
Under review as a conference paper at ICLR 2024

A PROOF OF EQUIVALENCE BETWEEN DEFINITION 4.1 AND DEFINITION 4.4

A.1 REGULARIZATION VERSION: EQUIVALENCE BETWEEN DEFINITION 4.1 AND
DEFINITION 4.4

Lemma A.1 (Regularization Version: equivalence between Definition 4.1 and Definition 4.4, formal
version of Lemma 4.5). Let L(transformer)

valid and L(softmax)
valid be defined as Definition A.2, we have

W ∗, B∗ = argminW,B L(transformer)
valid and w(softmax)∗ = argminw(softmax) L(softmax)

valid . Let Lreg be
denoted as Definition A.4. For any A ∈ Rn×d we have

ICL(transformer)(A) = ICL(softmax)(A)

with assumptions

• argminW,B(L(transformer)(x) + Lreg) ≈ argminW,B Lreg

Proof. Following argminW,B(L(transformer)(x) + Lreg) ≈ argminW,B Lreg, we have

diag(w
(transformer)
a,i)A+B

(transformer)
a,i = Ai

and

B
(transformer)
b,i = (

√
w

(transformer)
b,i − 1) · ⟨exp(A⊤

i x),1n⟩−1 exp(A⊤
i x)

for all w(transformer)
a,i , B(transformer)

a,i and w
(transformer)
b,i , B(transformer)

b,i in W,B.

When w
(softmax)
i = w

(transformer)
b,i , we have

L(softmax)(x) = L(transformer)(x)

where this equality uses Lemma A.5.

So we have

x(transformer) = x(softmax)

where this equality uses the definitions of x(transformer) and x(softmax).

Then,

ICL(transformer)(A) = ICL(softmax)(A)

where this equality uses the definitions of ICL(transformer)(A) and ICL(softmax)(A).

Definition A.2 (Validation loss). Let ICL(transformer)(A) and ICL(softmax)(A) be defined as
Definition A.3. Suppose that given a clean and unbiased validation set V = {(Av

i , b
v
i)1 ≤ i ≤ |V|},

where |V| represents the size of V . We define

L(transformer)
valid :=

|V|∑
i=1

L(x(transformer), Av
i , b

v
i)

and we define

L(softmax)
valid :=

|V|∑
i=1

L(x(softmax), Av
i , b

v
i)

Definition A.3 (Definitions of ICL(transformer)(A) and ICL(softmax)(A)). Let L(softmax)(x) and
L(transformer)(x) be defined as Definition A.5. Let f(x) be defined as Definition 3.1. We define Lreg

as Definition A.4. Following Definition A.4, we define

Lreg := γ ·
n∑

i=1

(∥ diag(w(transformer)
a,i)Ai +B

(transformer)
a,i −Ai∥2

15

Under review as a conference paper at ICLR 2024

+ ∥B(transformer)
b,i − (

√
w

(transformer)
b,i − 1) · bi∥22)

Since Theorem 3.4, we define

ICL(transformer)(A) = f(x(transformer))

where x(transformer) := argminx(L(transformer)(x) + Lreg). And we define

ICL(softmax)(A) = f(x(softmax))

where x(softmax) := argminx L(softmax)(x).
Definition A.4. We define a regularization term for approximate the conditions in Lemma A.5. We
define

Lreg := γ(∥diag(w(transformer)
a)A+B(transformer)

a −A∥2

+ ∥B(transformer)
b − (

√
w

(transformer)
b − 1) · b∥22)

where γ > 0 be denote a constant.

