
1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MAJL: A Model-Agnostic Joint Learning Framework for Music Source Separation and Pitch Estimation ACM MM, 2024, Melbourne, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A RELATEDWORK DETAILS
A.1 Music Source Separation
Music source separation (MSS) is a crucial task in music information
retrieval (MIR), involving the decomposition of music into its con-
stitutive components, such as isolating vocals, bass, and drums [51].
When focusing specifically on clean vocals and accompaniment
without further separating the accompaniment into individual in-
struments, it becomes a singing voice separation task [45], a uni-
versal and specialized form of MSS. Various deep learning methods
address the MSS task, broadly categorized into three types: the
traditional methods, the deep learning-based methods, and the side
information informed methods.

A.1.1 Traditional Methods. Traditional methods are based on digi-
tal signal processing and mathematical statistics, include Indepen-
dent Components Analysis (ICA) [55], Principal Component Anal-
ysis (PCA) [62], and Non-negative Matrix Factorization (NMF) [1].
For instance, ICA is initially employed to solve the blind source sep-
aration task [27], akin to the MSS task. The PCA-based method [24]
utilizes robust principal component analysis to represent accom-
paniment through a separated low-rank matrix and singing voices
through a separated sparse matrix. And the NMF-based methods [1]
model each source with a dictionary, capturing source signals
within the non-negative span of this dictionary. Although these
traditional methods are interpretable and accomplish the music
source separation task to some extent, they often lack the ability to
distinguish between different instruments.

A.1.2 Deep Learning-Based Methods. Deep learning-based meth-
ods fall into three categories: methods in the frequency domain,
methods in the time domain, and hybrid methods in both domains.
For example, U-Net [29], Spleeter [21], CWS-PResUNet [40], and Re-
sUNetDecouple+ [36] belong to methods in the frequency domain,
which process mixture music in the frequency domain (e.g., spec-
trogram) to predict masks or spectrograms of target sources. Alter-
natively, Demucs [10], Wave-U-Net [57], and its follow-ups [41, 47]
are the methods in the time domain. They directly process raw au-
dio using one-dimensional convolutional networks to predict target
sources in the time domain. Additionally, other methods such as
KUIELAB-MDX-Net [33], Hybrid Demucs [9], and HT Demucs [53]
are hybrid methods in both domains. They combine features from
both domains for improved performance of music source separation.
However, the above methods focus only on the features extracted
from raw audio, ignoring the important role of auxiliary informa-
tion such as melody, rhythm, lyrics, and so on in the music source
separation task.

A.1.3 Side Information Informed Methods. Side information in-
formed methods leverage additional information, such as lyrics,
music scores (pitches), or spatial details, to improve the perfor-
mance of music source separation. For instance, JOINT3 [54] utilizes
phoneme-level lyrics alignment to improve the performance of mu-
sic source separation. SPAIN-NET [48] and Soundprism [12, 14] use
music scores and spatial information to enhance the performance
of music source separation. However, these methods treat side in-
formation as auxiliary features and lack the capability to perform
highly related tasks in music information retrieval simultaneously.

A.2 Pitch Estimation
Pitch estimation (PE) is a fundamental task in MIR, playing a cru-
cial role in various downstream applications. Following previous
studies [18, 32, 61], we default to using pitch estimation to refer
to single pitch estimation (SPE), unless explicitly stated otherwise
in this paper. Then we will introduce both single pitch estimation
(SPE) and multi-pitch estimation (MPE) tasks in detail.

A.2.1 Single Pitch Estimation (SPE). The SPE task involves pre-
dicting no more than one pitch at any timestamp. It can be further
categorized into SPE from clean music and SPE from mixture music.

For SPE from clean music, there are two primary methods: the
heuristic-basedmethods and the data-drivenmethods. The heuristic-
based methods, such as ACF [13], YIN [8], SWIPE [5] and pYIN [42],
leverage candidate-generating functions to predict pitches. In con-
trast, the data-driven methods, such as CREPE [32], DeepF0 [56]
and HARMOF0 [61], employ supervised training of models for SPE.
While these methods achieve a good performance on clean music,
they prove to be less effective in the mixture music due to their
limited robustness to accompaniments.

