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ABSTRACT

Due to the limitations of infrared image acquisition condi-
tions, many essential tasks currently rely on visible images as
the main source of training data. However, single-modal data
makes it difficult for downstream networks to show optimal
performance. Therefore, converting the more easily obtainable
visible images into infrared images emerges as an effective
remedy to alleviate the critical shortage of infrared data. Yet
current methods typically focus solely on transferring visible
images to infrared style, while overlooking the crucial infrared
thermal feature during cross-modal translation. To elevate
the authenticity of cross-model translation at the feature
level, this paper introduces a translation network based on
frequency feature mapping and dual patches contrast, Map-
pingFormer, which can achieve cross-modal image generation
from visible to infrared. Specifically, the generator incorpo-
rates two branches: low-frequency feature mapping (LFM)
and high-frequency feature refinement (HFR), both have
embedded the Swin Transformer blocks. The LFM branch
captures the fuzzy structural from visible images, while the
HFR focuses on mapping edge and texture features. The
extracted dual-branch frequency features undergo refinement
and fusion through cross-attention mechanisms. Additionally,
a dual contrast learning mechanism based on feature patch
(DFPC) is designed to infer effective mappings between u-
naligned cross-modal data. Numerous experimental results
prove the effectiveness of this method in cross-modal fea-
ture mapping and image generation from visible to infrared.
This method holds significant potential for downstream tasks
where infrared data is limited.

CCS CONCEPTS

∙ Information systems → Multimedia content cre-
ation; ∙ Computing methodologies → Computer vision.

KEYWORDS

visible-to-infrared, image translation, feature mapping, con-
trastive learning, cross-modal
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1 INTRODUCTION

In the domain of visual sensing technology, visible (VIS) im-
age and infrared (IR) image constitute multimodal data that
are frequently employed. VIS image provides rich textural
details and geometric features, while IR image reveals the tem-
perature distribution of objects and backgrounds [6, 27, 30].
However, due to the shooting limitations of infrared cameras
or the absence of dependable and precise infrared simulation
systems, many downstream applications struggle to collect
adequate IR data to support model training, and cannot
make downstream models perform well. These applications
face a significant challenge of lacking IR image data [12]. Cur-
rent research aimed at addressing IR data shortage mainly
focuses on generating corresponding images from VIS. How
to learn the mapping correlation between cross-modal da-
ta during training has become a crucial research question
urgently needs to be solved [39, 41].

Currently, various solutions exist for cross-modal genera-
tion from VIS to IR images. One approach involves manually
simulating the hot zone using physical models, but its ef-
ficiency and precision leave room for improvement [8, 25].
Alternatively, intelligent methods are widely used to embed
the input VIS image into a latent feature space and subse-
quently reconstruct the corresponding IR image based on a
nonlinear transformation relationship [9]. For example, using
generative adversarial networks (GAN) [2, 14, 44], unsuper-
vised learning [21, 31] and self-supervised learning [10, 28]
to transform the VIS domain into an IR style. While the
above transformation methods can yield outputs resembling
real IR images, they still overlook the conversion of the ther-
mal features. Recent works based on contrastive learning
[5, 11, 18, 23] aim to address these limitations, but a notable
semantic gap persists between the VIS and IR domains, and
these methods still require additional constraints. Moreover,
numerous prevalent image translation methods focus more
on the diversity of translation styles[1, 17]. When directly
applied to VIS-to-IR conversion task, it is difficult to gener-
ate images that conform to infrared thermal features. Noting
that the data collected in real-world scenarios are often u-
naligned, exhibiting differences in perspective or resolution,
which increases the difficulty of cross-modal conversion.

In this work, we propose a novel approach for VIS-to-IR
image translation, exploring the correlations between multi-
modal images by mining the frequency feature, as shown in
Figure 1. Our motivation stems from the observation that
despite VIS and IR features have modal specificity, they in-
herently contain shared representations to objects or features.
Meanwhile, previous studies [16, 33, 46] have emphasized
that mining frequency features and reconstructing images
is maybe effective for image translation. Building upon this

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Flow graph for classic style translation
methods (left), and our MappingFormer (right). We
explore the correlations between VIS and IR by min-
ing the frequency feature, while classic method focus-
ing on the style transfer.

observation, we utilize cross-modal visual consistency and
frequency priors to guide the translation between VIS and IR
images. To achieve our goal, there are two issues we aim to ad-
dress. The first is how to incorporate frequency features into
the generative model efficiently. The self-attention and shift-
ed window in Swin Transformer (Swin-T) [20] demonstrate
remarkable perceptual ability and computational efficiency
in feature extraction. Hence, integrating the Swin-T into the
generator to process frequency domain information is worth
investigating. Besides, the second issue is how to effectively
impose constrains on cross-modal feature mapping. We postu-
late that incorporating the bidirectional contrastive learning
into the constraints of feature mapping could enhance the
quality of the asymmetric cross-modal translation.

