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ABSTRACT

During the acquisition of satellite images, there is generally a trade-off between
spatial resolution and temporal resolution (acquisition frequency) due to the on-
board sensors of satellite imaging systems. High-resolution satellite images are
very important for land crop monitoring, urban planning, wildfire management
and a variety of applications. It is a significant yet challenging task to achieve high
spatial-temporal resolution in satellite imaging. With the advent of diffusion mod-
els, we can now learn strong generative priors to generate realistic satellite images
with high resolution, which can be utilized to promote the super-resolution task
as well. In this work, we propose a novel diffusion-based fusion algorithm called
SatDiffMoE that can take an arbitrary number of sequential low-resolution satel-
lite images at the same location as inputs, and fuse them into one high-resolution
reconstructed image with more fine details, by leveraging and fusing the comple-
mentary information from different time points. Our algorithm is highly flexi-
ble and allows training and inference on arbitrary number of low-resolution im-
ages. Experimental results show that our proposed SatDiffMoE method not only
achieves superior performance for the satellite image super-resolution tasks on a
variety of datasets, but also gets an improved computational efficiency with re-
duced model parameters, compared with previous methods.

1 INTRODUCTION

Satellite imaging is a very useful technique for monitoring the natural phenomena and human activ-
ities on the surfaces of the Earth. Lots of applications rely on satellite images such as crop moni-
toring, weather forecasting, urban planning, wildfire management and so on Khanna et al. (2024);
Burke et al. (2021); Ayush et al. (2020; 2021); Beck et al. (2007); Wang et al. (2018a); M Rustowicz
et al. (2019); Li et al. (2019). However, the acquisition of satellite images can be very expensive and
the spatial and temporal resolution (the frequency that a satellite image is captured) may be limited
due to the physical constraints of sensors Khanna et al. (2024). In addition, the high temporal reso-
lution may come with trade-off in spatial resolution. Recent advance in satellite imaging technology
enables us to capture the same area with a high-revisit frequency, but the spatial resolution is often
limited. For instance, two Sentinel-2 satellites with resolutions from 10m to 60m can capture all
land surfaces every five days Cornebise et al. (2022); Cong et al. (2022); Tarasiewicz et al. (2023);
Van Etten et al. (2018), but to perform land crop monitoring or wildfire management, this resolution
is not sufficient. On the other hand, some very high-resolution satellite images such as SPOT6 or
WorldView can have resolution better than 1.5m Christie et al. (2018), but it is extremely difficult
to collect those images for a large area, and these images cannot be captured as frequently as the
Sentinel images. The limited temporal resolution severely limits downstream applications in urban
planning, object detection, or continuous monitoring of crop or vegetation covers.

To solve the aforementioned challenges, super-resolution algorithms have been introduced to pre-
dict the high-resolution (HR) satellite images from a bunch of corresponding low-resolution (LR)
satellite images Luo et al. (2018; 2023), so that to obtain more fine details. For example, given
the low-resolution satellite images (10m) from Sentinel-2 of a specific location, the super-resolution
algorithms are developed to predict the high-resolution (1.5m) SPOT6 satellite image of the same
location at a specific time. Nevertheless, solving remote sensing super-resolution problems is still
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Figure 1: An overview of our proposed method SatDiffMoE.

an open problem. One challenge in remote sensing is that low-resolution and high-resolution images
often come from different sensors, and may maintain very different image features due to the large
imaging modality gap resulted from different sensors Luo et al. (2018). Moreover, since the low-
resolution and high-resolution images are usually acquired at different time points as demonstrated
in Fig. 1, a lot of atmospheric disturbance may pose additional challenges for modeling the sensor
imaging process. Therefore, unlike the natural images, in the satellite images, the down-sampling
process can be extremely difficult to model.

In order to tackle this challenging task of remote sensing super-resolution, considering that the
acquisition of satellite images often comes with multiple revisits (a collection of satellite images
at the same location but at different time stamps) or with multiple spectral bands, we hypothesize
that fusing multiple low-resolution images with different spectrums or at different time stamps may
provide complementary information to the model so as to benefit the super-resolution task. With
such motivation, existing works Cornebise et al. (2022) have introduced a recursive fusion module
that takes the concatenated LR images as inputs and applies a residual attention model for outputting
the HR image. DiffusionSat Khanna et al. (2024) introduces a 3D ControlNet architecture that fuses
LR images of different spectral bands to reconstruct the corresponding HR image. However, these
works require a fixed number of LR images or require an absolute timestamp for each LR and HR,
which is often not feasible and flexible at inference time in real practice because it is challenging to
find a fixed amount of paired LR images for each HR image.

In this paper, we propose a novel diffusion-based method for solving the satellite image super-
resolution problem as demonstrated in Fig. 1. Our contribution can be summarized as below:

• We propose a novel diffusion-based fusion algorithm for satellite image super-resolution
that can take an arbitrary number of time series low-resolution (LR) satellite images as in-
put, and fuse their complementary information to reconstruct high-resolution (HR) satellite
images with more fine details.

• Specifically, we introduce a new mechanism to train a latent diffusion model using the
paired LR and HR images (from the same location but with different time stamps), par-
ticularly being aware of the relative time difference between corresponding LR and HR
images, to capture the time-aware mapping distribution of LR to HR images.