A.2 CONDITIONAL CONSTRAINT VERSION: EQUIVALENCE BETWEEN DEFINITION 4.1 AND
DEFINITION 4.4 IN MULTIPLE INPUT-OUTPUT PAIRS

Lemma A.5 (Conditional constraint version: equivalence between Definition 4.1 and Definition 4.4
in multiple input-output pairs). If the following conditions hold

• Let L(softmax)(x) and L(transformer)(x) be defined as Definition A.6

• diag(w
(transformer)
a)A+B

(transformer)
a = A

• w
(transformer)
b =

√
w(softmax)

• B
(transformer)
b = (

√
w(softmax)−1) ·b ≈ (

√
w(softmax)−1) ·⟨exp(A⊤x),1n⟩−1 exp(A⊤x)

We have
L(softmax)(x) = L(transformer)(x)

Proof. We have

L(softmax)(x) =

m∑
i=1

w
(softmax)
i ∥⟨exp(A⊤

i x),1n⟩−1 exp(A⊤
i x)− bi∥22

=

m∑
i=1

∥⟨exp(Ai
⊤
rewightx),1n⟩−1 exp(Ai

⊤
reweightx)− bireweight∥22

= L(transformer)(x)

where the first equality uses the definition of L(softmax)(x), the second equality uses Lemma A.7, the
third equality uses the definition of L(transformer)(x).

Definition A.6 (In-context learning with m input-output pairs). We discuss the case of multiple
input-output pairs. Following Lemma A.7, we define

L(softmax)(x) :=

m∑
i=1

w
(softmax)
i ∥⟨exp(A⊤

i x),1n⟩−1 exp(A⊤
i x)− bi∥22

and we define

L(transformer)(x) =

m∑
i=1

∥⟨exp(Ai
⊤
rewightx),1n⟩−1 exp(Ai

⊤
reweightx)− bireweight∥22

where Airewight = diag(w
(transformer)
a,i)Ai + B

(transformer)
a,i and birewight = w

(transformer)
b,i b +

B
(transformer)
b,i .

16

Under review as a conference paper at ICLR 2024

A.3 CONDITIONAL CONSTRAINT VERSION: EQUIVALENCE BETWEEN DEFINITION 4.1 AND
DEFINITION 4.4 IN SINGLE INPUT-OUTPUT PAIR

Lemma A.7 (Conditional constraint version: equivalence between Definition 4.1 and Definition 4.4 in
single input-output pair). We discuss the case of a single input-output pair, let loss of single softmax re-
gression in Definition 4.1 be defined as L(softmax)(x) = w(softmax)∥⟨exp(A⊤x),1n⟩−1 exp(A⊤x)−
b∥22. Let loss of single pair in in-context learning of transformer embedding layer in Definition 4.4
be defined as L(transformer)(x) = ∥⟨exp(A⊤

rewightx),1n⟩−1 exp(A⊤
reweightx) − breweight∥22, where

Arewight = diag(w
(transformer)
a)A+ B

(transformer)
a and brewight = w

(transformer)
b b+ B

(transformer)
b .

We have

L(softmax)(x) = L(transformer)(x)

when satisfies the following conditions

• diag(w
(transformer)
a)A+B

(transformer)
a = A

• w
(transformer)
b =

√
w(softmax)

• B
(transformer)
b = (

√
w(softmax)−1) ·b ≈ (

√
w(softmax)−1) ·⟨exp(A⊤x),1n⟩−1 exp(A⊤x)

Proof. We assume that

diag(w(transformer)
a)A+B(transformer)

a = A (2)

and w
(transformer)
b satisfies that

w
(transformer)
b =

√
w(softmax) (3)

and B
(transformer)
a satisfies that

B
(transformer)
b = (

√
w(softmax) − 1) · ⟨exp(A⊤x),1n⟩−1 exp(A⊤x) (4)

As we satisfy the tree conditions above, we have

L(transformer)(x) = ∥⟨exp(A⊤
reweightx),1n⟩−1 exp(A⊤

reweightx)− breweight∥22
= ∥⟨exp((diag(w(transformer)

a)A+B(transformer)
a)⊤x),1n⟩−1

· exp((diag(w(transformer)
a)A+B(transformer)

a)⊤x)− breweight∥22
= ∥⟨exp(A⊤x),1n⟩−1 exp(A⊤x)− breweight∥22
= ∥⟨exp(A⊤x),1n⟩−1 exp(A⊤x)− w