To ensure that IR images generated from VIS accurately
reflect thermal laws, we introduce a network tailored from VIS
to IR, MappingFormer. It comprises two generators and two
discriminators, aiming to maximize the mutual information
between input and output feature patches. First, the VIS
image is decomposed into low and high-frequency components
in the generator. Then, dual branches are devised for low-
frequency feature mapping (LFM) and high-frequency feature
refinement (HFR) with embedded Swin-T. Cross-attention is
employed to integrate the mapping information from both
branches to generate more authentic infrared features. The
LFM extracts fuzzy structural and color information, whereas
HFR enhances edges and textures. Finally, by bidirectional
contrast mechanism for feature patches, the mapping process
of unaligned features is constrained. As such, our method
diverges from general image translation methods, offering
a specialized approach for cross-modal translation between
VIS and IR images.

In summary, our work makes the following contributions:

∙ A cross-modal feature mapping network for VIS-to-IR
(MappingFormer) is proposed, which ensures the trans-
lated results more related with the thermal features in

infrared. To our knowledge, this is the first work that
using frequency mapping to the VIS-to-IR translation.

∙ Within the generator, two branches of low-frequency
mapping and high-frequency refinement have been de-
vised. And a dual contrast learning mechanism has
been designed as the constrain in feature mapping
process.

∙ The experiment results clearly support the potential
of our proposed method, confirming the applicability
to cross-modal translation and downstream tasks.

2 RELATED WORK

2.1 Visible to infrared translation

Previous works have explored the translation from VIS to IR
[2, 10, 13, 22, 28, 31, 38] or from IR to VIS [3, 15, 37, 40, 42],
which differs from image translation based on style transfer.
Because IR images depict thermal textures, it is crucial to
consider the mapping relationship between the two modal fea-
tures when designing translation methods. Currently, many
methods [14, 35, 44] rely on paired multimodal data for
training to capture the thermal region features. However,
this limits their generalization ability beyond the training
dataset, making it challenging to achieve balanced results
across different data domains, such as varying infrared wave-
lengths and imaging backgrounds. Additionally, some studies
[19, 34] propose integrating thermal information into the
model, utilizing segmentation or mask to highlight object
features as salient areas of interest for the model. [7] uses
infrared temperature information to guide the preservation
of VIS details. The challenge with this method lies in ac-
curately segmenting and simulating thermal region, as well
as determining the appropriate weight of thermal features
in output. Meanwhile, [13] proposes edge-guided method for
multi-domain translation, emphasizing the retention of edge
information and crucial details in generated IR images, but
this focus sometimes leads to the neglect of structural features
in vis images.

2.2 Image to image translation

Recently, image-to-image translation methods have rapid
development. The majority of translation methods [5, 11, 16,
24, 29, 36, 45, 47] primarily focus on style transfer. Typically,
they map images to latent spaces, perform specific conver-
sions or comparisons, and then reconstruct into images. CUT
[23] preserves the structural features of the source domain
by employing patch contrast loss, whereas CycleGAN [47]
incorporates cyclic consistency loss to ensure the structural
coherence of the generated image. [4] explores the relation-
ship between global features and instances through enforcing
cross-granularity consistency. Nevertheless, convolution oper-
ations suffer from a limited receptive range, often resulting in
blurring during high-resolution image translation. [24] utilizes
autocorrelation regularization to facilitate zero-shot image
translation based on diffusion models, but its generation do-
main is uncontrollable. Recent researches have focused on
comprehending image features from the frequency and apply
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to image translation. [43] extracts the high-frequency band of
images through discrete wavelet transform during knowledge
distillation. [46] involves jointly learning the image features
in both pixel and Fourier spectral spaces. [16, 33] utilize
the Laplace pyramid to segregate images into high and low
frequency components, translating contours in low-frequency
and enhancing details with high-frequency. Although these
methods have generated diversity, the feature differences
in multimodal pose challenges for its direct application in
VIS-to-IR translation.

