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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Data Preprocessing WorldStrat We obtain the RGB satellite images provided by Cornebise et al.
(2022). We follow the preprocessing steps given by Cornebise et al. (2022), that crop the HR images
into patches of 192×192 and LR images into corresponding pathes of the HR images of size 63×63.
For each HR image, there are 16 corresponding LR images of different time. We extract the RGB
band of the HR images and the RGB band of every LR images. We then resize LR image into the
size of 192× 192. We use the same training and validation split provided by Cornebise et al. (2022)
and then form a training and validation set. We then extract the timestamp from the metadata and
compute the dti for each LRi.

fMoW We obtain the high-resolution images from Christie et al. (2018), and the paired Sentinel-2
images from Cong et al. (2022). We first identify the area of interest on the HR images as given by
Christie et al. (2018), and then crop out other areas. Then we crop the corresponding LR images
following the pre-processing steps given by Cong et al. (2022). We crop the HR images into patches
of 512×512, and align LR images into patches based on each HR image patch. Then we resize each
LR image into the size of 512 × 512 in accordance with the HR image. We consider 6 categories:
airport, amusement parks, car dealership, crop field, educational institution, electric substation for
training and testing. For training, we filter out HR images that do not have a corresponding LR, and
those do not have three channels. We take the same training and validation split from Christie et al.
(2018). When training, we consider all images from Christie et al. (2018), and when testing, we
pick the first 100 images from each selected category of the validation set of Christie et al. (2018).
We also extract dti from the metadata of fmow provided by Christie et al. (2018), and the metadata
of Sentinel-2 data provided by Cong et al. (2022).

Model Training We take the pretrained checkpoint (SD1.2) provided by Rombach et al. (2022),
and then fine tune on the processed Christie et al. (2018) and Cornebise et al. (2022) datasets. We
rescale every LR image and HR image to the scale of [0,1]. Then, we use a learning rate 1e−5, and a
batch size of 4 for both datasets. We stop training when the FID of sampled images stops improving.
For Cornebise et al. (2022) dataset, we only train 800 iterations (partly due to the small dataset size).
For Christie et al. (2018) dataset, we train 4400 iterations. We then take the model for downstream
inference tasks. For WorldStrat dataset, we use the prompt “Satellite images” for training.

Model Inferencing We use 50 DDIM steps with η = 0 for inferencing. We perform optimization
every 5 steps for computational efficiency, otherwise, we just perform conditional sampling. We set
λ = 0.1 and α = 0.2 for both datasets.

CLIP zero-shot classification We use the pretrained CLIP model to compute the image embed-
ding and text embedding. For each class of fMoW, we take the reconstructed images from each
methods and compute its CLIP embedding using the ViT-B/32 model, which gives an embedding of
shape (1,512). Then we use the text encoder to compute the embedding, which gives a shape of (77,
512). The prompt for each class is given by “a satellite image of {class} from an overhead view”.
Then we commpute the cosine similarity of the image embedding and the text embeddings, which
takes the mean of the text embedding over dimension 0. Then we pick the class with the highest
cosine similarity.

A.2 MORE ABLATION STUDIES

Effect of LPIPS weight α and optimization weight λ There are two hyper-parameters in our
inference-time algorithm, and that is the weight for LPIPS distance α v.s. L2 distance, and the
weight λ for balancing the original predicted clean image component and the one after optimization.
We expect the perceptual quality of reconstructed images to improve when we increase α from 0.
We also expect the reconstruction quality to improve when λ increases from 0 since the weight of
fusion increases. In Fig.6, we present the LPIPS score on 100 samples on the WorldStrat dataset
with varying α and λ. We find that LPIPS score improves when both α and λ increase from 0. Then,
performance converges as α keeps increasing, and marginally degrades as λ continues to increase.
We observe that generally, the performance of our algorithm is insensitive to hyperparameter change.
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Figure 6: (Left) Ablation study on optimization weight λ. (Right) Ablation study on LPIPS weight
α.

A.3 IMPLEMENTATION DETAILS OF BASELINES

WorldStrat We follow the original codebase of Cornebise et al. (2022), where we train the High-
ResNet model on both Christie et al. (2018) and Cornebise et al. (2022) datasets. We tune the
hyperparameters of the loss function based on our validation set. We stop training when the valida-
tion performance converges. On Cornebise et al. (2022) we train 125000 iterations with a batch size
of 32, and on Christie et al. (2018) we take 100000 iterations with a batch size of 32.