(transformer)
b b+B

(transformer)
b ∥22

= ∥⟨exp(A⊤x),1n⟩−1 exp(A⊤x)−
√
w(softmax)b+B

(transformer)
b ∥22

= ∥⟨exp(A⊤x),1n⟩−1 exp(A⊤x)−
√

w(softmax)b

+ (
√
w(softmax) − 1) · ⟨exp(A⊤x),1n⟩−1 exp(A⊤x)∥22

= ∥
√
w(softmax) · ⟨exp(A⊤x),1n⟩−1 exp(A⊤x)−

√
w(softmax)b∥22

= w(softmax) · ∥⟨exp(A⊤x),1n⟩−1 exp(A⊤x)− b∥22
= L(softmax)(x)

where the first equality uses the definition of L(transformer)(x), the second equality uses the definition
of Arewight, the third equality uses Eq. (2), the fourth equality uses the definition of breweight, the
fifth equality uses Eq. (3), the sixth equality uses Eq. (4), the seventh, eighth equalities uses simple
algebras, the ninth equality uses the definition of L(softmax)(x).

17

Under review as a conference paper at ICLR 2024

A.4 CALCULATION RESULTS OF EACH INPUT-OUTPUT PAIR IN Prefixreweight

Lemma A.8 (Calculation results of each input-output pair in prefixreweight). Let W ∈
Rm(n+1)×m(n+1) and B ∈ Rm(n+1)×d be denoted as Definition 4.2, given prefix :=
[A1, b

⊤
1 , A2, b

⊤
2 , ..., Am, b⊤m], prefix ∈ Rm(n+1)×d, let prefixreweight be defined as Definition 4.3,

we have

prefixreweight = [diag(wa,1)A1 +Ba,1, wb,1b1 +Bb,1, ...,diag(wa,m)Am +Ba,m, wb,mbm +Ba,m]

Proof. We have

w⊤ =
[
(wa,1)

⊤ (wb,1) · · · (wa,m)⊤ (wb,m)
]

(5)

where wa,i ∈ Rn, wb,i ∈ R.

Also, we have

B =
[
(Ba,1) (Bb,1)

⊤ · · · (Ba,m) (Bb,m)⊤
]

(6)

where Ba,i ∈ Rn×d, Bb,i ∈ Rd.

We can show that

prefixreweight

=W · prefix +B

= diag(w) · prefix +B

= [diag(wa,1)A1 +Ba,1, wb,1b1 +Bb,1, ...,diag(wa,m)Am +Ba,m, wb,mbm +Ba,m]

where the first equality uses Definition 4.3, the second equality uses the definition of W , the third
equality uses simple algebra and Eq. (5) and Eq. (6).

B PROOF OF CONVERGENCE OF REWEIGHTED TRAINING

B.1 MAIN RESULT

Lemma B.1 (Our version of Lemma B.5, formal version of Lemma 4.8). Suppose the validation loss
function is Lipschitz-smooth with constant L, where L = dn2 exp(5R2), and the train loss function
of training data A have σ-bounded gradients, where σ = 4R. Let the learning rate αt satisfies
αt ≤ 2|B|

Lσ2 , where |B| is the training batch size of batch B of validation set V . Then, following our
algorithm, the validation loss always monotonically decreases for any sequence of training batches,
namely,

Lvalid(wt+1) ≤ Lvalid(wt)

where Lvalid(w) is the total validation loss in Definition 4.1.

Furthermore, in expectation, the Lvalid(w) holds only when the gradient of validation loss becomes 0
at some time step t, namely Et[Lvalid(wt+1)] = Lvalid(w) if and only if ∇Lvalid(w) = 0, where the
expectation is taking over possible training batches at time step t.

Proof. Since L and σ have been strictly bounded in Lemma B.8 and Lemma B.9, this proof follows
from Lemma B.5.

