0.66 94.61 ± 0.45 85.92 ± 0.69 84.42 ± 0.74

MatchingNet 67.85 ± 0.46 43.30 ± 0.56 37.57 ± 0.57 93.69 ± 0.49 85.88 ± 0.69 83.48 ± 0.74

Ind_OT+

MatchingNet
67.79 ± 0.46 44.27 ± 0.56 39.24 ± 0.59 93.76 ± 0.48 84.08 ± 0.71 83.09 ± 0.74

AQP+

MatchingNet
68.40 ± 0.45 45.26 ± 0.56 39.39 ± 0.58 93.69 +- 0.49 87.24 ± 0.67 84.98 ± 0.72

3.2.1 Estimation of AQP. We employ gradient ascent with early stopping on the query set instances 129

𝑋 ∗ to find their corresponding adversarial query projections 𝑋 ∗𝑤 . Specifically, we perform an 130

iterative gradient ascent on 𝑋 ∗ using 𝐿∗, resulting in an augmented query set 𝑋 ∗𝑤 . This augmented 131

query set 𝑋 ∗𝑤 has distributional disparity with original support set 𝑋 . Early stopping regularizes 132

(−𝛾𝑑 (𝑇𝑄 ,𝑇𝑄0
)) and ensures 𝑋 ∗𝑤 does not deviate extensively from 𝑋 ∗. 133

4 Experiments and Results 134

We design experiments to investigate the challenging nature of our proposed SQS+ benchmark and 135

empirically validate the efficacy of the proposed AQP over the state-of-the-art approach to address 136

SQS in inductive settings. We consider Cifar 100, miniImagenet, tieredImagenet, FEMNIST, and 137

their state-of-the-art SQS variants for evaluation. We also demonstrate the AQP’s efficiency on our 138

proposed SQS+ versions of benchmark datasets. The SQS+ versions of Cifar 100, miniImagenet, 139

and tieredImagenet datasets are constructed from their SQS counterparts [3] by removing pertur- 140

bations from the meta-train datasets. Similarly, the SQS+ variant of FEMNIST also follows its SQS 141

counterpart, but the meta-train set contains alpha-numerals from users randomly. We add these 142

SQS+ versions of benchmark datasets to the FewShiftBed [3]. We used Conv4 models [3] for Cifar 143

100, FEMNIST and their variants, and ResNet-18 [9] for miniImagenet, tieredImagenet, and their 144

extensions. We use 32× 32 images for Cifar 100, 28× 28 for FEMNIST, and 84× 84 for miniImagenet 145

and tieredImagenet. The modified FewShiftBed, which includes the proposed solution, details of 146

SQS+ versions of datasets, and implementation details, is publicly available.
1

147

4.1 Evaluation of SQS+ 148

We first validate that SQS+ is more challenging than the SQS problem [3]. We train Prototypical and 149

Matching networks on Cifar 100, miniImagenet, tieredImagenet, and FEMNIST on all three settings 150

- No SQS, SQS, and SQS+. We report the results in Table 1 and observe that for all the datasets, 151

models trained with both the approaches (ProtoNet and MatchingNet) perform best in the No SQS 152

1https://github.com/Few-Shot-SQS/adversarial-query-projection

4

https://github.com/Few-Shot-SQS/adversarial-query-projection


setting, followed by SQS and SQS+. In the classical few-shot setting, meta-train and meta-test 153

phases share the domain, due to which the meta-knowledge is easily transferable across the phases. 154

However, in SQS, each task’s support and query set represent different domains, but share a latent 155

structure, during the meta-train and meta-test phases. In SQS versions of Cifar 100, miniImagenet, 156

and tieredImagenet, both meta-train and meta-test SQS are characterized by different types of data 157

perturbations. However, in FEMNIST’s SQS variant, meta-train and meta-test SQS is induced due 158

to different writers. A meta-model trained in this setup becomes partially resilient to the related 159

but disjoint SQS during meta-testing. A common SQS structure across meta-train and meta-test 160

sets may not exist. Thus, SQS+ datasets are more challenging, which is empirically validated by the 161

baseline approach’s poor performance. 162

4.2 Evaluation of AQP 163

We compare the efficiency of the proposed AQP and OT based state-of-the-art solution in handling 164

vanilla SQS and SQS+ on the benchmark datasets. A strong baseline for SQS+ is the inductive 165

version of OT (Ind_OT), where we employ OT only in the meta-train phase to generate projected 166

support sets using support and query instances of a task. We evaluate ProtoNet and MatchingNet 167

versions of Ind_OT and AQP. Table 1 presents the results for this evaluation. We observe that the 168

models learned on projected support data obtained by Ind_OT are less robust to both SQS and SQS+ 169

than the models learned on AQP for all approaches and datasets. Hence, AQP is better at addressing 170