3 THE PROPOSED METHOD

3.1 Network architecture

Given a VIS domain dataset {𝑉 } ∈ R𝐻×𝑊×3 and an IR
domain dataset {𝐼} ∈ R𝐻×𝑊×1 under similar viewing angles,
including VIS images 𝑣 ∈ 𝑉 and IR images 𝑖 ∈ 𝐼. Our goal is
to learn the feature mapping that transforms the VIS domain
into IR domain, i.e. 𝐺 : 𝑉 → 𝐼, and then produced the

output image ̃︀𝑖 which adheres to the infrared thermal laws
based on VIS image 𝑣. The translation process is denoted as
follows: ̃︀𝑖 = 𝑓𝑉 →𝐼 (𝑣, 𝐺(𝑉 ; 𝐼), 𝐷) (1)

As shown in Figure 2, out proposed MappingFormer has
two generators 𝐺𝑉 and 𝐺𝐼 , and two discriminators 𝐷𝑉 and
𝐷𝐼 . The generator 𝐺𝑉 learn the mapping from VIS to IR,
whereas the discriminators 𝐷𝑉 assess authenticity. Upon in-
put an image 𝑣 ∈ R𝐻×𝑊×3 into the generator, the initial
step is a Laplace decomposition to derive low-frequency 𝑣𝑙 ∈
R

𝐻
2
×𝑊

2
×𝐶 and high-frequency components 𝑣ℎ ∈ R𝐻×𝑊×𝐶 .

Then, both components are processed through the encoder-
decoder, which embedded with the Swin-T blocks, getting a
preliminary IR image generated. Meanwhile, identical steps
are applied to real IR images 𝑖 ∈ R𝐻×𝑊×1 to achieve corre-
sponding outcomes ̃︀𝑣 ∈ R𝐻×𝑊×3. Perform feature patches
encoding and space embedding on the dual mapping, followed
by computing the corresponding mapping loss. Through net-

work training, domain-transferred IR images ̃︀𝑖 are attained.
Notably, while the training process need the involvement
of both image modals, the inference relying solely on the
generator 𝐺𝑉 to translation the VIS to IR.

3.2 Feature mapping

This section describes the feature mapping process within the
generator. Inspired from [16, 33], we use the Laplace image
pyramid to decompose VIS image into low and high frequency.
Then, the Swin-T blocks and encoder-decoder are used to
extract and map the feature in two frequency components.
Finally, the cross-attention in Swin-T is utilized to fusion the
extracted features, resulting in generated images that more
accurately reflect the real IR features, as shown in Figure 3.
Low-frequency feature mapping. The low-frequency com-
ponent contains visual attributes like illumination and color
within the VIS domain. During the translation to the IR
domain, illuminations and color features are converted to
grayscale values with varying luminosities, as well as the

Enc Dec

Mapping loss

Real V

Fake V Real I

Fake I

GV

GI

Dec Enc

Embedding Embedding

Embedding Embedding

Mapping loss

GAN 

loss

DV

GAN 

loss

DI

Real V GI(V)

Domain loss

Real I GV(I)

Domain loss

Low frequency

High frequency

Low frequency

High frequency

GI GV

Figure 2: Overall architecture of MappingFormer. A
dual-branch is designed in the generator, while a
bidirectional mapping constraint mechanism is intro-
duced. More details are illustrated in section 3.

consistency of fuzzy structures. Given the low-frequency com-

ponent 𝑣𝑙 ∈ R
𝐻
2
×𝑊

2
×𝐶 of VIS, first conduct feature extrac-

tion and channel expansion via encoder structure to acquire

the desired feature map 𝑣𝑙
(𝑎) ∈ R

𝐻
2𝑎

× 𝑊
2𝑎

×2𝑎−1𝐶 , 𝑎 = [1, 2, 3].
Then position encoding is added to reserve space information
and express the positional relationships of features. Then,
six Swin-T blocks are incorporated to efficiently extract the
long-distance dependencies from the feature maps. After that,
the feature maps are progressively decoded and concatenat-
ed, and the low-frequency components are reinstated to the
feature maps with original resolution. Both the encoder and
decoder are combining convolution with Leaky ReLU to ad-
just the feature channels, and the resolution of feature maps
are adjusted by setting the step size.