• At inference time, by leveraging the trained time-aware diffusion model, we propose a
novel approach to fuse the information from time series LR images, by estimating the
center of reverse sampling trajectories of different LR images using a perceptual distance
metric, so as to align the semantics from various LR images for super-resolution task.
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• We achieve the state-of-the-art performance on a variety of datasets for satellite image
super-resolution. Moreover, our method demonstrates an improved computational effi-
ciency with reduced model parameters compared with previous methods

2 BACKGROUND

Latent diffusion models Diffusion models consists of a forward process that gradually add noise
to a clean image, and a reverse process that denoises the noisy images. The forward model is given
by xt = xt−1− βt∆t

2 xt−1+
√
βt∆tω where ω ∈ N(0, 1). When we set ∆t → 0, the forward model

becomes dxt = − 1
2βtxtdt +

√
βtdωt, which is a stochastic differential equation. The solution of

this SDE is given by

dxt = (−β(t)

2
− β(t)∇xt

log pt(xt))dt+
√

β(t)dw. (1)

Thus, by training a neural network to learn the score function ∇xt log pt(xt), one can start with
noise and run the reverse SDE to obtain samples from the data distribution.

Latent diffusion models (LDM) Rombach et al. (2022) have been proposed for faster inference
and training with a reduced computational burden. By applying an autoencoder to reduce data
dimension, LDMs train the diffusion model in a compressed latent space, and then decode the latent
code into signals. This method enables high-quality high-resolution image synthesis benefited from
its compressed latent space, which is an ideal fit for satellite images due to the large image size.
Nevertheless, it is still challenging to perform image restoration accurately with LDMs Song et al.
(2024); Rombach et al. (2022). Various works have tried to extend LDMs for high-dimensional or
high-resolution signal synthesis, such as video generation Blattmann et al. (2023); Yu et al. (2023);
Ni et al. (2023); Ho et al. (2022); Ceylan et al. (2023); Martinez et al. (2021); Ruiz et al. (2023);
Saharia et al. (2022); Voleti et al. (2022). However, few works apply LDMs for image fusion yet. It is
an open problem to sample high-resolution images conditioning on multiple similar low-resolution
images with LDMs.

Single-image super-resolution Single-image super-resolution (SISR) focuses on reconstructing
the high-resolution image from one corresponding low-resolution image. In the era of deep learn-
ing, super-resolution problem has become a popular research question and many data-driven meth-
ods have been proposed. In past few years, state-of-the-art methods apply techniques such as Con-
volutional neural network (CNN), Generative Adversarial Network (GAN), and Transformers for
restoring the high-resolution images Kingma & Welling (2013); Creswell et al. (2018); Haris et al.
(2018); Wang et al. (2018b); Isola et al. (2017); Vaswani et al. (2017). These methods usually learn
the mapping from low-resolution image to high-resolution image through a data-driven way using
the pair data to train the neural network.

However, many of these methods output blurry or inaccurate reconstructions since they are learning a
direct mapping between LR images and HR images without considering the distribution of possible
HR images Song et al. (2024; 2023). Due to the ill-posedness of the super-resolution problem,
there may exist multiple HR images corresponding to one single LR image. A direct regression-
based approach may let the network learn an average of all possible HR images, which leads to
blurry output. Diffusion models address this issue by learning a strong generative prior that can
perform posterior sampling Chung et al. (2023) instead of direct regression. This sampling method
outputs realistic images, and leads to better image perceptual quality. One line of work assumes the
degradation operator is known, and focuses on inference-time posterior sampling with the diffusion
prior without retraining Chung et al. (2023); Kawar et al. (2022); Wang et al. (2022); Song et al.
(2024; 2021). The other line of work assume the degradation operator is unknown. They concat the
LR image into the noise vector or conditional networks and then retrain or fine-tune the diffusion
model Zhang et al. (2023); Khanna et al. (2024). Both lines of work show good ability to model
complex high-resolution image distributions and outperform CNN approaches in image perceptual
quality. However, all these works focus on obtaining HR images from a single LR image.

Multi-image super-resolution The goal of multi-image super-resolution is to combine the infor-
mation from multiple LR images to reconstruct one HR image. In satellite imagery, different sensors
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Algorithm 1 SatDiffMoE: Satellite Image Fusion with Latent Diffusion Models
Require: i-th low-resolution images LRi, relative time difference dti, i = 1, . . ., N, Encoder E(·),

Decoder D(·), Score function sθ(·, t), Pretrained LDM parameters βt, ᾱt, η, δ, Hyperparameter
λ to control the fusion strength, d(·) the distance function.
zT ∼ N (0, I) ▷ Initial noise vector
for t = T − 1, . . . , 0 do