Theorem B.2 (Our version of Theorem B.6, formal version of Therorem 4.9). Suppose Lunbiased,
L(x,Ai, bi) and αt satisfy the aforementioned conditions, then the Algorithm 1 achieves
E[∥∇Lvalid(w)∥2] ≤ ϵ in O(1/ϵ2) steps. More specifically,

min
0≤t≤T

E[∥Lvalid(wt)∥2] ≤
C√
T

where C is some constant independent of the convergence process.

Proof. This proof follows from Theorem B.6 and Lemma B.1.

18

Under review as a conference paper at ICLR 2024

B.2 REWEIGHTED TRAINING ANALYSIS

Definition B.3 (Convergence condition in Ren et al. (2018)). A function f(x) : Rd → R is said to be
Lipschitz-smooth with constant L if

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,∀x, y ∈ Rd

Definition B.4 (Convergence condition in Ren et al. (2018)). f(x) has σ-bounded gradients if
∥∇f(x)∥ ≤ σ for all x ∈ Rd.
Lemma B.5 (Lemma 1 in Ren et al. (2018)). Suppose the validation loss function is Lipschitz-smooth
with constant L, and the train loss function of training data xi have σ-bounded gradients. Let the
learning rate αt satisfies αt ≤ 2n

Lσ2 , where n is the training batch size. Then, following our algorithm,
the validation loss always monotonically decreases for any sequence of training batches, namely,

G(θt+1) ≤ G(θ)

where G(θ) is the total validation loss

G(θ) =
1

M

M∑
i=1

fv
i (θt+1(ϵ))

Furthermore, in expectation, the Lvalid(w) holds only when the gradient of validation loss becomes 0
at some time step t, namely Et[Lvalid(wt+1)] = Lvalid(w) if and only if ∇Lvalid(w) = 0, where the
expectation is taking over possible training batches at time step t.
Theorem B.6 (Theorem 2 in Ren et al. (2018)). Suppose G, fi and αt satisfy the aforementioned
conditions, then the Algorithm 1 achieves E[∥∇G(θt)∥2] ≤ ϵ in O(1/ϵ2) steps. More specifically,

min
0<t<T

E[∥∇G(θt)∥2] ≤
C√
T

where C is some constant independent of the convergence process.

B.3 GRADIENT OF L(x,Ai, bi)

Lemma B.7 (Deng et al. (2023); Gao et al. (2023); Chu et al. (2023)). Let L(x,Ai, bi) be defined as
Definition 3.5, we have

∇L(x,Ai, bi) = Ai
⊤
∗,j(−fi(x)(fi(x)− bi)

⊤fi(x) + diag(fi(x))(fi(x)− bi))

where j ∈ [n] denote a integer.

B.4 LIPSCHITZ PROPERTY FOR ∇L

Lemma B.8 (Lemma 8.3 in Gao et al. (2023)). We let x, y ∈ Rd with ∥x∥2 ≤ R and ∥y∥2 ≤ R, where
R > 4 denote a scalar. Let x and y satisfy maxj∈[n] ∥Ai[j],∗(x−y)∥∞ < 0.01, maxj∈[n] ∥Ai[j],∗∥ ≤
R, maxj∈[n] ∥bi[j]∥2 ≤ 1, we have Lipschitz-smooth property for∇L as follows

∥∇xL(x,Ai, bi)−∇yL(y,Ai, bi)∥2 ≤ dn2 exp(5R2) · ∥x− y∥2

B.5 UPPER BOUND ON ∇L(x,Ai, bi)

Lemma B.9 (Formal version of Lemma 4.7). Given an input matrix Ai ∈ Rn×d and a target vector
b ∈ Rn, where Ai satisfies ∥Ai∥ ≤ R, R > 4, b satisfies ∥b∥2 ≤ 1. Let L(x,Ai, bi) be defined as
Definition 3.5, for all x ∈ Rd, we have