MSRResNet We follow the original codebase of Wang et al. (2018b), where we train the MSR-
ResNet model on both Christie et al. (2018) and Cornebise et al. (2022) datasets. During training,
we randomly pick a LR image and its paired HR image. We tune the hyperparameters of the loss
function based on validation set performance. We train for 160000 iterations for both Cornebise
et al. (2022) and Christie et al. (2018) datasets with a batch size of 16.

DBPN We follow the original codebase of Haris et al. (2018), where we train the MSRResNet
model on both Christie et al. (2018) and Cornebise et al. (2022) datasets. During training, we
randomly pick a LR image and its paired HR image. We tune the hyperparameters of the loss
function based on validation set performance. We train for 100 epochs for both Cornebise et al.
(2022) and Christie et al. (2018) datasets with a batch size of 16.

Pix2Pix We follow the original codebase of Isola et al. (2017), where we train the MSRResNet
model on both Christie et al. (2018) and Cornebise et al. (2022) datasets. During training, we
randomly pick a LR image and its paired HR image. We tune the hyperparameters of the loss
function based on validation set performance. We train for 30 epochs for Christie et al. (2018) and
100 epochs for Cornebise et al. (2022) with a batch size of 16.

ControlNet We follow the original codebase of Zhang et al. (2023). During training, we randomly
pick a LR image and its paired HR image. We tune the hyperparameters of the loss function based
on validation set performance. We train for 12500 iterations with a batch size of 16 for Cornebise
et al. (2022), and 21500 iterations with a batch size of 16 for Christie et al. (2018).

DiffusionSat We implemented the 3D ControlNet architecture as mentioned in Khanna et al.
(2024). Then, we take the RGB band and the SWIR, NIR band from LR image for training 3D
ControlNet. We tune the hyperparameters of the loss function based on validation set performance.
We train for 12500 iterations with a batch size of 16 for Cornebise et al. (2022), and 20000 itera-
tions with a batch size of 16 for Christie et al. (2018). We observe that further training worsened
FID scores on both datasets.

A.4 MORE RESULTS

We present additional results on reconstruction for paired LR and HR (taken at the same time) in
Fig. 7. Notice that we can reconstruct accurate details in this setting. We report additional results on
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Figure 7: Super-resolution results of SatDiffMoE with paired low-resolution image as the input.

unconditional generation and conditioning on dti as demonstrated in Fig.8, and Fig.9. We observe
that we can generate realistic satellite images. Conditioning on dti makes semantic changes in the
image and can be applied to tasks such as cloud removal. We also report the PSNR and SSIM
metrics in Table 7. The error bars are presented in Table 8.

Method WorldStrat fMoW
PSNR↑ SSIM↑ PSNR↑ SSIM↑

WorldStrat Cornebise et al. (2022) 17.98 0.396 13.42 0.443
MSRResNet Wang et al. (2018b) 19.81 0.512 13.01 0.290

DBPN Haris et al. (2018) 19.17 0.471 11.90 0.268
Pix2Pix Isola et al. (2017) 19.76 0.448 12.21 0.180

ControlNet Zhang et al. (2023) 11.89 0.113 10.82 0.117
DiffusionSat Khanna et al. (2024) 12.34 0.133 10.63 0.109

SatDiffMoE (Ours) 17.40 0.396 11.96 0.172

Table 7: Comparison of PSNR and SSIM metrics for super-resolution on WorldStrat dataset and
fMoW. Best results are in bold. Second best results are underlined.

Method WorldStrat MSRResNet DBPN Pix2Pix ControlNet DiffusionSat SatDiffMoE(Ours)
WorldStrat 0.081 0.077 0.079 0.069 0.079 0.091 0.076

fMoW 0.092 0.081 0.052 0.045 0.034 0.034 0.044

Table 8: Standard deviation of the quantitative metric LPIPS presented in Table 2 for super-
resolution on fMoW and WorldStrat dataset.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Generated high resolution samples from our unconditional model.

Figure 9: Here we consider the same LR image, and vary the relative time difference to generate
different conditional samples.
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