ϵϵϵ1 ∼ N (0, I)
for all LR images do
ϵ̂it+1 = sθ(z

i
t+1, t+ 1, E(LRi), dti) ▷ Compute the noise prediction

ẑi
0(z

i
t+1) =

1√
ᾱt+1

(zi
t+1 −

√
1− ᾱi

t+1ϵ̂
i
t+1) ▷ Predict ẑ0 using Tweedie’s formula

z̄0 ∈ argmin
z

∑N
i=0 d(z, ẑ

i
0(z

i
t+1)) ▷ Find the center of multiple ẑ0 by optimization

ẑi
0(LRi) = (1− λ)ẑi

0(z
i
t+1)) + λz̄0

zi
t =

√
ᾱt−1ẑ

i
0(LRi) +

√
1− ᾱt−1 − ηδ2ϵ̂it+1 + ηδϵϵϵ1 ▷ Update intermediate noisy samples

xi
0 = D(zi

0) ▷ Output reconstructed image

have different resolutions. For instance, Sentinel-2 SITS has a resolution of 10-60m, but SPOT-6 or
fMoW can have a resolution of less than 1.5m Khanna et al. (2024). Given sequential low-resolution
images collected at the same location but different times, the hypothesis is that performing multi-
image super-resolution is able to combine the information of LR images at multiple times to obtain
a more accurate and higher-quality HR image. There are a couple of recent works in this venue Luo
et al. (2018); Cornebise et al. (2022); Khanna et al. (2024). For example, Cornebise et al. trained a
network with a traditional autoencoder architecture, but modify the encoder to incorporate multiple
images as input Cornebise et al. (2022). HighRes-net Cornebise et al. (2022) adopted this idea to
solve satellite image fusion problem with a network composed of an encoder, a recursive fusion
network, and a decoder. However this approach does not include the temporal information of LR
images. TR-MISR An et al. (2022) is a transformer-based fusion method for fusing an arbitrary LR
input for super-resolution. The network consists of an encoder, a fusion module with self-attention,
and a decoder. We observe that TR-MISR achieves impressive performance, but the it is still chal-
lenging to reconstruct realistic images with a larger resolution such as 512 × 512. There are also
some works such as DDFM that solve the fusion problem with unconditional diffusion models, but
not extending it to satellite image restoration tasks Zhao et al. (2023).

For satellite image restoration, DiffusionSat Khanna et al. (2024) proposed to train a 3D ControlNet
on top of a fine-tuned latent diffusion model that leverages multispectral bands for reconstruction.
However, at training, the 3D ControlNet requires the same number of low-resolution images for each
paired high-resolution images. In addition, at inference-time, the number of low-resolution images
used for reconstruction must be the same as the training set. Motivated by this, essentially different
from all these previous works, we aim to propose a more flexible and robust fusion algorithm that can
take an arbitrary number of low-resolution inputs with corresponding time information to generate
the high-resolution satellite image.

3 METHODS

Instead of conditioning on multiple low-resolution images as a concatenated input Khanna et al.
(2024), we propose a novel fusion algorithm: condition on each image and then fuse each score
(the output of the conditional diffusion model) into a high-resolution image reconstruction. First,
in order to embed the temporal information, we introduce a new method that trains a conditional
diffusion model using one LR image and the relative time difference (between the input LR image
and the target HR image) as inputs to reconstruct the HR image. Then we propose a novel inference-
time algorithm that modifies the intermediate outputs in the reverse sampling procedure based on
the assumption that HR reconstruction of LR images at the same location should look similar. Our
method is illustrated in Fig. 2.
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Figure 2: The framework of our proposed SatDiffMoE. In the training phase, we train a latent
diffusion model for HR (high-resolution) image conditioning on a single LR (low-resolution) image
and its relative time difference with the HR image. Then in the inference phase, we fuse the reverse
sampling trajectories conditioning on each LR image of the same location. We can randomly select
different trajectories for fusion, but output to a single image at the end.

Training We propose to reconstruct HR image from one LR image and its corresponding time
difference with the target HR image. Firstly, we utilize Stable Diffusion Rombach et al. (2022),
a pre-trained latent diffusion model for natural image generation, as the backbone model and fine
tune this model on other image modalities. Let HR be the target high-resolution image we want to
reconstruct, LR denote the low-resolution image collected at the same location as the HR image,
and dt denotes the relative time difference between LR and HR. Let E denotes the encoder, and
D denotes the decoder in the LDM. Let zp = E(HRp), and zLR = E(LR), and z0 E(HR) be the
unknown ground truth image. The forward model of LDM is given by zt =

√
αtz0 +

√
1− αtϵ,

where ϵ ∈ N(0, 1), and the goal of LDM is to predict ϵ when given zt To train the conditional LDM
(CLDM). We want our diffusion model to predict ϵ based on zt, and zLR. However, the pretrained
stable diffusion does not provide an additional layer to handle zLR. Nevertheless, we can utilize
the property of convolution to inject the LR image into training without introducing any additional
parameters or changing the network architecture. Observe that the convolutional layer can take any
resolution input as long it is divisible by k, where k = 8 in Stable Diffusion 1.5 Rombach et al.
(2022). So we propose to enlarge each zt to be

ẑt = Concat([zt, zlr]) (2)

Here the concatenation operation is happened on width dimension instead the channel dimension as
a common practice in stable diffusion Rombach et al. (2022). The reason is convolutional layers
need additional parameters to handle new channels, but not for the larger width. Then we want to
fine-tune the network to denoise ẑt. However, the network output sθ(ẑt) will also be the same size
of ẑt, which has a larger dimension that z0. Recall that ẑt is an concatenation of the HR component:
zt, and the LR component zlr. So we propose to only optimize for the HR component during fine
tuning. One may wonder, if doing so, will the LR component be useless in the fine tuning process?
The answer is no, since the network takes both the HR and LR component for noise prediction. Even
though we only take the HR component of the output, that part of output still has the information
from LR component, so it will utilize that information for prediction.