∥∇L(x,Ai, bi)∥2 ≤ 4R

Proof. We have

∥∇L(x,Ai, bi)∥2 ≤ ∥Ai
⊤
∗,j(−fi(x)(fi(x)− bi)

⊤fi(x) + diag(fi(x))(fi(x)− bi))∥2
≤ ∥A∥ · (∥ − fi(x)(fi(x)− bi)

⊤fi(x) + diag(fi(x))(fi(x)− bi))∥2)

19

Under review as a conference paper at ICLR 2024

≤ ∥A∥ · (∥fi(x)(fi(x)− bi)
⊤fi(x)∥2 + ∥ diag(fi(x))(fi(x)− bi)∥2)

≤ ∥A∥ · (∥fi(x)∥2 · |(fi(x)− bi)
⊤fi(x)|+ ∥ diag(fi(x))(fi(x)− bi)∥2)

≤ ∥A∥ · (∥fi(x)∥2 · ∥fi(x)− bi∥2 · ∥fi(x)∥2 + ∥ diag(fi(x))(fi(x)− bi)∥2)
≤ ∥A∥ · (∥fi(x)∥2 · ∥fi(x)− bi∥2 · ∥fi(x)∥2 + ∥ diag(fi(x))∥ · ∥fi(x)− bi∥2)
≤ ∥A∥ · (∥fi(x)∥2 · ∥fi(x)− bi∥2 · ∥fi(x)∥2 + ∥fi(x)∥2 · ∥fi(x)− bi∥2)
≤ ∥A∥ · (∥fi(x)− bi∥2 + ∥fi(x)− bi∥2)
≤ 4∥A∥
≤ 4R

where the first equality uses Lemma B.7, the second equality uses simple algebra, the third, fourth,
fifth, sixth, seventh equalities use Fact B.10, the eighth equality uses ∥f(x)∥2 ≤ 1, the ninth equality
uses Lemma B.11, the tenth equality uses ∥A∥ ≤ R.

B.6 BASIC BOUNDS

Fact B.10. Denote u, v ∈ Rn denote two vectors such that

• |u⊤v| ≤ ∥u∥2 · ∥v∥2

• ∥diag(u)∥ ≤ ∥u∥2

• ∥u+ v∥2 ≤ ∥u∥2 + ∥v∥2

• Denote α ∈ R a scalar, ∥αu∥2 = |α| · ∥u∥2
Lemma B.11 (Part 1 of Lemma 66 in Chu et al. (2023)). Let f(x) be defined as Definition 3.1,
∥b∥2 ≤ 1, we have

∥f(x)− b∥2 ≤ 2

C A FAST WEIGHT APPROXIMATION ALGORITHM UNDER LINEAR
REGRESSION LOSS

Here we follow the results in Akyürek et al. (2022); Garg et al. (2022); Zhang et al. (2023b);
Von Oswald et al. (2023), under the assumption that transformer learns linear regression in in-context
learning, we provide our definition for linear in-context learning below.

Definition C.1 (In-context learning loss under linear regression loss). Suppose there is an input
prompt P = {(A1, b1), (A2, b2), ..., (Am, bm)} with m data points (Ai, bi) ∈ Rn×d × Rn for all
i ∈ [m]. We define in-context learning loss as follows

L :=

m∑
i=1

L(x,Ai, bi)

where L(x,Ai, bi) is single in-context learning loss such that L(x,Ai, bi) := 0.5∥Aix− bi∥22.

Then we have closed-form solution for Definition C.1 that x = (A⊤A)−1A⊤b. We show our
definition of reweight method on linear in-context learning as follows:

Definition C.2 (Weight for reweight method). We denote our weight W ∈ Rm(n+1)×m(n+1) of
reweight method that W = diag(w) where w ∈ Rm(n+1) and additional bias B ∈ Rm(n+1)×d. We
define w⊤ =

[
(wa,1)

⊤ (wb,1) · · · (wa,m)⊤ (wb,m)
]
, where wa,i ∈ Rn, wb,i ∈ R.

