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A Randomness Condition

In this section, we show that a sub-gaussian random vector with bounded density satisfies Assump-
tion 3:
We say a random vector x is σ2-sub-gaussian vector with bounded density, if for every v ∈ Sd−11 ,
vTx is σ2-sub-gaussian and its density function exists and is bounded by γ for some γ > 0. For such

kind of random vector, [30] shows that it satisfies Assumption 3 with κl =
2d

3γK
and p∗ =

1

3
. In

particular, [22] shows that when x follows N (0,Σ), with λmin(Σ) ≥ κ

d
, we can have κl =

c1κ

d
and

p∗ = c2 for constants c1 and c2.

B Proof of Privacy Guarantee

B.1 Proof of Results in Section 3.1

Proof of Proposition 3.1. Since we assume that the features and rewards are bounded, ‖xt,a‖ ≤
CB , ‖rt‖ ≤ cr for all t ∈ [T ] and a ∈ [K], by Lemma 2.1, Mt is (ε/2, δ/2)-LDP and ut is
(ε/2.δ/2)-LDP. Thus Lemma 2.4 implies that ψOLSt is (ε, δ)-LDP.

Proof of Proposition 3.2. Since we assume that the features and rewards are bounded, ‖xt,a‖ ≤
CB , ‖rt‖ ≤ cr for all t ∈ [T ] and a ∈ [K], we have (µ(xTt,at θ̂t−1) − rt)xt,at bounded by 2crCB .
Lemma 2.2 implies that ψSGDt is ε-LDP.

B.2 Proof of Results in Section 4.1

Proof of Proposition 4.1. We simply denote ψOLSt by ψt in this proof. At time t, for any two
x 6= x′, without loss of generality assuming the action corresponding x and x′ are at = 1 and
at = 2, then the output corresponding x, x′ is given by (ψt(x, x

T θ1 + εt), ψt(0, 0), . . . , ψt(0, 0))
and (ψt(0, 0), ψt(x

′, x′T θ2 + εt), . . . , ψt(0, 0)). Since ψt(0, 0) has the same distribution, we have
for any subset A1 ×A2 × · · · ×AK ⊂ RKd with Ai a Borel set in Rd,

P(ψt(x, x
T θ1 + εt) ∈ A1, ψt(0, 0) ∈ A2, . . . , ψt(0, 0) ∈ AK)

P(ψt(0, 0) ∈ A1, ψt(x′, x′T θ2 + εt) ∈ A2, . . . , ψt(0, 0) ∈ AK)

=
P(ψt(x, x

T θ1 + εt) ∈ A1, ψt(0, 0) ∈ A2)

P(ψt(x′, x′T θ2 + εt) ∈ A2, ψt(0, 0) ∈ A1)
. (8)

Set ψ̃(v1, v2) := (ψt(v1), ψt(v2)), and (v1, v2) := (x, 0), (v′1, v
′
2) := (0, x′), then we have (8)

equals to ψ̃(v1, v2)/ψ̃(v′1, v
′
2), thus applying Lemma 2.4 to it implies that (8) is upper bounded by

eε + δP(ψt(x
′, x′T θ2 + εt) ∈ A2, ψt(0, 0) ∈ A1)−1, leading to the desired result.

Proof of Proposition 4.2. That is nearly the same as the proof of Proposition 4.1, but replacing
eε + δP(ψt(x

′, x′T θ2 + εt) ∈ A2, ψt(0, 0) ∈ A1)−1 by eε in the last step.

C Proof of Results in Section 3.2

In the following analysis, without special explaination, all the c and C denote absolute constants.
Sometimes we state the inequality of type A1 ≤ C log(A2/α)A3 holds with probability at least
1 − α while in proof we derive the results hold with 1 − cα for some constant c. In fact, they are
equivalent by re-scaling α and changing C to some larger constant.