Formally, the original training objective of LDM is given by

argminθE[||ϵ− sθ(zt)||] (3)

now the new training objective becomes

argminθE[||ϵ− sθ(ẑt)[:, : n//2, :]||] (4)

where n is the second dimension of the latent code. In addition, since there is often a time mismatch
between LR and HR. Then we can make an add-on to the training objective, by injecting the relative
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time difference between LR and HR into the LDM training objective as additional conditional input.
We make a clone of the time embedding network for the original Stable Diffusion model, feed dt into
the cloned embedding network, and then we add the output from the time embedding and the output
from the dt embedding together as an overall input to the diffusion model. We aim to reconstruct
the same HR image regardless of what time LR is taken at, so we add this relative time difference
embedding dt to offset the time difference of LR and HR. Then the final training objective is given
by:

argminθE[||ϵ− sθ(ẑt, dt)[:, : n//2, :]||] (5)

We call this method DiffusionDrop.

Inference As discussed in the previous subsection, we want to estimate a single HR reconstruc-
tion based on LRi taken at different times. Hence we can assume that the outputs conditioning
on different LRi should be aligned semantically since they are reconstructing the same HR im-
age. Let zt(LRi, dti) be a noisy sample at time t during diffusion reverse sampling conditioning on
LRi and dti. Based on the assumption above, we expect E[z0|zt(LRi, dti)] to be similar for each
ith LR. To achieve this, we propose a novel method that firstly finds the center z̄0 of the vectors
of E[z0|zt(LRi, dti)] for all i, and then updates each zt(LRi, dti), so that E[z0|zt(LRi, dti)] to be
closer to the center than without updating.

We can find the desired center via optimization, where d can be a specified distance function, and N
is the total number of low-resolution images. Note that N can be different for different HR, which
further demonstrates the flexibility of our method. For the distance function, we propose a novel
approach that uses a convex combination of l2 loss and LPIPS loss in order to prevent blurry outputs
but still keep images close to each other.

z̄0 = argmin
x

N∑
i=1

d(x,E[z0|zt(LRi, dti)]) (6)

d(x, xi) = (1− α)ℓ2(x, xi) + αLPIPS(x, xi) (7)
where α is the weight for LPIPS loss. Note that for computational efficiency, when computing z̄0,
we by design choose not to sum up every LRi, but randomly sample a batch from the set of LRi to
compute the summation. We observe in experiments this random batch selection strategy improves
computational efficiency while not sacrificing performance,which may because of the redundancy
information among LR images. Similarly for the computational efficiency, such optimization up-
date is not performed on every time step, but on every k steps. In all of our experiments, we set
k = 5, which we find from empirical study would suffice the fusion strength while reducing the
computational cost.

After obtaining z̄0, we propose to update all intermediate samples from the LRi to be closer to z̄0.
Recall that in DDIM reverse sampling Song et al. (2022), the reverse sampling can be decomposed
by a clean image component and a noise component. We follow Chung et al. (2024)’s approach that
only updates the clean image component, and leaves the noise component intact. Specifically, let λ
be a hyperparameter balancing the original clean image component and z̄0, we can update the new
clean component as:

ẑ0(LRi, dti) = (1− λ)E[z0|zt(LRi, dti)] + λz̄0 (8)
Therefore, the overall reverse sampling step can be written as

zt−1 =
√
ᾱt−1ẑ0(LRi, dti) +

√
1− ᾱt−1 − ηδ2t sθ(zt,LRi, dti, t) + ηδtϵ, t = T, . . . , 0, (9)

The pseudo-code of our proposed algorithm is demonstrated in Alg. 1.

4 EXPERIMENTS

We try to answer the following questions in this section: (1) Can our proposed method achieve high-
quality satellite image super-resolution results by fusing multiple time series low-resolution images?
(2) Is our proposed fusion module effective? (3) Can our proposed method be more computationally
efficient compared with previous methods? To study these questions, we benchmark the super-
resolution performance on two widely used satellite image datasets: the fMoW dataset and the
WorldStrat dataset.
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Airport Amusement Park Car Dealership Crop Field Educational Institution Electric Substation
WorldStrat 0.723 0.732 0.747 0.738 0.733 0.736

MSRResNet 0.743 0.739 0.733 0.794 0.725 0.783
DBPN 0.763 0.740 0.728 0.783 0.726 0.750

Pix2Pix 0.621 0.652 0.652 0.645 0.647 0.643
ControlNet 0.625 0.653 0.648 0.650 0.658 0.644

DiffusionSat 0.623 0.647 0.637 0.649 0.652 0.639
SatDiffMoE (Ours) 0.579 0.626 0.600 0.608 0.612 0.606

Table 1: Comparison of the LPIPS metrics for super-resolution on the fMoW dataset for different
categories. Best results are in bold.

4.1 DATASETS

WorldStrat We take the paired LR-HR satellite image dataset from Cornebise et al. (2022). Each
area of interest contains a single SPOT 6/7 high-resolution image with five bands. We take the RGB
band of the SPOT6/7 satellite images, which has a GSD of 1.5 m/pixel. The low-resolution images
are taken from the Sentinel-2 satellites consisting of 13 bands. We only pick the RGB band from
them. For each area of interest, we have 16 paired low-resolution images taken at different time.
The resolution ranges from 10 m/pixel to 60m per pixel. We crop the high-resolution image into
192x192 patches, and the low-resolution image into 63x63 patches.

fMoW Function Map of the World (fMoW) Christie et al. (2018) consists of high-resolution (GSD
0.3m-1.5m) satellite images of a variety of categories such as airports, amusement parks, crop fields
and so on. However, its temporal resolution is limited due to its high resolution. We use the metadata
of timestamp for pairing low-resolution Sentinel-2 images. Using the dataset provided in Cong et
al. (2022), we create a fMoWSentinel-fMoW-RGB dataset with paired Sentinel-2 (10m-60m GSD)
and fMoW (0.3-1.5m GSD) images at each of the original fMoW-RGB locations. Then, we use the
bounding box provided by the metadata to extract relevant areas, and then crop the high-resolution
images to patches of 512x512. For each high-resolution fMoW image, we find the corresponding
Sentinel-2 images of the same location. We only take the RGB band of Sentinel-2 images and then
apply the same cropping method as that for fMoW-RGB images.