And we propose our definition of reweighted preifx

Definition C.3. Let W ∈ Rm(n+1)×m(n+1) be denoted as Definition C.2, we define reweighted prefix
as prefixreweight = W · prefix.

We now provide a formal definition of the application of our method to the transformer architecture

20

Under review as a conference paper at ICLR 2024

Definition C.4 (Training objective of our reweight method on linear in-context learning). Suppose
that given embedded prompt prefix := [A1, b1, A2, b2, ..., Am, bm] and weight w ∈ Rm(n+1), given
a clean and unbiased validation set V = {(Av

i , b
v
i)1 ≤ i ≤ |V|}, where |V| represents the size of V .

We denote a language model with its parameters θ as fθ(x), fθ(x) implement in-context learning
with prefix W · prefix +B as an in-context leaner, we denote it as ICLreweight(A). Given a training
objective function L to train fθ(x). We freeze θ and fine-tune w to minimize

Lvalid =

|V|∑
i=1

L(ICLreweight(A
v
i), b

v
i)

where ICLreweight(A
v
i) = Av

i (A
⊤A)−1A⊤b, A = 1

m

∑m
i=1 diag(wa,i)Ai, b = 1

m

∑m
i=1 wb,ibi.

Hence, we can train weight w by

Algorithm 2 Linear approximation reweighted in-context learning (LARICL)

Input: Prompt P , validation set V , learning rate α, minimum error ϵ
Output: Optimal weights approximation w∗

1: procedure OPTIMALWEIGHTSLINEARAPPROXIMATION(P,V, α, ϵ)
2: ϵ← 1m(n+1)

3: T ← O(1/ϵ2)
4: for t = 1→ T do
5: A← 1

m

∑m
i=1 diag(wa,i)Ai

6: b← 1
m

∑m
i=1 wb,ibi

7: Lvalid ←
∑|V|

i=1 ∥Av
i (A

⊤A)−1A⊤b− bvi ∥22
8: w ← w − α∇wLvalid(w)
9: end for

10: return w
11: end procedure

D EXPERIMENTAL DETAILS

D.1 SETUP

Pretrain GPT-2 to Learn In-context. We pre-train a GPT-2 with 12 layers, 8 heads, dimension
d = 128 and max token length n positions = 1024 under softmax regreesion (Definition 3.1). We
let n = 16 for each input-output pairs, we made 600000 data for pre-training and each data has
40 shots of input-output pairs, where the input Ai ∈ R16×16 for i ∈ [40] and we generate Ai as
follows, for each row of A, we sample from N (0, Id×d). This is equivalent to generating each
entry of A from Gaussian N (0, 1). Then, for each data, we select x ∈ N (0, I16) and compute
bi := ⟨exp(A⊤

i x), I16⟩−1 exp(A⊤
i x).

Determine the parameter x of softmax regression. We select x from N (0, I16).

Datasets. We generate a validation set for reweight training our model, where it includes 4000
data points. We sample Ai from N (0, I16), and compute bi = ⟨exp(A⊤

i x), I16⟩−1 exp(A⊤
i x) for

i ∈ [4000]. Then we generate test set for testing the performance of algorithms, where it also includes
4000 data points, Ai from N (0, I16), bi = ⟨exp(A⊤

i x), I16⟩−1 exp(A⊤
i x) for i ∈ [4000].

Baselines. To evaluate the effectiveness of our approach, we conduct a comparative analysis
against two baseline methods referred to as ICL, fine-tuning and prefix tuning Li & Liang (2021).
In ICL, we provide several input-output examples as the prefix of the model to let them implement
in-context learning without any additional training. In fine-tuning, we fine-tune the pre-trained model
without providing any prefix. These two baselines basically represent the two most common methods
of fine-tuning models in real-world cases. In prefix tuning, we follow Mangrulkar et al. (2022),
concatenate a trainable prefix with embedded input, where the length of the prefix is 16(16+1) = 272
(same prefix length as RICL).