C.1 Proof of Worst-Case Bounds

Proof of Theorem 3.1. Since xt,at is the greedy selection, we have xTt,at θ̂t−1 ≥ xTt,aθ̂t−1 for any
time t ∈ [T ] and a ∈ [K]. Consequently we have the following upper bound for the instantaneous
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regret at time t,

max
a∈[K]

(xt,a − xt,at)
T
θ? ≤ max

a∈[K]
(xt,a − xt,at)

T
(
θ? − θ̂t−1

)
≤ max
a,a′∈[K]

(xt,a − xt,a′)T
(
θ? − θ̂t−1

)
≤ 2 max

a∈[K]

∣∣∣xTt,a (θ? − θ̂t−1)∣∣∣ .
For any fixed a ∈ [K], xt,a is independent of θ̂t−1. By Assumption 3, conditioning on the historical
information up to time t, xTt,a(θ? − θ̂t−1) is a κu

d ‖θ
? − θ̂t−1‖2-sub-gaussian random variable. Now

by the maximal concentration inequality for a sub-gaussian sequence, we have with probability at
least 1− α

T ,

max
a∈[K]

|xTt,a(θ? − θ̂t−1)| = O

(√
κu log(KT/α)

d
‖θ? − θ̂t−1‖

)
.

To control the regret bound, we bound the estimation error ‖θ? − θ̂t−1‖ in each time in the following
lemma.

Lemma C.1 (Estimation Error for OLS). Using the private OLS update mechanism ψOLSt and
estimator ϕOLSt , for any 8d log 9+log(T/α)

p2∗
< t ≤ T , we have with probability at least 1− α

T
,

‖θ̂t − θ?‖2 ≤ C(CBσεσε,δd)2
d+ log(T/α)

κ2l p
2
∗t

, (9)

for some C independent of d, K and T.

Lemma C.2 (Estimation Error for SGD). Using the private OLS update mechanism ψSGDt and
estimator ϕSGDt , for any 3 ≤ t ≤ T , we have with probability at least 1− α

T
,

‖θ̂t − θ?‖2 ≤
(624 log(log T/α) + 1)r2ε,dd

2

4κ2l ζ
2p2∗t

. (10)

Plugging OLS estimation error (9) into the regret bound, denote t1 := 8d log 9+log(T/α)
p2∗

, the following
holds with probability at least 1− α,

T∑
t=1

max
a∈[K]

(xt,a − xt,at)
T
θ?

≤t1cr +

T∑
t=t1+1

CCBσεσε,δd

√
κu log(KT/α)

d

√
d+ log(T/α)

κlp∗
√
t

(11)

≤8
d log 9 + log(T/α)

p2∗
+ CCBσε,δσε

√
d

√
d+ log(T/α)

κlp∗

√
κu log(KT/α)

√
T .

Plugging the SGD estimation error (10) into the regret bound, we have
T∑
t=1

max
a∈[K]

(xt,a − xt,at)
T
θ?

≤2cr +

T∑
t=3

√
κu log(KT/α)

√
(624 log(log T/α) + 1)rε,d

√
d

2κlζp∗
√
t

≤2cr +

√
(624 log(log T/α) + 1)rε,d

√
d

2ζκlp∗

√
κu log(KT/α)

√
T . (12)

So now it suffices to prove the Lemmas C.1 and C.2.
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C.2 Proof of lemma C.1

Lemma C.3. As long as t > 8d log 9+log(T/α)
p2∗

, the following lower bound

λmin(

t∑
i=1

xi,aix
T
i,ai) ≥ C ·

tκlp∗
d

,

holds with probability at least 1− α

T
, for some C independent of d and T .

Proof. Define F−t as the filtration generated by {xi,ai}i∈[t−1], {εi}i∈[t−1] and the randomness from
{ψOLSi }i∈[t−1]. By greedy algorithm, in each time i, xi,ai is selected as ai = argmaxa∈[K]x

T
i,aθ̂i−1.

Thus by the Assumption 3, we have for any 0 < s < p∗,

P(

t∑
i=1

(xTi,aiv)2 < tκl(p∗ − s)/d)

≤ P(
t∑
i=1

1{(xTi,aiv)2 > κl/d} < t(p∗ − s))

≤ P(
1

t

t∑
i=1

(1{(xTi,aiv)2 > κl/d} − E[1{(xTi,aiv)2 > κl/d}|F−i ])) < −s)

≤ exp(−s
2t

2
),

where in the last inequality we use the Azuma–Hoeffding’s inequality for bounded martingale-
difference sequence (see Corollary 2.20 in [42]).