4.2 PERFORMANCE BENCHMARK

For super-resolution tasks on fMoW and WorldStrat datasets, we report perceptual quality metrics
LPIPS to measure the perceptual similarity of the reconstructed image and the ground truth image,
and FID to measure how realistic the reconstruction looks. We are also interested in the performance
of downstream application of our reconstructed images.

Zero-shot Classification with CLIP In the fMoW dataset, we select the first 6 classes (airport,
amusement parks, car dealership, crop field, educational institution, electric substation) for train-
ing and validation. To investigate how the reconstructed images perform for downstream applica-
tions, we compute the image embedding with a pretrained CLIP Radford et al. (2021) with ViT
backbone, and a text embedding with the prompt “a satellite image of {class}”. Then we com-
pute the cosine similarity of each image with each class and select the class with the highest sim-
ilarity. We denote this classification accuracy as “CA” score. More details can be found in the
Appendix. We also report distortion metrics such as PSNR and SSIM for pixel-level similarity.

Method WorldStrat fMoW
LPIPS↓ FID↓ LPIPS↓ FID↓ CA ↑

WorldStrat 0.481 139.3 0.736 426.7 15.83
MSRResNet 0.472 159.7 0.783 286.5 19.17

DBPN 0.475 122.6 0.750 278.2 15.17
Pix2Pix 0.427 93.90 0.643 196.3 22.67

ControlNet 0.580 108.0 0.644 102.3 39.00
DiffusionSat 0.561 92.97 0.638 102.9 34.50

TR-MISR 0.415 103.5 0.690 204.6 16.67
SatDiffMoE (Ours) 0.418 88.12 0.606 115.6 64.67

Table 2: Comparison of LPIPS and FID metrics for super-resolution
on WorldStrat dataset and fMoW. Best results are in bold. Second best
results are underlined.

Note that in satellite im-
ages, LPIPS is a more rel-
evant metrics here as it
measures the perceptual
similarity, as mentioned
in Khanna et al. (2024).

Implementation Details
We evaluate our algo-
rithms on WorldStrat and
fMoW LR-HR datasets.
For each AOI (Area of In-
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Figure 3: (Left) Super-resolution on fMoW dataset. (Right) Super-resolution on WorldStrat dataset.

terest) of the WorldStrat dataset, we resize each LR image to 192 × 192. We fix the prompt to be
“Satellite Images” and compute the time difference between the low-resolution image and high-
resolution image. Then, we add the time difference embedding network to the stable diffusion 1.2
and then fine-tune the stable diffusion 1.2 on the low-resolution and high-resolution pair of the
WorldStrat dataset conditioning on the time difference. For each high-resolution image, we ran-
domly select a low-resolution image from its 16 corresponding low-resolution images for training.
After that, we get a latent diffusion model that takes a low-resolution image and the relative time
difference as input and output the predicted high-resolution image.

For each AOI of the fMoW dataset, we resize each LR image to 512× 512 to align with the size of
high-resolution image.

During inference, for both datsets we use 50 NFEs, and then perform optimization every 5 steps.
More implementation details can be found in the supplementary materials.

For WorldStrat, we evaluate our algorithm on first 1000 images in the validation set. For fMoW,
we select the first 100 images in the validation set from 6 classes: Airport, Amusement Pak, Car
Dealership, Crop Field, Educational Institution, Electric Substation for evaluation.

Method WorldStrat fMoW
Parameters (M) Training Iterations Parameters (M) Training Iterations

ControlNet 1427 12500 1427 21400
DiffusionSat 1428 12500 1428 20000

Ours 1068 800 1068 4400

Table 3: Number of parameters and memory required.

RelativeTimeDiff Fusion PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
12.52 0.122 0.565 102.3

✓ 15.28 0.272 0.496 105.1
✓ ✓ 17.40 0.396 0.418 88.12

Table 4: Evaluating the Effectiveness of Relative Rime Difference and Fusion.

MultiSpectral Training In addition to the RGB bands in the Sentinel-2 LR images, we can access
additional bands for conditioning. Following the work Khanna et al. (2024), we take the SWIR and
NIR bands of the Sentinel-2 images for conditioning. We apply our a modified “Diffusiondrop”
training mechanism with the modified multi-spectral inputs. We apply an additional convolutional
layer to the additional bands and then add the output to the concatenation of the code of LR and
HR images. Since multispectral results are not always available, so we do not report quantitative
results. However, when the RGB LR bands are corrupted, we can leverage the multispectral inputs
for conditioning. Figure. 4 demonstrates we can reconstruct very realistic images on the fMoW
validation dataset with our SatDiffMoE method with multispectral inputs.
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Figure 4: Super-resolution results of SatDiffMoE with multispectral low-resolution image as the
input. We only display the first three spectrums of the LR image that is closest to the HR image in
time