21

Under review as a conference paper at ICLR 2024

Prefixes We generate three types of prefixes to evaluate the performance of ICL, RICL, LAR-
ICL in executing in context learning under different prefixes. For random prefix, we sam-
ple Ai ∈ R16×16 from N (0, I16×16), and compute bi = ⟨exp(A⊤

i x), I16⟩−1 exp(A⊤
i x) for

i ∈ [40]. For imbalanced prefix, we sample Ai ∈ R16×16 from N (mean, I16×16) and compute
bi = ⟨exp(A⊤

i x), I16⟩−1 exp(A⊤
i x) for i ∈ [40], where mean stands the mean value of distri-

bution. We generate varying degrees of imbalanced prefixes by sampling Ai from distributions
N (mean, I16×16) with different values of mean. For noisy prefix, we sample A ∈ R16×16 from
N (mean, I16×16) and compute bi = ⟨exp(A⊤

i x),116⟩−1 exp(A⊤
i x) + ε for i ∈ [40], where we

sample ε i.i.d from N (0, std · I16). We generate vary degrees of noisy prefixes by sampling ε
from distributions N (0, std · I16) with different values of std. For imbalanced and noisy prefix, we
sample Ai ∈ R16×16 from N (0.4, I16×16) and compute bi = ⟨exp(A⊤

i x), I16⟩−1 exp(A⊤
i x) + εi

for i ∈ [40], where we sample εi i.i.d from N (0, 0.4I16).

Metrics. We use MSE (mean square error) as our metric function, where MSE(ŷ, y) =
1
n

∑n
i=1(y − ŷ)2. Given a set with k MSE performances {MSE1,MSE2, ...,MSEk}, we trans-

form it to min-max-scaled MSEi := (MSEi − σmin)/(σmax − σmin) for i ∈ [k], where
σmax := max{MSE1,MSE2, ...,MSEk} and σmin := min{MSE1,MSE2, ...,MSEk}.

D.2 THE PERFORMANCES OF REWEIGHT ALGORITHMS ON PREFIXES WITH DIFFERENT
DISTRIBUTIONS

We evaluate the performance of ICL, RICL, and LARICL on a test set with three types of prefixes:
random, imbalanced, and noisy. Additionally, we assess the performance of fine-tuning by fine-tuning
the model without providing any prefix in the input. We record the mean squared error (MSE) for all
experiments. Due to the significantly larger MSE of ICL compared to RICL and fine-tuning, we utilize
a min-max scaling technique to transform the MSE values into a metric, denoted as ”min-max-scaled
MSE”. A smaller value of ”min-max-scaled MSE” indicates a higher MSE and better performance of
the algorithm.

D.3 ROBUSTNESS ON IMBALANCED PREFIX AND NOISY PREFIX

We evaluate the performance of ICL, RICL, and LARICL on a test set with different de-
grees of imbalanced prefixes and different degrees of noisy prefixes. We set std =
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} as the standard deviation of the distribution of prefix for the
left image in Figure 3. We set mean = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6} as the mean value of the
distribution of prefix for the right image in Figure 3.

22

	Proof of Equivalence between Definition 4.1 and Definition 4.4
	Regularization Version: Equivalence between Definition 4.1 and Definition 4.4
	Conditional Constraint Version: Equivalence between Definition 4.1 and Definition 4.4 in Multiple Input-output Pairs
	Conditional Constraint Version: Equivalence between Definition 4.1 and Definition 4.4 in Single Input-output Pair
	Calculation Results of Each Input-output Pair in

	Proof of Convergence of Reweighted Training
	Main Result
	Reweighted Training Analysis
	Gradient of
	Lipschitz Property for
	Upper Bound on
	Basic Bounds

	A Fast Weight Approximation Algorithm under Linear Regression Loss
	Experimental Details
	Setup
	The Performances of Reweight Algorithms on Prefixes with Different Distributions
	Robustness on Imbalanced Prefix and Noisy Prefix