The low-frequency mapping branch based on Swin-T block-
s efficiently integrates self-attention to the encoder-decoder.
This enables the network to accurately capture more promi-
nent feature regions within the low-frequency components.
Specifically, the process for calculating low-frequency features
in six Swin-T blocks is defined as follows:

�̂�𝑚
𝑙 = 𝑊 - 𝑀𝑆𝐴(𝐿𝑁(𝑥𝑚−1

𝑙 )) + 𝑥𝑚−1
𝑙 ,

𝑥𝑚
𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(�̂�𝑚

𝑙 )) + �̂�𝑚
𝑙 ,

�̂�𝑚+1
𝑙 = 𝑆𝑊 - 𝑀𝑆𝐴(𝐿𝑁(𝑥𝑚

𝑙 )) + 𝑥𝑚
𝑙 ,

𝑥𝑚+1
𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(�̂�𝑚+1

𝑙 )) + �̂�𝑚+1
𝑙 ,

(2)

where (S)W-MSA and LN represent window self-attention
computation and normalization layers, MLP represents multi-
layer perceptron, �̂�𝑚

𝑙 and 𝑥𝑚
𝑙 are the process variables of

feature computation, representing the output of (S)W-MSA
and MLP for the m-th block structure. Similar to previous
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Figure 3: The two-branch of feature mapping in generator. The two branches are designed: LFM and HFR,
both embedded with the Swin-T, to extract and enrich structure and texture details.

work [20], self-attention calculation is as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(
𝑄𝐾𝑇

√
𝑑

+𝐵)𝑉, (3)

where 𝑄, 𝐾, 𝑉 , and 𝑑 represent the query, key, value ma-
trices, and their respective dimensions within the window.
𝐵 denotes the bias matrix. Furthermore, the low-frequency
mapping branch has similarities to the network structure
of U-Net [26], where the encoder performs down-sampling,
and the decoder handles up-sampling. Shallow-layer encoding
captures more detailed visual features, whereas deep-layer
encoding extracts richer local information. By concatenat-
ing these layers, efficient feature mapping is achieved in the
low-frequency domain.
High-frequency feature refinement. To reconstruct de-
tailed information in the generated IR domain, such as texture
and edges, we use high-frequency component for refinement
and supplement. Given the component 𝑣ℎ ∈ R𝐻×𝑊×𝐶 of VIS
domain, an encoder is used to perform down-sample, aligning
its resolution with that of the low-frequency component. Sub-
sequently, in line with the combined method of the Swin-T
blocks described in the low-frequency, self-attention is cal-
culated to identify salient regions within the high-frequency
component. Following this, we perform cross-attention calcu-
lation based on the cross Swin-T for dual-branch features at
a specific resolution 𝐻

2
× 𝑊

2
× 𝐶. In this process, the 𝐾 and

𝑉 values within the window originate from the low-frequency
branch, while 𝑄 originates from the high-frequency branch,
facilitating the fusion and refinement of feature sequences
from different frequency domains. Finally, the output of cross-
attention undergoes decoding for up-sampling, resulting in

the generation of a preliminary mapping image ̃︀𝑖 . The fusion
of features can be considered as supplementing high-frequency
features in low-frequency, thereby forming refined features

and producing high-resolution translated images. The calcu-
lation of high and low frequency within the cross Swin-T can
be described as follows:

𝑡𝑛ℎ = 𝑊 - 𝑀𝐶𝐴(𝐿𝑁(𝑡𝑛−1
𝑙 ), 𝐿𝑁(𝑡𝑛−1

ℎ )) + 𝑡𝑛−1
ℎ ,

𝑡𝑛ℎ = 𝑀𝐿𝑃 (𝐿𝑁(𝑡𝑛ℎ)) + 𝑡𝑛ℎ,

𝑡𝑛+1
ℎ = 𝑆𝑊 - 𝑀𝐶𝐴(𝐿𝑁(𝑡𝑛−1

𝑙 ), 𝐿𝑁(𝑡𝑛ℎ)) + 𝑡𝑛ℎ,

𝑡𝑛+1
ℎ = 𝑀𝐿𝑃 (𝐿𝑁(𝑡𝑛+1

ℎ )) + 𝑡𝑛+1
ℎ ,

(4)

where (S)W-MCA represents crossing self-attention in win-
dow operation, 𝑡𝑛ℎ and 𝑡𝑛ℎ are the output of (S)W-MCA and
MLP in n-th block structure.