For SPE from mixture music, there are mainly two approaches.
The first approach is pipeline methods, which involves using MSS
models (e.g., Spleeter [21] and U-Net [29]) to extract target sources
from the mixture music, and then using PE models to estimate
the pitch of target sources. These models are trained separately,
resulting in a mismatch between the data distributions at train-
ing and testing times, which limits the performance of PE from
mixture music. The second approach is end-to-end methods (e.g.,
DSM-HCQT [3], CNN-Raw [11] and JDC [37]), which are designed
to directly estimate pitches from mixture music. However, these
methods are also limited in performance due to the presence of
other sources in the mixture music.

A.2.2 Multi Pitch Estimation (MPE). The MPE task entails pre-
dicting multiple pitches at any timestamp, also known as music
transcription in the field of music information retrieval. Given its
increased complexity compared to SPE, our focus in this paper is
exclusively on the single pitch estimation task. Methods for music
transcription are usually classified into two categories: frame-level
transcription methods and note-level transcription methods.

The frame-level transcription methods, such as OAF [19], AD-
SRNet [30] and Non-Saturating GAN [31], employing CNN and
LSTM to predict pitches for each frame. These frame-level pitches
are then transformed into sequential notes, achieving the MPE
task. On the contrary, the note-level transcription methods, such
as seq-to-seq [20], MT3 [17] and EBPT [63] treat notes as events,
predicting note-level pitch results and achieving the MPE task at
the note level. However, the above MPE methods often focus on
specific instruments and may perform inadequately on the SPE
task, lacking robustness across different instruments.

A.3 Joint Learning For MSS and PE
With the development of joint learning, several research tasks in
MIR have shown the potential for mutual improvement through
multi-tasks joint learning. Among these tasks, music source sep-
aration and pitch estimation are closely related, leading to the

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

exploration of methods that take advantage of their mutually ben-
eficial relationship. Several existing methods have attempted to
exploit the mutually beneficial relationship between music source
separation and pitch estimation tasks.

For example, JDC [37] is a joint learning approach that addresses
voice detection and pitch estimation. However, it mainly employs
voice detection as an auxiliary task for accompaniment processing.
Other methods, such as [25] and [6], utilize transcription as an
auxiliary task, incorporating joint transcription and source sepa-
ration training for a limited number of instruments. HS-W𝑝 [44]
and Joint-UNet [28] represent joint learning methods specifically
designed for music source separation and pitch estimation tasks.
Furthermore, models like MSI-DIS [38] and JOINTIST [7] aim to use
a unified model for both music source separation and transcription
tasks. It is worth noting that these models often require training
on datasets containing both pitch labels and target sources. While
these existing joint learning approaches provide valuable insights,
practical challenges arise when combining music source separation
and pitch estimation tasks, especially in scenarios where training
data with both pitch labels and target sources is limited.

B EXPERIMENTAL SETUP DETAILS
B.1 Datasets
To compare with previous MSS models and PE models fairly, we
use three public datasets for our experiments: MIR-1K [22], Med-
leyDB [4], MIR_ST500 [58] and MUSDB18 [50].

MedleyDB [4] dataset consists of 122 songs, 108 of the original
multi-tracks include melody annotations. Based on the melody def-
inition "The f0 curve of the predominant melodic line drawn from
a single source", the melody annotation is the pitch of the stem
with the most predominant melodic source. Thus, the MedleyDB
dataset has both the target sources and corresponding pitches, mak-
ing it the fully-labeled dataset. This dataset has various musical
instruments, including vocals, guitar, violin, dizi, and so on. The
total duration of vocals music data is about 3.21 h, while the total
duration of each other instruments is less than 0.69 h. We focus
only on vocal music in this paper since the amount of data for each
other musical instruments is limited.

MIR-1K [22] dataset is designed for singing voice separation and
contains 1000 song clips extracted from 110 karaoke songs sung
by researchers from the MIR lab. The dataset provides both the
mixture track and the clean vocals track, as well as pitch labels for
the vocal parts, making it a fully-labeled dataset. The total length of
MIR-1K is 133 minutes, and each clip ranges from 4 to 13 seconds.

MIR_ST500 [58] is a singing voice transcription dataset con-
taining 500 Chinese pop songs. It provides the YouTube URL of the
mixture music and the note labels of vocal parts, which can be used
for PE from mixture music. Thus, it is considered a single-labeled
dataset. This dataset is divided into a train dataset (400 songs) and
a test dataset (100 songs), with the total duration of about 32 hours.