Baselines We consider six state-of-the-art baselines, WorldStrat Cornebise et al. (2022), MSR-
ResNet Wang et al. (2018b), DBPN Haris et al. (2018), Pix2Pix Isola et al. (2017), ControlNet
Zhang et al. (2023), and DiffusionSat Khanna et al. (2024). Both ControlNet and DiffusionSat are
diffusion-based methods that takes LR as an additional condition for fine-tuned stable diffusion to
predict the HR image. Both MSRResNet and DBPN are CNN-based methods that directly map
the low-resolution image to the high-resolution image, and Pix2Pix is a GAN-based method. Both
WorldStrat and DiffusionSat are fusion-based methods that fuse multiple low-resolution input to
predict the HR image, while others take single low-resolution input and predict the HR image.

Results and Discussions The LPIPS scores on six selected class in fMoW dataset are reported in
Table. 1. We also report LPIPS and FID scores in Table 2 on both fMoW and WorldStrat datasets
compared to the six baselines mentioned before. We observe that our algorithm largely achieves
better or comparable performance in perceptual quality. Our method achieves state-of-the-art LPIPs
and CA score compared to all baselines and comparable FID scores. More importantly, our method
also demonstrates significant improvement over other methods on downstream zero-shot classifica-
tion accuracy of satellite images, in which we beat the second-best by 25.67. CNN-based baselines
tend to perform poorly in perceptual quality, resulting in sub-par FID scores compared to diffusion-
based methods. While ControlNet may show slightly better FID scores, but the LPIPs score is
significantly worse than ours. We also show reasonable PSNR and SSIM scores, as demonstrated
in the Appendix. Qualitatively, as demonstrated in Fig. 3, we also demonstrate that our method is
able to capture fine-grained details. Compared to baselines, we are able to reconstruct both realistic
images and accurate details.

Computational Efficiency We observe that the training phase of our proposed method requires
much fewer parameters and iterations to converge than ControlNet and DiffusionSat, while achiev-
ing comparable or better reconstruction performance. We report the number of parameters and
number of iterations of training in Table. 3. We train each model until the FID stops improving.
Our method converges significantly (5-15 times) faster than ControlNet and DiffusionSat on both
datasets. We also do not observe the “sudden convergence phenomena” in our training which is re-
ported in ControlNet, which implies that our training may be more stable. Our method also exhibits
better computational efficiency compared to ControlNet. As demonstrated in Table. 3, our algorithm
requires significantly less training time than ControlNet.

4.3 ABLATION STUDIES

We want to study the impact of the fusion module and the relative time difference embedding on the
reconstruction quality. We are also interested in the number of images for fusion. Intuitively, with
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Number of images for fusion 2 4 6 8 10 12 14 16
LPIPS 0.41124 0.3967 0.3920 0.3891 0.3877 0.3874 0.3867 0.3866

Inference Time (s) 16.00 17.11 18.82 20.64 22.45 24.25 25.99 27.81

Table 5: Ablation study: number of images for fusion

Method DiffusionDrop (Ours) ControlNet Additional Layers
LPIPS 0.610 0.624 0.634

Iterations of Convergence 4400 21400 20600

Table 6: Effect of different conditioning mechanisms on the fMoW airport validation set

more LR images provided for fusion, we have more complementary details and can achieve better
perceptual quality.

Effectiveness of relative time embedding and fusion We demonstrate the performance of our
method without RelativeTimeDiff and Fusion, our method with RelativeTimeDiff, and our full
method on the WorldStrat validation dataset in Table. 4. We found that both modules have signifi-
cant positive impact to the perceptual quality (LPIPS score), while the fusion module improves both
the LPIPS score and the FID score. On the other hand, we also find improvement in the distortion
metrics when adding both modules.

Impact of number of images on fusion We present the effect of increasing number of image
for fusion on the reconstruction quality on the first 100 images in the validation set of WorldStrat
dataset in Table. 5. We observe that the reconstruction quality improves significantly when adding
more images for fusion when there are few images for fusion (i.e. fewer than 4), but the performance
almost saturates when the number of images exceeds 10, and will trade-off between image quality
and inference time. This observation validates our hypothesis that fusing information from multiple
LR images improves the reconstruction quality and there exists a diminishing return on the number
of LRs.

Effectiveness of DiffusionDrop We fine tune the stable diffusion model with DiffusionDrop
(Ours), a ControlNet, and additional convolutional channels for handling input condition (with the
same fMoW training data), and then tested the reconstruction on the validation set of fMoW airport
class. We observed that in addition to a fast convergence as demonstrated in Table. 3, Our Diffu-
sionDrop method also follows the LR image better than both the ControlNet and Additional layers
method. We observe a better LPIPS score with the proposed method as demonstrated in Table. 6

5 CONCLUSION

In this work, we present “SatDiffMoE”, a novel framework for satellite image super-resolution with
latent diffusion models. We first present a novel training mechanism that conditions on relative time
difference of LR images and HR images. Then, we propose a novel inference-time algorithm that
fuses the reverse sampling trajectory from inputs of different LRs at the same location but different
times. Our method is highly flexible that can adapt to an arbitrary number of low-resolution inputs
at test-time and requires fewer parameters than diffusion-based counterparts. One of our limitation
is we do not impose physical measurement constraint in our reconstruction process, which we will
leave as future work.