3.3 Patch-based dual contrastive learning

Based on the CUT[23], we introduce a dual contrastive learn-
ing mechanism based on feature patch. This serves as feed-
back and constraints on the generator’s mapping process. The
patch-based dual contrastive structure is shown in Figure
4. We simultaneously apply this structure to bidirectional
mapping, functioning as a dual contrast in MappingFormer.
If a feature block is selected in the generated IR image, the
module scouts for comparisons among multiple feature patch-
es derived from the VIS input. It matches and associates
the corresponding patches in the VIS image. Specifically, we
initially use the patch embedding module to extract feature

patches from both the input 𝑣 and output ̃︀𝑖 of generator 𝐺𝑉 ,
obtaining a stack of two feature patches. The patch embed-
ding module consists of a four-layers convolutional encoder
and a MLP projection head. Subsequently, when a query is
chosen from the IR feature stack, the corresponding feature
patches in the VIS are designated as positively correlated,
whereas the non-corresponding ones are marked as negatively
correlated. We map the query, positive, and negative samples
onto K-dimensional vectors 𝑠, 𝑠+ ∈ R𝐾 , 𝑠− ∈ R𝑁×𝐾 respec-
tively. To prevent spatial expansion or collapse, we normalize
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Figure 4: Patch-based Contrastive Learning. We in-
put two sets of data to simultaneously conduct a
bidirectional comparison mechanism.

these vectors using L2 normalization, confining them to the
unit sphere. Following this, we establish a (𝑁 +1) directional
classification problem and calculate the probability of pos-
itive samples surpassing negative ones. The mathematical
definition is as follows:

ℓ(𝑠, 𝑠+, 𝑠−) = − log(
exp(𝑠 · 𝑠+/𝜏)

exp(𝑠·𝑠+/𝜏)+
∑︀𝑁

𝑛−1exp(𝑠· 𝑠−/𝜏)
) (5)

where 𝜏 is the scaling distance parameter and is set to a
default of 0.07.

3.4 Loss function

The total loss of our method comprises the mapping con-
trastive loss ℒ𝑚𝑎𝑝𝑝𝑖𝑛𝑔, adversarial loss ℒ𝑎𝑑𝑣, and domain
conversion loss ℒ𝑑𝑜𝑚.
Mapping contrastive loss. We design a patch embedding-
based dual contrastive mechanism to perform patch encoding
and spatial embedding for the mapping 𝐺𝑉 : 𝑉 → 𝐼 and 𝐺𝐼 :
𝐼 → 𝑉 . By selecting 𝐿 layers feature patches from the encoder
and inputting them into a two-layer MLP projection head, we
obtain a feature stack {𝑧𝑙}𝐿 =

{︀
𝑀𝐿𝑃 𝑙

𝑉 (𝐸𝑛𝑐𝑙𝑉 (𝑣))
}︀
𝐿
, where

𝐸𝑛𝑐𝑙 is the encoded features of 𝑙-th layer. At this stage, every
layer of features within the stack actually represents an image
patch. The spatial positions of each layer can be denoted as
𝑝 ∈ {1, . . . , 𝑃𝑙}, where 𝑃𝑙 is the number of spatial positions in
each layer. Then we select a query, the corresponding positive
sample patch is denoted as 𝑧𝑝𝑙 ∈ R𝐶𝑙 , and the remaining

negative ones are denoted as 𝑧
𝑃∖𝑝
𝑙 ∈ R(𝑃𝑙−1)×𝐶𝑙 , where 𝐶𝑙

is the number of channels in each feature patch. Similarly,
another feature stack {𝑧𝑙}𝐿 =

{︀
𝑀𝐿𝑃 𝑙

𝐼(𝐸𝑛𝑐𝑙𝐼(𝐺𝑉 (𝑥)))
}︀
𝐿
can

be acquired.
In order to match the positive sample patches between

input and output, and evaluate the mapping effect of the
generator, this section refers to the multi-layer contrast loss
based on patch matching [23] as the mapping contrastive loss

ℒ𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑉 from visible domain 𝑉 to infrared domain 𝐼:

ℒ𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑉 (𝐺𝑉 ,𝑀𝐿𝑃𝑉 ,𝑀𝐿𝑃𝐼 , 𝑉 ) =

E𝑣∼𝑉

𝐿∑︁
𝑙=1

𝑃𝑙∑︁
𝑝=1

ℓ(𝑧𝑝𝑙 , 𝑧
𝑝
𝑙 , 𝑧

𝑃∖𝑝
𝑙 ).