MUSDB18 [50] is a dataset of music source separation consisting
of 150 full-length music tracks of different European and American
genres, such as pop, rap, and heavymetal. Each track is composed of
isolated drums, bass, vocals, and other stems. Thus, it is considered
a single-labeled dataset. The dataset is divided into a train folder

with 100 songs and a test folder with 50 songs, with a total duration
of about 10 hours.

B.2 Evaluation Metrics
The following evaluation metrics are used to evaluate the perfor-
mance of the music source separation and pitch estimation tasks, as
described in previous studies onmusic source separation [22, 36, 45]
and pitch estimation [32, 56, 61], respectively. These metrics are
computed using the mir_eval [49] library:

Raw Pitch Accuracy (RPA) [32] computes the proportion of
melody frames in the reference for which the predicted pitch is
within ±50 cents of the ground truth pitch.

Raw Chroma Accuracy (RCA) [32] computes the raw pitch
accuracy after mapping the estimated and reference frequency
sequences onto a single octave. It measures the raw pitch accuracy
ignoring the octave errors.

Signal-to-Distortion Ratio (SDR) [36] measures the quality
of the predicted sources with respect to the original target sources.
It is defined as follows:

𝑆𝐷𝑅(𝑠, 𝑠) = 10 × log10
| |𝑠 | |2

| |𝑠 − 𝑠 | |2
(16)

where 𝑠 is the predicted sources and 𝑠 is the target sources. A higher
SDR indicates better separation results, and vice versa. A perfect
separation would result in infinite SDR.

GlobalNormalized Signal-to-DistortionRatio (GNSDR) [45]
is calculated as follows:

𝐺𝑁𝑆𝐷𝑅 =

∑𝑖=𝑁
𝑖=1 𝑙𝑖𝑁𝑆𝐷𝑅(𝑠, 𝑠, 𝑥)∑𝑖=𝑁

𝑖=1 𝑙𝑖
(17)

where 𝑖 is the index of a song, 𝑁 is the total number of songs, 𝑙𝑖
is the length of the 𝑖𝑡ℎ song, and 𝑁𝑆𝐷𝑅(𝑠, 𝑠, 𝑥) is the normalized
SDR. The 𝑁𝑆𝐷𝑅(𝑠, 𝑠, 𝑥) [45] is defined as follows:

𝑁𝑆𝐷𝑅(𝑠, 𝑠, 𝑥) = 𝑆𝐷𝑅(𝑠, 𝑠) − 𝑆𝐷𝑅(𝑠, 𝑥) (18)

where 𝑥 is the mixture music. The NSDR is the improvement in
SDR between the mixture and the predicted sources.

B.3 Implementation Details
The raw audio is sampled at 16kHz and then transformed into a
spectrogram using the short-time Fourier transform (STFT) with a
Hann window size of 2048 and a hop length of 320 (20ms). We use
the librosa [43] and torchlibrosa [35] to perform the audio process-
ing. During training of the model-agnostic joint learning (MAJL)
framework, we use a batch size of 16 and the Adam optimizer [34].
The learning rate is initialized to 0.001 and is reduced by 0.98 of the
previous learning rate every 10 epochs. In our framework, there are
mainly three hyper-parameters, 𝜔𝑛𝑜𝑖𝑠𝑒 , 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 and thresh-
old (𝑡ℎ). The hyper-parameters 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 and 𝜔𝑛𝑜𝑖𝑠𝑒 only used
for the naive DWHS in additional methods (Section C), where
𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 ranges from 1 to 10 and 𝜔_𝑛𝑜𝑖𝑠𝑒 ranges from 0 to 1.
While the hyper-parameter threshold (𝑡ℎ) is used to filter pseudo
labels, ranging from 0.5 to 1.