REFERENCES

Tai An, Xin Zhang, Chunlei Huo, Bin Xue, Lingfeng Wang, and Chunhong Pan. Tr-misr: Multiim-
age super-resolution based on feature fusion with transformers. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 15:1373–1388, 2022.

Kumar Ayush, Burak Uzkent, Marshall Burke, David Lobell, and Stefano Ermon. Generat-
ing interpretable poverty maps using object detection in satellite images. arXiv preprint
arXiv:2002.01612, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kumar Ayush, Burak Uzkent, Kumar Tanmay, Marshall Burke, David Lobell, and Stefano Ermon.
Efficient poverty mapping from high resolution remote sensing images. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 12–20, 2021.

Anthony Beck, Graham Philip, Maamoun Abdulkarim, and Daniel Donoghue. Evaluation of corona
and ikonos high resolution satellite imagery for archaeological prospection in western syria. an-
tiquity, 81(311):161–175, 2007.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22563–22575, 2023.

Marshall Burke, Anne Driscoll, David B Lobell, and Stefano Ermon. Using satellite imagery to
understand and promote sustainable development. Science, 371(6535):eabe8628, 2021.

Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. Pix2video: Video editing using image
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
23206–23217, 2023.

Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6172–
6180, 2018.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=OnD9zGAGT0k.

Hyungjin Chung, Suhyeon Lee, and Jong Chul Ye. Decomposed diffusion sampler for accelerating
large-scale inverse problems. 2024.

Yezhen Cong, Samar Khanna, Chenlin Meng, Patrick Liu, Erik Rozi, Yutong He, Marshall Burke,
David Lobell, and Stefano Ermon. Satmae: Pre-training transformers for temporal and multi-
spectral satellite imagery. Advances in Neural Information Processing Systems, 35:197–211,
2022.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Data Preprocessing WorldStrat We obtain the RGB satellite images provided by Cornebise et al.
(2022). We follow the preprocessing steps given by Cornebise et al. (2022), that crop the HR images
into patches of 192×192 and LR images into corresponding pathes of the HR images of size 63×63.
For each HR image, there are 16 corresponding LR images of different time. We extract the RGB
band of the HR images and the RGB band of every LR images. We then resize LR image into the
size of 192× 192. We use the same training and validation split provided by Cornebise et al. (2022)
and then form a training and validation set. We then extract the timestamp from the metadata and
compute the dti for each LRi.

fMoW We obtain the high-resolution images from Christie et al. (2018), and the paired Sentinel-2
images from Cong et al. (2022). We first identify the area of interest on the HR images as given by
Christie et al. (2018), and then crop out other areas. Then we crop the corresponding LR images
following the pre-processing steps given by Cong et al. (2022). We crop the HR images into patches
of 512×512, and align LR images into patches based on each HR image patch. Then we resize each
LR image into the size of 512 × 512 in accordance with the HR image. We consider 6 categories:
airport, amusement parks, car dealership, crop field, educational institution, electric substation for
training and testing. For training, we filter out HR images that do not have a corresponding LR, and
those do not have three channels. We take the same training and validation split from Christie et al.
(2018). When training, we consider all images from Christie et al. (2018), and when testing, we
pick the first 100 images from each selected category of the validation set of Christie et al. (2018).
We also extract dti from the metadata of fmow provided by Christie et al. (2018), and the metadata
of Sentinel-2 data provided by Cong et al. (2022).

Model Training We take the pretrained checkpoint (SD1.2) provided by Rombach et al. (2022),
and then fine tune on the processed Christie et al. (2018) and Cornebise et al. (2022) datasets. We
rescale every LR image and HR image to the scale of [0,1]. Then, we use a learning rate 1e−5, and a
batch size of 4 for both datasets. We stop training when the FID of sampled images stops improving.
For Cornebise et al. (2022) dataset, we only train 800 iterations (partly due to the small dataset size).
For Christie et al. (2018) dataset, we train 4400 iterations. We then take the model for downstream
inference tasks. For WorldStrat dataset, we use the prompt “Satellite images” for training.

Model Inferencing We use 50 DDIM steps with η = 0 for inferencing. We perform optimization
every 5 steps for computational efficiency, otherwise, we just perform conditional sampling. We set
λ = 0.1 and α = 0.2 for both datasets.

CLIP zero-shot classification We use the pretrained CLIP model to compute the image embed-
ding and text embedding. For each class of fMoW, we take the reconstructed images from each
methods and compute its CLIP embedding using the ViT-B/32 model, which gives an embedding of
shape (1,512). Then we use the text encoder to compute the embedding, which gives a shape of (77,
512). The prompt for each class is given by “a satellite image of {class} from an overhead view”.
Then we commpute the cosine similarity of the image embedding and the text embeddings, which
takes the mean of the text embedding over dimension 0. Then we pick the class with the highest
cosine similarity.

A.2 MORE ABLATION STUDIES

Effect of LPIPS weight α and optimization weight λ There are two hyper-parameters in our
inference-time algorithm, and that is the weight for LPIPS distance α v.s. L2 distance, and the
weight λ for balancing the original predicted clean image component and the one after optimization.
We expect the perceptual quality of reconstructed images to improve when we increase α from 0.
We also expect the reconstruction quality to improve when λ increases from 0 since the weight of
fusion increases. In Fig.5, we present the LPIPS score on 100 samples on the WorldStrat dataset
with varying α and λ. We find that LPIPS score improves when both α and λ increase from 0. Then,
performance converges as α keeps increasing, and marginally degrades as λ continues to increase.
We observe that generally, the performance of our algorithm is insensitive to hyperparameter change.
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Figure 5: (Left) Ablation study on optimization weight λ. (Right) Ablation study on LPIPS weight
α.