(6)

For reverse mapping, introduce a similar mapping con-
trastive loss ℒ𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝐼 :

ℒ𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝐼(𝐺𝐼 ,𝑀𝐿𝑃𝑉 ,𝑀𝐿𝑃𝐼 , 𝐼) =

E𝑖∼𝐼

𝐿∑︁
𝑙=1

𝑃𝑙∑︁
𝑝=1

ℓ(𝑧𝑝𝑙 , 𝑧
𝑝
𝑙 , 𝑧

𝑃∖𝑝
𝑙 ).

(7)

where the feature stacks {𝑧𝑙}𝐿 =
{︀
𝑀𝐿𝑃 𝑙

𝐼(𝐸𝑛𝑐𝑙𝐼(𝑖))
}︀
𝐿
, and

{𝑧𝑙}𝐿 =
{︀
𝑀𝐿𝑃 𝑙

𝑉 (𝐸𝑛𝑐𝑙𝑉 (𝐺𝐼(𝑖)))
}︀
𝐿
. The total mapping con-

trastive loss ℒ𝑚𝑎𝑝𝑝𝑖𝑛𝑔 is the summation of both directions.
Adversarial loss. The adversarial loss ℒ𝑣

𝑎𝑑𝑣 constrains the
similarity between the output image of generator and the
real image through discriminator 𝐷𝑉 and 𝐷𝐼 . Based on the
dual-branch discriminator introduced in [16], we calculate
the losses incurred by the high-frequency and low-frequency
branches individually.
Domain conversion loss. The generator 𝐺𝑉 converts the
VIS image into an IR domain image. When sending an IR
image to 𝐺𝑉 , the expected output remains within the IR
domain and 𝐺𝑉 (𝑖) should closely resemble the original IR
image 𝑖 ∈ 𝐼. Meanwhile, the output 𝐺𝐼(𝑣) should also be
similar to VIS images 𝑣 ∈ 𝑉 . In short, it ensures that the
color style of the generated modality is consistent with the
real domain. The design of the domain conversion loss is as
follows:

ℒ𝑑𝑜𝑚 = E𝑣∼𝑉

[︀
‖𝐺𝐼(𝑣)− 𝑣‖1

]︀
+ E𝑖∼𝐼

[︀
‖𝐺𝑉 (𝑖)− 𝑖‖1

]︀
(8)

Total loss. The total loss ℒ is calculated using the following
combination:

ℒ = 𝜆1 · ℒ𝑚𝑎𝑝𝑝𝑖𝑛𝑔 + 𝜆2 · ℒ𝑎𝑑𝑣 + 𝜆3 · ℒ𝑑𝑜𝑚 (9)

where 𝜆1, 𝜆2, and 𝜆3 are coefficients that respectively adjust
the weight of mapping contrastive loss, adversarial loss, and
domain conversion loss.

4 EXPERIMENTS

4.1 Datasets and details

AVIID-1 dataset [6]: This public dataset focuses on ve-
hicles in road scene, including objects such as cars, buses,
small trucks, and larger trucks. It includes 993 pairs of VIS
and IR images, each with the resolution of 434× 434.
IRVI dataset [15]: This public dataset shows vehicle driv-
ing scenes, mainly capturing vehicles and backgrounds from
a forward perspective while driving on the road. The dataset
comprises 17,000 pairs of training images and 1,000 pairs of
test images, each with a resolution of 256× 256.
The DroneCoast dataset: Currently, there are limited
publicly datasets for aerial coast scenes captured using both
visible and infrared. Hence, our work employs binocular mid-
wave infrared and color cameras to record coast scene video
streams, thereby constructing an unaligned dataset. This
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Figure 5: Qualitative comparisons on the AVIID-1 dataset (Monitor scene).
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Figure 6: Qualitative comparisons on the IRVI dataset (Driving scene).
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Figure 7: Qualitative comparisons on the DroneCoast dataset (Coast scene).
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Table 1: Quantitative comparison on three datasets. Bold and underline denote the best and suboptimal
performance, respectively.