Each training audio is divided into segments of 2.56 seconds.
For the MIR-1K [22] dataset, we randomly split the dataset into
training (80%) and testing (20%) sets. We treat MIR_ST500 [58]
and MUSDB18 [50] datasets as single-labeled datasets since they

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

MAJL: A Model-Agnostic Joint Learning Framework for Music Source Separation and Pitch Estimation ACM MM, 2024, Melbourne, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 6: Analysis for different cases in DWHS and corresponding weights calculated by the naive DWHS. The 𝑦𝑡 is defined as
𝑚𝑎𝑥 (𝑦) ×𝑚𝑎𝑥 (𝑦) + (1 −𝑚𝑎𝑥 (𝑦)) × (1 −𝑚𝑎𝑥 (𝑦)). The 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 and 𝜔𝑛𝑜𝑖𝑠𝑒 are two hyper-parameters for the naive DWHS. The
𝐶𝑙𝑎𝑚𝑝 (1/𝑦𝑡 , 1, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑) represents restrict 1/𝑦𝑡 to be between 1 and 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 .

Case predicted_source2Pitch target_source2Pitch Analysis Naive DWHS
MSS Module PE Module Data 𝜔𝑚𝑠𝑠 𝜔𝑝𝑒

1 Correct Correct ✓ ✓ ✓ 1 1
2 Correct Incorrect ✓ ✓ × 1 0 ≤ 𝜔𝑛𝑜𝑖𝑠𝑒 < 1
3 Incorrect Correct × ✓ ✓ 𝐶𝑙𝑎𝑚𝑝 (1/𝑦𝑡 , 1, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑) 1
4 Incorrect Incorrect ✓ × ✓ 1 𝐶𝑙𝑎𝑚𝑝 (1/𝑦𝑡 , 1, 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑)

lack the target sources and pitch labels, respectively. The splitting
way for MIR_ST500 and MUSDB18 datasets is introduced in [58]
and [50], respectively. During experiments, we only consider the
target source of vocals due to the lack of fully-labeled data from
other sources such as bass and drums.

B.4 Comparison Systems
We compare MAJL with several existing methods, including end-to-
end, pipeline, and joint learning methods. For end-to-end methods,
we chose CNN-Raw [11] and JDC [37], as they achieved the best
performance in the pitch estimation task among all end-to-end
methods. For pipeline methods, we consider U-Net [29] and Re-
sUNetDecouple+ [36] as music source separation models because
U-Net is the base model for many music source separation models,
and ResUNetDecouple+ is the state-of-the-art model for the mu-
sic source separation task. For the pitch estimation task, we use
CREPE [32] and HARMOF0 [61], as they are the most common
and state-of-the-art models. Finally, for joint learning methods, we
select HS-W𝑝 [44] and S→P→S→P[28] as the baselines since they
are the latest joint learning methods for music source separation
and pitch estimation tasks.

C ADDITION METHODS
As illustrated in Section 4.2.2, the most direct method involves set-
ting different weights for different cases as outlined in Table 6. We
refer to this method as naive DWHS, which utilizes two hyper-
parameters (𝜔𝑛𝑜𝑖𝑠𝑒 and𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑) to assign weights to hard sam-
ples and noisy samples, as specified in Table 6.

Starting with default weights set at 1, for Case 1, where there are
no issues with the MSS Module, PE Module, or the music data, the
default weights remain unchanged. In Case 2, involving music data
with noisy pitch labels, we decrease the weight of such samples
by adjusting the weight (𝜔𝑛𝑜𝑖𝑠𝑒) within the range of 0 to 1. This
adjustment aims to mitigate the impact of noisy labels. In Case
3, where the music data is hard for the MSS task, we increase the
weight of such samples in theMSS task by setting the weight to 1/𝑦𝑡 .
The𝑦𝑡 is defined as𝑚𝑎𝑥 (𝑦)×𝑚𝑎𝑥 (𝑦) + (1−𝑚𝑎𝑥 (𝑦))× (1−𝑚𝑎𝑥 (𝑦)),
where 𝑦 is the ground truth of pitch results and 𝑦 is the predicted
value. For Case 4, where the music data is hard for the PE task, we
increase the weight of such samples in the PE task by setting the
weight to 1/𝑦𝑡 . Besides, we constrain 1/𝑦𝑡 to fall within the range
of 1 to𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 to avoid invalid weights that are too large. The
weights (𝜔𝑚𝑠𝑠 and 𝜔𝑝𝑒) for different cases are shown in Table 1.
With the naive DWHS, the loss function of stage I is written as:

L𝑡𝑜𝑡𝑎𝑙 = 𝜔𝑚𝑠𝑠 × L𝑚𝑠𝑠 + 𝜔𝑝𝑒 × L𝑝𝑒 (19)

And the loss function of stage II is written as:

L𝑡𝑜𝑡𝑎𝑙 = confi𝑚𝑠𝑠 × 𝜔𝑚𝑠𝑠 × L𝑚𝑠𝑠 + confi𝑝𝑒 × 𝜔𝑝𝑒 × L𝑝𝑒 (20)

where confi𝑚𝑠𝑠 and confi𝑝𝑒 are the same as those in Eq. 8.