SQS+ (and SQS), when meta-test unlabeled query instances are unavailable. To inspect whether the 171

proposed AQP negatively impacts the models’ generalization in the absence of meta-test SQS, we 172

evaluate the ML approaches and their Ind_OT and AQP counterparts on classic datasets containing 173

no support query shifts (No SQS). We observe from Table 1 that AQP does not lead to degradation 174

in the performance in the absence of SQS, instead improves the generalizability of the model even 175

when SQS is absent. The use of different architectures across the datasets shows the robustness of 176

a model trained via AQP across architectures. 177

5 Conclusion and Future Directions 178

This paper proposes SQS+ - a more challenging distribution shift between the support and query 179

sets of a task in a few-shot meta-learning setup. SQS+ includes an unknown SQ shift in the meta-test 180

tasks, and empirical evidence suggests SQS+ is a complex problem than the prevalent SQS notion. 181

We propose Adversarial Query Projection (AQP) to address SQS+ without leveraging unlabelled 182

meta-test query instances. Exhaustive experiments involving AQP on multiple benchmark datasets 183

(Cifar 100, miniImagenet, tieredImagenet, and FEMNIST - their SQS and proposed SQS+ variants), 184

different architectures, and ML approaches demonstrate its effectiveness. We incorporate proposed 185

AQP and SQS+ versions of Cifar 100, miniImagenet, tieredImagenet, and FEMNIST to FewShiftBed 186

and make it publicly available to encourage research in this direction. The future work includes 187

verifying the effectiveness of AQP in complex SQ shifts, e.g., shift from real to sketch images and 188

creating datasets corresponding to these difficult SQ shifts. 189

6 Limitations and Broader Impact Statement 190

We evaluated AQP in the cases where the perturbations in data characterize SQS, and for FEMNIST 191

dataset, different writers characterize SQS. More complex SQ shifts may exist in real-world problems 192

- drastic changes may occur in data acquisition from support to query, or a shift from sketch images 193

in support outlined by a domain expert to real query pictures may exist. AQP’s performance is 194

not verified for these cases yet. Nevertheless, AQP is a baseline for addressing SQS+, and the 195

publically available resources will help the ML community. We declare that our work has no ethical 196

implications and contains no human subject experiments. 197
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7 Reproducibility Checklist 198

1. For all authors. . . 199

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 200

contributions and scope? [TODO]Yes 201

(b) Did you describe the limitations of your work? [TODO]Yes 202

(c) Did you discuss any potential negative societal impacts of your work? [TODO]NA 203

(d) Have you read the ethics author’s and review guidelines and ensured that your paper 204

conforms to them? https://automl.cc/ethics-accessibility/ [TODO]Yes 205

2. If you are including theoretical results. . . 206

(a) Did you state the full set of assumptions of all theoretical results? [TODO]NA 207

(b) Did you include complete proofs of all theoretical results? [TODO]NA 208

3. If you ran experiments. . . 209

(a) Did you include the code, data, and instructions needed to reproduce the main experimen- 210

tal results, including all requirements (e.g., requirements.txt with explicit version), an 211

instructive README with installation, and execution commands (either in the supplemental 212

material or as a url)? [TODO]Yes 213

(b) Did you include the raw results of running the given instructions on the given code and 214

data? [TODO]Yes 215

(c) Did you include scripts and commands that can be used to generate the figures and tables in 216

your paper based on the raw results of the code, data, and instructions given? [TODO]NA 217

(d) Did you ensure sufficient code quality such that your code can be safely executed and the 218

code is properly documented? [TODO]Yes 219

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed 220

hyperparameter settings, and how they were chosen)? [TODO]Yes (present in repository) 221

(f) Did you ensure that you compared different methods (including your own) exactly on 222

the same benchmarks, including the same datasets, search space, code for training and 223

hyperparameters for that code? [TODO]Yes 224

(g) Did you run ablation studies to assess the impact of different components of your approach? 225

[TODO]Yes(Impact in NoSQS setting) 226

(h) Did you use the same evaluation protocol for the methods being compared? [TODO]Yes 227

(i) Did you compare performance over time? [TODO]Yes 228

(j) Did you perform multiple runs of your experiments and report random seeds? 229

[TODO]Yes(seed=1 is fixed for reproducibility) 230

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 231

multiple times)? [TODO]Yes(95% confidence interval) 232

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [TODO]NA 233

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 234

gpus, internal cluster, or cloud provider)? [TODO]16GB NVIDIA V100 235
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(n) Did you report how you tuned hyperparameters, and what time and resources this required 236

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 237

also hyperparameters of your own method)? [TODO]Yes (RAY included in repository) 238

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 239

(a) If your work uses existing assets, did you cite the creators? [TODO]Yes 240

(b) Did you mention the license of the assets? [TODO]NA 241

(c) Did you include any new assets either in the supplemental material or as a url? [TODO]Yes 242

(d) Did you discuss whether and how consent was obtained from people whose data you’re 243

using/curating? [TODO]NA 244

(e) Did you discuss whether the data you are using/curating contains personally identifiable 245

information or offensive content? [TODO]NA 246

5. If you used crowdsourcing or conducted research with human subjects. . . 247

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 248

cable? [TODO]NA 249

(b) Did you describe any potential participant risks, with links to Institutional Review Board 250

(irb) approvals, if applicable? [TODO]NA 251

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 252

on participant compensation? [TODO]NA 253
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