AVIID-1 IRVI DroneCoast
Public Method

SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑ FID↓
ICCV 17 [47] CycleGAN 0.71 24.61 0.59 0.56 18.52 1.11 0.68 24.24 1.71

ECCV 20 [23] CUT 0.72 24.45 0.69 0.63 20.77 0.90 0.63 22.90 1.41

CVPR 21 [17] LPTN 0.73 20.52 1.86 0.53 17.49 1.32 0.61 17.60 2.61

MM 23 [16] Swin-UNIT 0.80 25.96 0.87 0.65 18.92 0.89 0.73 25.16 1.28

MM 22 [18] PUT 0.70 24.14 0.38 0.63 19.31 1.15 0.64 23.49 1.39

CVPR 22 [11] HnegSRC 0.59 22.43 0.54 0.57 18.57 1.31 0.70 22.85 1.54

ICRA 23 [13] RGB-TIR 0.81 25.59 0.37 0.62 19.98 1.34 0.71 24.72 1.76

Ours MappingFormer 0.86 27.52 0.55 0.68 20.38 0.70 0.79 25.48 1.01

dataset contains 939 pairs of training images and 164 pairs
of test images, each with a resolution of 640× 512.
Implementation details: The batch size in training is set
to 1, with an initial learning rate set to 1×10−4. The training
epochs are 200, with a 50 % decay every 50 epochs for
learning rate, and set the loss weights 𝜆1 = 2, 𝜆2 = 1, 𝜆3 = 1.
All experiments were conducted on a workstation with a
4090 GPU. We implemented and compared our method with
advanced general image translation and VIS-to-IR translation
methods, including CycleGAN [47], CUT [23], LPTN [17],
HnegSRC [11], Swin-UNIT [16], PUT [5], and RGB-TIR [13].

4.2 Evaluation metrics

Structural similarity (SSIM) is a metric to assess the likeness
between generated and real images. The value closer to 1,
the stronger resemblance between the generated and the real
image. The peak signal-to-noise ratio (PSNR) quantifies the
distortion between the generated and the real image. A higher
PSNR indicates to lesser distortion in the generated image.
The Frechet Inception Distance (FID) compares the feature
distributions of real and generated images by computing
depth features extracted using the Inception-V3 model. A
lower FID value implies a closer distribution between the two
images in the feature space. This paper normalized all the FID
metrics. Furthermore, Section 4.6 assesses the performance
of IR images translated by MappingFormer in downstream
tasks, using precision, recall, and average precision (AP)
under various intersection-over-union in object detection.

4.3 Visual qualitative comparison

The visualization of test results on three datasets is shown in
Figure 5, Figure 6, and Figure 7. Evidently, CUT performs
well on the low-resolution traffic scenes in Figure 5 and Figure
6. However, it causes ghosting shadow in the high-resolution
scene shown in Figure 7. We consider it might stem from
inadequate constraints by the only one generator. Although
CycleGAN and HnegSRC are capable of converting images
from the VIS domain to IR, they often retain an excess of
VIS features, thereby not adhering to the IR characteristics.
PUT might introduce blurring, especially in Figure 6 and

Figure 7. Despite utilizing Laplace’s high and low frequency
components, LPTN still maintains the original color style
and fails to translate images to the IR domain. RGB-TIR
accurately highlights the heating area of the truck in Figure
6, but its overall brightness is elevated and the generated
texture features lack smoothness. Swin-UNIT’s performance
is suboptimal, presumably due to its two-stage approach
involving global style translation and recurrent detail sup-
plementation, which nonetheless falls short in capturing the
essential thermal features of IR images. The visual results
evident that our proposed method is superior in generating
realistic IR thermal features while maximally preserving the
intricate details in VIS images.

4.4 Quantitative evaluation

Table 1 shows the quantitative evaluation of three datasets for
VIS-to-IR translation. As evident from the table, our method
achieved the best result in 7 indicators and achieved sub-
optimal in 1 indicator. Specifically, MappingFormer’s SSIM
metric on the AVIID-1, IRVI, and DroneCoast datasets were
0.86, 0.68 and 0.79, respectively. These results outperformed
other advanced general image translation methods and VIS-
to-IR translation methods, exceeding the suboptimal by 5%,
3% and 6%, respectively. The results strongly suggest that
MappingFormer’s frequency feature mapping, coupled with
dual contrast learning, is suitable for VIS-to-IR cross-modal
translation. Furthermore, Swin-UNIT shows promising per-
formance, achieving suboptimal results in six metrics, which
also proved the potential of applying frequency components
to image generation.