D ADDITIONAL EXPERIMENTAL RESULTS
D.1 Comparison of naive DWHS and DWHS
To compare the effectiveness of naive DWHS and DWHS, we con-
duct an ablation study on the MIR-1K dataset using ResUNetDecou-
ple+ as the MSS Module and CREPE as the PE Module, consistent
with the previous experiment in Section 6.1.

Table 7: Comparison results of the naive DWHS and the
DWHS on MIR-1K dataset.

Methods 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 𝜔𝑛𝑜𝑖𝑠𝑒
MSS PE (%)

SDR GNSDR RPA RCA
Pipeline 12.06 9.13 91.40 92.07
Naive Joint Learning 11.91 8.92 91.88 92.15

4 0 11.63 8.68 91.67 92.14
MAJL-Stage I 5 0 12.09 9.16 92.46 92.74
with 6 0 12.02 9.04 91.92 92.34
naive DWHS 5 0.2 12.13 9.18 92.62 93.03

5 0.4 11.97 9.03 91.98 92.49
MAJL-Stage I with DWHS 12.33 9.36 93.17 93.65

The results in Table 7 demonstrate that the DWHS significantly
enhances the joint learning of MSS and PE tasks, with MAJL-Stage
I with DWHS achieving the best performance among all methods
for both tasks. Specifically, the naive joint learning method leads to
a decrease of 0.15 in SDR for the MSS task when compared to the
pipelinemethod, due to the problem ofmisalignment between differ-
ent objectives. In contrast, MAJL-Stage I with DWHS outperforms
both the pipeline and naive joint learning methods, concurrently
enhancing both tasks. For instance, it achieves a SDR improvement
of 0.42 and a RPA improvement of 1.29% compared to the naive joint
learning method. This is because the DWHS implemented in MAJL
can effectively handle hard samples for both tasks and assign appro-
priate weights to different samples. Moreover, MAJL-Stage I with
naive DWHS outperforms the naive joint learning method by 0.22
in SDR and 0.74% in RPA when hyper-parameters 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑
is set to 5 and 𝜔𝑛𝑜𝑖𝑠𝑒 to 0.2. Besides, the DWHS outperforms the
naive DWHS and achieves better performance on both tasks with-
out these hyper-parameters. These results indicate that the DWHS
not only offers improved performance but also has a lower training
cost, making it effective for the joint learning of both tasks.

D.2 Visualization and Analysis of Dynamic
Weights

To provide an intuitive representation of the weights set by both
the naive DWHS and the DWHS, we visualize the changes in these
weights over iterations. In this experiment, we employ ResUNetDe-
couple+ as theMSSModule and CREPE as the PEModule, consistent

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

0 1000 2000 3000 4000 5000 6000 7000
0.95
1.00
1.05

Case 1 SVS PE

0 1000 2000 3000 4000 5000 6000 7000

0.5
1.0

Case 2

0 1000 2000 3000 4000 5000 6000 7000
1.0

1.1
Case 3

0 1000 2000 3000 4000 5000 6000 7000
1.0

1.1
Case 4

Iterations

Va
lu

e
of

 W
ei

gh
ts

(a)

0 1000 2000 3000 4000 5000 6000 7000

1.0
1.5

Case 1 SVS PE

0 1000 2000 3000 4000 5000 6000 7000

0.5
1.0

Case 2

0 1000 2000 3000 4000 5000 6000 7000
1

2
Case 3

0 1000 2000 3000 4000 5000 6000 7000
1.0
1.5

Case 4

Iterations

Va
lu

e
of

 W
ei

gh
ts

(b)

Figure 7: (a) Dynamic weights extracted by the naive DWHS. (b) Dynamic weights extracted by the DWHS.

with previous experiment detailed in Section 6.1. In addition, the
dynamic weights extracted by Dynamic Weights on Hard Samples
(DWHS) are obtained from our framework, specifically MAJL-Stage
I, to exclusively investigate the weight results of DWHS and elimi-
nate potential interference, such as single-labeled music data.