For every d× d positive-definite matrix A, with an abuse of notation, we denote Nε as the ε-net of
Sd−11 for some ε > 0 to be determined,

λmax(A) ≤ 1

1− 2ε
sup
x∈Nε

xTAx,

which then implies

λmin(A) = −λmax(−A) ≥ −1

1− 2ε
sup
x∈Nε

xT (−A)x =
1

1− 2ε
inf
x∈Nε

xTAx.

By choosing ε = 1/4, we can find an ε-net Nε with cardinality |Nε| ≤ 9d. Therefore

λmin(A) ≥ 2 inf
x∈Nε

xTAx.

Note that

P( min
‖v‖=1

t∑
i=1

(xTi,aiv)2 < 2tκl(p∗ − s)/d) ≤ P(

t∑
i=1

(xTi,aiv)2 < tκl(p∗ − s)/d,∃v ∈ Nε)

≤ 9d exp(−s
2t

2
).

By setting s =
√

2d log 9+2 log(T/α)
t , we have when t > 8d log 9+log(T/α)

p2∗
with probability at least

1− α

T
,

λmin(

t∑
i=1

xi,aix
T
i,ai) = min

‖v‖=1

t∑
i=1

〈xi,ai , v〉2 ≥
κlp∗t

d
.
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Proof of Lemma C.1.
By lemma C.3 we know that with probability at least 1− α

T
,

λmin(

t∑
i=1

xi,aix
T
i,ai) ≥ C1κlp∗t/d,

for some C1 independent of d,K and T .

Since {Wi}i∈[t] are independent, therefore by concentration bounds for Wigner matrix we have with
probability at least 1− α

T ,

‖
t∑
i=1

Wi‖2 ≤ C2tσ
2
ε,δ(d+ log(T/α)),

for some C2 independent of d,K and T. However, it is important to note that the perturbation
of privacy noise matrix

∑t
i=1Wi may destroy the positive definite property of the Gram matrix∑t

i=1 xi,aix
T
i,ai

when t is still small. Therefore, we shift
∑t
i=1Wi by adding c̃

√
tId where c̃ :=

C2σε,δ(
√
d+

√
log(T/α)).

We denote At :=
∑t
i=1(xi,aix

T
i,ai

+ Wi) + c̃
√
tI . Therefore, by Weyl’s inequality we have with

probability at least 1− α
T ,

λmin(At) = λmin

(
t∑
i=1

(xi,atix
T
i,ai +Wi) + c̃

√
tId

)
≥ λmin

(
t∑
i=1

xi,aix
T
i,ai

)
≥ C1κlp∗t/d.

So now we we study the OLS estimator with xi,ai , εi given above and ri = xTi,aiθ
? + εi. In that case,

the estimation error of the OLS estimator under LDP constraints at time t is given by

θ̂t − θ? = A−1t

t∑
i=1

(xi,airi + ξi)− θ?

= A−1t

t∑
i=1

(xi,aix
T
i,aiθ

? + xi,aiεi + ξi)− θ?

= A−1t (

t∑
i=1

xi,aiεi)−A−1t
t∑
i=1

Wiθ
? +A−1t

t∑
i=1

ξi − c̃
√
tA−1t θ?.

Define Ft as the filtration generated by {xi,ai}i∈[t], {εi}i∈[t−1] and the randomness from {ψi}i∈[t−1].
Notice that for every unit vector u,

E[exp(λ

t∑
i=1

uTxi,aiεi)] = E[E[exp(λ

t∑
i=1

uTxi,aiεi)|Ft]]

= E[

t−1∏
i=1

exp(λuTxi,aiεi)E[exp(λuTXiεi)|Ft]]

(1)

≤ exp(
λ2C2

Bσ
2
ε

2
)E[

t−1∏
i=1

exp(λuTxi,aiεi)]

(2)

≤ exp(
λ2C2

Bσ
2
ε t

2
).