4.5 Ablation analysis

Effect of the network structure. We analyze the effect
of various network components to the overall performance on
AVIID-1 dataset. The results are shown in Table 2. Initially,
the baseline model, CUT, was trained using same settings. Af-
terward, we incrementally introduced LFM, HFR and DFPC
to assess how these structures influence performance. Note
that both the LFM and HFR branches incorporate Swin-T
blocks. Model-1 and Model-2 integrated the LFM and HFR
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Table 2: Key component analysis in AVIID-1 dataset

Model LFM HFR DFPC SSIM↑ FID↓
Baseline 0.717 0.686

Model-1 X 0.762 0.657

Model-2 X 0.775 0.649

Model-3 X X 0.822 0.583

MappingFormer X X X 0.858 0.547

Table 3: Different Swin-T blocks analysis in AVIID-1

Model Generator SSIM↑ FID↓
Model-1 Conv-based 0.761 0.662

Model-2 Swin-T in LFM 0.796 0.593

Model-3 Swin-T in HFR 0.803 0.620

Model-4 Swin-T in LFM/HFR 0.831 0.577

Model-5 Model-4 + Cross Swin-T 0.858 0.547

branches, respectively, and the SSIM metric improved 4.5%
and 5.8% compared to the baseline. Model-3 incorporates
both LFM and HFR branches, yielding a substantial 10.5%
SSIM improvement over the baseline. When all three modules
are used concurrently, both SSIM and FID metrics exhibit
a noteworthy enhancement. In conclusion, MappingFormer
has achieved leading VIS-to-IR image translation effects. The
design of the feature mapping branch is crucial, while the
dual patch comparison also contributes meaningfully to the
overall performance.
Effect of the Swin transformer block. We explore the
effect of embedding Swin-T blocks within feature mapping on
AVIID-1 dataset. We incorporate block structures into one
mapping branch while maintaining convolution structures
in the other, and then contrast them with models that only
rely on convolutional designs. Our findings indicate that
embedding Swin-T blocks within the mapping branch yields
higher quality images when compared to generators that are
based solely on convolution structures. Note that each model
fuses the outputs of high and low frequency branches, but
only Model-5 uses cross Swin-T blocks during the fusion
process, whereas other models rely solely on an accumulator
for fusion. The detailed results are shown in Table 3.

4.6 Extension to object detection

This section aims to apply the outcomes generated by pro-
posed MappingFormer to downstream object detection. For
a quantitative evaluation, we trained and tested both our
method and baseline network on the AVIID-1 dataset, ob-
taining images translated from the VIS domain to IR domain.
We chose the latest Yolov9 [32] as our benchmark for object
detection. To prevent data leakage, the IR images generated
by two translation models serve as the training set for object
detection respectively, while the unused real IR images con-
stitute the test set. Detection results are calculated using the
above training data. Additionally, we compare the detection

Table 4: Different training data for object detection

Data source Precision Recall AP 50 AP 50:95

MappingFormer 0.950 0.872 0.937 0.518

CUT 0.917 0.806 0.879 0.460

Trained in real visible 0.676 0.462 0.544 0.208

Trained in real infrared 0.964 0.896 0.952 0.564

 

    
MappingFormer CUT Trained in real VIS Trained in real IR 

 

Figure 8: Applying training data from different
sources to object detection.

performance of training directly on real VIS or real IR images.
The Yolo test results are shown in Table 4, and Figure 8
shows the detection visualization.

Based on detection performance, directly training with
VIS images and performing cross-domain detection yields
poor results, lacking of generalization ability between the
multimodal. Using IR images generated by MappingFormer as
training data for detection achieves comparable performance
compared to training directly with real IR data. Although
our detection results do not surpass those trained on real
IR images, this is reasonable because generative models can
only simulate the distribution of real data to the best of
their ability. Experiment results indicate that the feature
distribution of the IR images generated by proposed method
closely resembles that of real IR, making them effectively
applicable to downstream tasks.

5 CONCLUSION

In this paper, we propose a novel approach for image trans-
lation from VIS to IR. We have designed a specialized frame-
work, MappingFormer, which integrates feature mapping and
contrastive learning within a generator network for cross-
modal image translation. Within the generator, two branch-
es are designed: low-frequency feature mapping and high-
frequency feature refinement, both of which are embedded
with the Swin Transformer. Additionally, the dual contrastive
structure based on feature patches serves as a constraint for
mapping and generation. Experiment results indicate that the
proposed method surpasses general image-to-image genera-
tion methods in both qualitative and quantitative evaluations,
and outperforms the advanced VIS-to-IR translation method-
s. These experiments confirm the efficacy of feature mapping
and dual contrastive learning. Future work could explore the
temporal of video translation and unsupervised generation
of multimodal images within VIS and IR domain.
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