As shown in Figure 7, Figure 7(a) illustrates the dynamic weights
set by the naive DWHS, while Figure 7(b) displays the dynamic
weights extracted by the learned DWHS. For the naive DWHS
method, the weight assigned to the pitch estimation task for noisy
music data is set to 0.2, thereby mitigating the negative impact on
the pitch estimation task. In contrast, for Case 3 and Case 4, the
weights assigned to music source separation and pitch estimation
exceed 1, emphasizing the importance of hard samples. Regarding
the learned DWHSmethod, the weights for music source separation
and pitch estimation tasks correspond to those of the naive DWHS
method, as shown in Figure 7(b). When considering the results
presented in Table 7, the DWHS method outperforms the naive
DWHS method. These results indicate that the DWHS method can
adaptively determine appropriate weights for both noisy and hard
samples, resulting in enhanced performance for both music source
separation and pitch estimation tasks.

D.3 Significance Test
In this section, we validate the significance of the improvements
achieved by our framework through statistical significance tests.
Thus, we perform multiple experimental runs (6 times) from train-
ing to testing and calculate p-values for the SDR and the RPA. The
summarized results of these experiments are provided in Table 8.

In this experiment, the pipelinemethod, ResUNetDecouple+with
CREPE is used as the baseline, since it has displayed the best perfor-
mance among all baselines, as shown in Table 2. While our frame-
work use both single-labeled datasets (MUSDB18 and MIR_ST500)
in the Stage II, and the DWHS is used in this experiment. It is im-
portant to note that due to the stochastic nature of gradient-based
optimization techniques like the Adam optimizer [34] employed

in this paper, there may be slight variations in results even un-
der identical experimental conditions. This variability arises from
random factors during training within our framework: the ran-
dom initialization of model parameters and the random ordering
of training samples in each epoch. For each experiment in Table 8,
these random initialization use the default initialization method
in PyTorch [46]. The results reported in Table 2 are based on the
best performance achieved from these repeated experiments. Based
on the results presented in Table 8, we calculate the p-values for
both the SDR and the RPA. The obtained p-value for SDR is 1.80e-4,
and for RPA it is 1.78e-6. These results indicate that our proposed
framework achieves a significant improvement when compared to
the best-performing baseline.

Table 8: Performance results with significance test on the
MIR-1K dataset. Baseline is the pipeline method using Re-
sUNetDecouple+ [36] with CREPE [32]. MAJL here uses the
DWHS method, and both MIR_ST500 and MUSDB18 datasets
are used as the single-labeled music data.

Methods Index MSS PE(%)
SDR GNSDR RPA RCA

Baseline

0 12.06 9.13 91.40 92.07
1 11.91 8.92 90.87 91.56
2 11.86 8.92 90.79 91.40
3 11.97 9.03 91.03 91.63
4 12.04 9.11 91.21 91.85
5 12.06 9.12 91.33 91.77

MAJL

0 12.98 9.99 94.11 94.38
1 12.31 9.36 92.31 92.70
2 12.41 9.47 92.70 93.15
3 12.55 9.59 92.88 93.27
4 12.74 9.77 93.16 93.63
5 12.90 9.94 93.38 93.96

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Method
	4.1 Two-Stage Training Method
	4.2 Dynamic Weights on Hard Samples (DWHS)

	5 Experimental Setup
	6 Experimental Results
	6.1 Overall Performance
	6.2 Experiments With Different Modules
	6.3 Visualization and Analysis of Dynamic Weights
	6.4 Threshold in Two-Stage Training Method

	7 Future Work
	8 Conclusion
	References
	A Related Work Details
	A.1 Music Source Separation
	A.2 Pitch Estimation
	A.3 Joint Learning For MSS and PE

	B Experimental Setup Details
	B.1 Datasets
	B.2 Evaluation Metrics
	B.3 Implementation Details
	B.4 Comparison Systems

	C Addition Methods
	D Additional Experimental Results
	D.1 Comparison of naive DWHS and DWHS
	D.2 Visualization and Analysis of Dynamic Weights
	D.3 Significance Test