Inequality (2) is due to the mathematical induction using the same technique in the equality (1).
Thus

∑t
i=1 xi,aiεi is σ2C2

Bt-sub-gaussian vector, and by the concentration of norm for sub-gaussian
vectors, we have then with probability at least 1− α

T ,

‖
t∑
i=1

xi,aiεi‖2 ≤ C3σ
2
εC

2
Bt(d+ log(T/α)),
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where C3 is a positive constant independent of d, K and T .

Therefore,

‖A−1t (

t∑
i=1

xi,aiεi)‖2 ≤ ‖A−1t ‖2‖(
t∑
i=1

xi,aiεi)‖2

≤ C3σ
2C2

Bd
2t(d+ log(T/α))

(C1κlp∗t)2
.

(13)

Moreover,

‖A−1t
t∑
i=1

Wiθ
?‖2 ≤ ‖A−1t ‖2‖

t∑
i=1

Wi‖2‖θ?‖2

≤ ‖A−1t ‖2‖
t∑
i=1

Wi‖2

≤
C2tσ

2
ε,δ(d+ log(T/α))

(C1κlp∗t)2
,

(14)

where the second inequality is from the assumption that ‖θ?‖ ≤ 1.

Third, Since ξi are random vector with independent, sub-gaussian coordinates that satisfy
Eξ2i,j = σ2

ε,δ,
∑t
i=1 ξi is a random vactor with independent sub-gaussian coordinates that satisfy

E
∑t
i=1 ξ

2
i,j = tσ2

ε,δ . Therefore for all t ∈ [T ], with probability at least 1− α
T ,

‖
t∑
i=1

ξi‖2 ≤ C4tσ
2
ε,δ(d+ log(T/α)),

for some positive constant C4 independent of d, K and T . Therefore,

‖A−1t
t∑
i=1

ξi‖2 ≤
C4tσ

2
ε,δd

2(d+ log(T/α))

(C2κlp∗t)2
. (15)

Lastly,

‖c̃
√
tA−1t θ?‖2 ≤ c̃2t

(C2κlp∗t)2
, (16)

holds with probability at least 1− α
T . Plugging all bounds (13) (14) (15) and (16) together we get

then with probability at least 1− α
T ,

‖θ̂t − θ?‖2 ≤ C5σ
2
εC

2
Bσ

2
ε,δd

2 d+ log(T/α)

κ2l p
2
∗t

,

for some positive constant C5 independent of d,K and T.

Proof of Lemma C.2. Denote gt as the gradient at time t, ĝt := Ψε[(µ(xTt,at θ̂t)− rt)xt,at ] is the LDP
private estimator of gt and ẑt = gt − ĝt. By the unbiasedness of Ψε in Lemma 2.2 we have

E[Ψε((µ(xTt,at θ̂t−1)− rt)xt,at)T (θ̂t−1 − θ?)|Ft−1]

=E[(µ(xTt,at θ̂t−1)− µ(xTt,atθ
?))xTt,at(θ̂t−1 − θ

?)|Ft−1]

≥ζE[[xTt,at(θ̂t−1 − θ
?)]2|Ft−1] ≥ ζκlp∗/d‖θ̂t−1 − θ?‖2,
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where the last inequality is from Lemma C.3 and Markov’s inequality λmin(Exat [xatx
T
at |Ft−1]) ≥

κlp∗/d. Moreover, notice that ‖ĝt‖ = rε,δ . Let λ := 2κlζp∗/d and ηt = 1
λt ,

‖θ̂t − θ?‖2 = ‖θ̂t−1 − ηtĝt − θ?‖2

= ‖θ̂t−1 − θ?‖2 − 2ηtĝ
T
t (θ̂t−1 − θ?) + η2t ‖ĝt‖2

= ‖θ̂t−1 − θ?‖2 − 2ηtg
T
t (θ̂t−1 − θ?) + 2ηtẑ

T
t (θ̂t−1 − θ?) + η2t ‖ĝt‖2

≤ (1− 2ληt)‖θ̂t−1 − θ?‖2 + 2ηtẑ
T
t (θ̂t−1 − θ?) + η2t ‖ĝt‖2

≤
(

1− 2

t

)
‖θ̂t−1 − θ?‖2 +

2

λt
ẑ
(
t θ̂t−1 − θ?) +

(rε,d
λt

)2
.