A.3 IMPLEMENTATION DETAILS OF BASELINES

WorldStrat We follow the original codebase of Cornebise et al. (2022), where we train the High-
ResNet model on both Christie et al. (2018) and Cornebise et al. (2022) datasets. We tune the
hyperparameters of the loss function based on our validation set. We stop training when the valida-
tion performance converges. On Cornebise et al. (2022) we train 125000 iterations with a batch size
of 32, and on Christie et al. (2018) we take 100000 iterations with a batch size of 32.

MSRResNet We follow the original codebase of Wang et al. (2018b), where we train the MSR-
ResNet model on both Christie et al. (2018) and Cornebise et al. (2022) datasets. During training,
we randomly pick a LR image and its paired HR image. We tune the hyperparameters of the loss
function based on validation set performance. We train for 160000 iterations for both Cornebise
et al. (2022) and Christie et al. (2018) datasets with a batch size of 16.

DBPN We follow the original codebase of Haris et al. (2018), where we train the MSRResNet
model on both Christie et al. (2018) and Cornebise et al. (2022) datasets. During training, we
randomly pick a LR image and its paired HR image. We tune the hyperparameters of the loss
function based on validation set performance. We train for 100 epochs for both Cornebise et al.
(2022) and Christie et al. (2018) datasets with a batch size of 16.

Pix2Pix We follow the original codebase of Isola et al. (2017), where we train the MSRResNet
model on both Christie et al. (2018) and Cornebise et al. (2022) datasets. During training, we
randomly pick a LR image and its paired HR image. We tune the hyperparameters of the loss
function based on validation set performance. We train for 30 epochs for Christie et al. (2018) and
100 epochs for Cornebise et al. (2022) with a batch size of 16.

ControlNet We follow the original codebase of Zhang et al. (2023). During training, we randomly
pick a LR image and its paired HR image. We tune the hyperparameters of the loss function based
on validation set performance. We train for 12500 iterations with a batch size of 16 for Cornebise
et al. (2022), and 21500 iterations with a batch size of 16 for Christie et al. (2018).

DiffusionSat We implemented the 3D ControlNet architecture as mentioned in Khanna et al.
(2024). Then, we take the RGB band and the SWIR, NIR band from LR image for training 3D
ControlNet. We tune the hyperparameters of the loss function based on validation set performance.
We train for 12500 iterations with a batch size of 16 for Cornebise et al. (2022), and 20000 itera-
tions with a batch size of 16 for Christie et al. (2018). We observe that further training worsened
FID scores on both datasets.

TR-MISR We use the repo from https://github.com/Suanmd/TR-MISR/. We set the learning rate
to be 1e−4 which we observe to give the best performance, and then we use the l-2 loss. We train
for 100 epochs for both datasets with early stopping if the validation loss stops decreasing.
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Figure 6: Super-resolution results of SatDiffMoE with paired low-resolution image as the input.

A.4 MORE RESULTS

We present additional results on reconstruction for paired LR and HR (taken at the same time) in
Fig. 6. Notice that we can reconstruct accurate details in this setting. We report additional results on
unconditional generation and conditioning on dti as demonstrated in Fig.7, and Fig.8. We observe
that we can generate realistic satellite images. Conditioning on dti makes semantic changes in the
image and can be applied to tasks such as cloud removal. We also report the PSNR and SSIM
metrics in Table 7. The error bars are presented in Table 8.

Method WorldStrat fMoW
PSNR↑ SSIM↑ PSNR↑ SSIM↑

WorldStrat Cornebise et al. (2022) 17.98 0.396 13.42 0.443
MSRResNet Wang et al. (2018b) 19.81 0.512 13.01 0.290

DBPN Haris et al. (2018) 19.17 0.471 11.90 0.268
Pix2Pix Isola et al. (2017) 19.76 0.448 12.21 0.180

ControlNet Zhang et al. (2023) 11.89 0.113 10.82 0.117
DiffusionSat Khanna et al. (2024) 12.34 0.133 10.63 0.109

SatDiffMoE (Ours) 17.40 0.396 11.96 0.172

Table 7: Comparison of PSNR and SSIM metrics for super-resolution on WorldStrat dataset and
fMoW. Best results are in bold. Second best results are underlined.

Method WorldStrat MSRResNet DBPN Pix2Pix ControlNet DiffusionSat SatDiffMoE(Ours)
WorldStrat 0.081 0.077 0.079 0.069 0.079 0.091 0.076

fMoW 0.092 0.081 0.052 0.045 0.034 0.034 0.044

Table 8: Standard deviation of the quantitative metric LPIPS presented in Table 2 for super-
resolution on fMoW and WorldStrat dataset.
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Figure 7: Generated high resolution samples from our unconditional model.

Figure 8: Here we consider the same LR image, and vary the relative time difference to generate
different conditional samples.

17


	Introduction
	Background
	Methods
	Experiments
	Datasets
	Performance Benchmark
	Ablation Studies

	Conclusion
	Appendix
	Implementation Details
	More Ablation Studies
	Implementation Details of Baselines
	More Results