It follows from the same proof as in Proposition 1 in [28], we can obtain for any 0 < α ≤ 1
eT , T ≥ 4

and for all 3 ≤ t ≤ T , with probability at least 1− α,

‖θ̂t − θ?‖2 ≤
(624 log(log(T )/α) + 1)r2ε,dd

2

4κ2l ζ
2p2∗t

.

C.3 Proof of Problem-dependent Bound

To prove the problem-dependent bound, we need only combine Lemma C.1 and Lemma C.2 together
with the following lemma.

Lemma C.4. Under the (β, γ)-margin condition, if we have ‖θ̂t − θ?‖ ≤
U0√
t

holds uniformly for

all t0 ≤ t ≤ T0 for some t0 and U0 with probability at least 1− α, we have then with probability at
least 1− 2α,

Reg(T ) ≤ C ·
{
crt0 + γ(LCBU0)2(log T + o(1)), β = 1

crt0 + 2γ
1−β (LCBU0)1+β(T

1−β
2 + o(1)), 0 ≤ β < 1.

Proof. We have, with probability at least 1− α,

Reg(T ) ≤ 2crt0 + (µ(xTt,a∗t θ
?)− µ(xTt,atθ

?))1{‖θ̂t − θ?‖ ≤
U0√
t
,4t ≤

2LCBU0√
t
}

≤ 2crt0 + 2LCB
U0√
t
1{4t ≤

2LCBU0√
t
}.

Denote At :=
1√
t
1{4t ≤

2LCBU0√
t
}, by Hoeffding’s inequality we have with probability at least

1− α, ∑
t

At <
∑
t

E[At] +

√
log T log

1

α
.

Noting that E[
∑
tAt] ≤ 2γLCBU0 log T for β = 1 and E[

∑
tAt] ≤

2γ

1− β
(LCBU0)βT

1−β
2 for

0 ≤ β < 1. Then the claim holds.

D Proof of Results in Section 4.2

To lighten the notation, in this section we denote θi the underlying parameter of arm i. In the following
analysis, without special explaination, all the c and C denote absolute constants. Sometimes we state
the inequality of type A1 ≤ C log(A2/α)A3 holds with probability at least 1− α while in proof we
derive the results hold with 1− cα for some constant c. In fact, they are equivalent by re-scaling α
and changing C to some larger constant.
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D.1 Proof of Theorem 4.1

Lemma D.1. If after the warm up stage of length Ks0, the estimator θ̂Ks0,i achieves the following
error bound with probability at least 1− α,

sup
i∈[K]

‖θ̂Ks0,i − θi‖ ≤ h0 :=
hsub

8LCB
,

With h = hsub in Algorithm 2, we have P{a∗t ∈ K̂t, K̂t ∩Ksub = ∅} ≥ 1− α holds uniformly for
all Ks0 < t ≤ T.

Proof. Firstly, to show a∗t ∈ K̂t, without loss of generality we assume that a∗t 6= 1, and
argmaxi∈[K]µ(XT

t θ̂Ks0,i) = 1. Then by the optimality of θa∗t , condition on supi∈[K]‖θ̂Ks0,i−θi‖ ≤
h0,

P(a∗t /∈ K̂t) = P(µ(XT
t θ̂Ks0,a∗t ) < µ(XT

t θ̂Ks0,1)− h/2)

≤ P(µ(XT
t θa∗t )− h/8 < µ(XT

t θ1) + h/8− h/2) = 0.

Now for any j ∈ Ksub, we have condition on supi∈[K]‖θ̂Ks0,i − θi‖ ≤ h0,

P(j ∈ K̂t) ≤ P(µ(XT
t θ̂Ks0,a∗t )− h/2 < µ(XT

t θ̂Ks0,j))

≤ P(µ(XT
t θa∗t )− 3h/4 < µ(XT

t θj) + h/4) = 0,

where the final equation is due to the sub-optimality gap assumed in Assumption 5.

Proof of Theorem 4.1. We first show the following lemma, which converts the regret bound under
margin condition to the estimation error bound:

Lemma D.2. Under the (β, γ)-margin condition, given h0 defined in Lemma D.1, suppose there
exists some s0 such that with a warm up stage of length Ks0, supi∈[K]‖θ̂t,i − θi‖ ≤ h0, and there
exists some t0, U0(α) such that with probability at least 1− α,

sup
i∈Kopt

‖θ̂t,i − θi‖ ≤
U0(α)√

t
, ∀t0 ≤ t ≤ T.

Then, we have with probability at least 1− 2α, for some constant C,

Reg(T ) ≤ C ·

{
crt0 + γ(LCBU0(α))2(log T + o(1)), β = 1

crt0 +
γ

1− β
(LCBU0(α))1+β(T

1−β
2 + o(1)), 0 < β < 1.

Proof of Lemma D.2. Denoting Et := {K̂t ∩Ksub = ∅, a∗t ∈ K̂t}, we have with probability at least
1− α,

Reg(T ) ≤ 2crt0 + L
∑

t0<t≤T

XT
t (θa∗t − θat)

≤ 2crt0 + L
∑

t0<t≤T

XT
t (θa∗t − θat)1{ sup

i∈Kopt
‖θ̂t,i − θi‖ ≤

U0(α)√
t
, Et}

≤ 2crt0 + L
∑

t0<t≤T

XT
t (θa∗t − θat)1{ sup

i∈Kopt
‖θ̂t,i − θi‖ ≤

U0(α)√
t
,4t ≤

2LCBU0(α)√
t

, Et}

≤ 2crt0 + L
∑

t0<t≤T

2CBU0(α)√
t

1{4t ≤
2LCBU0(α)√

t
}.

Let At = 1{4t <
2LCBU0(α)√

t
}. Then At is a sequence of independent 0-1 valued random variable

such that P(At = 1) ≤ γ(
2LCBU0(α)√

t
)β . Then Hoeffding’s inequality implies with probability at
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least 1− α, ∑
t0≤t≤T

1√
t
At ≤ E[

∑
1≤t≤T

1√
t
At] +

√
log T · log(

1

α
).

Notice that E[
∑

1≤t≤T
1√
t
At] ≤ CLCBγU0(α) log T when β = 1 and E[

∑
1≤t≤T

1√
t
At] ≤

C
γ

1− β
(LCBU0(α))βT

1−β
2 when 0 < β < 1. This completes the proof.

Given Lemma D.2, we need only show that for both the private OLS estimator and the private SGD
estimator, we can find the corresponding s0, t0 and U0(α).

Lemma D.3 (Result of OLS estimator). Given h0 =
hsub

8LCB
and λ0 = (2LCB)−1(

p′

2γ
)1/β , ropt :=

|Kopt|/K, under the (β, γ)-margin condition ,

s0 = CK(
CBσε + σε,δ

min{λ0, h0}p′κlropt
)2(d+ log(TK/α)),

t0 = 2Ks0,

U0(α) =
K(CBσε + σε,δ)

√
d+ log(TK/α)

κlp′
.

satisfy the requirements in Lemma D.2.

Lemma D.4 (Result of SGD estimator). Given h0 =
hsub

8LCB
and λ0 = (2LCB)−1(

p′

2γ
)1/β , ropt :=

|Kopt|/K, under the (β, γ)-margin condition,

s0 = C

(
Krε,d

ζκlp′ropt min{λ0, h0}

)2

log(KT log(KT )/α),

t0 = Ks0 + 1,

U0(α) = C
K
√

log((KT logKT )/α)rε,d
ζκlp′

,

satisfy the requirements in Lemma D.2.

Then Theorem 4.1 follows from combining Lemma D.2, D.3 and D.4 .

Remark. Notice that in the statement of Lemma D.3 and Lemma D.4, there exists a term ropt.
That is because of our assumption P((vTX)21{Xt ∈ Ui} > κl/K) > p′. In fact, a more natural
assumption should be P((vTX)21{Xt ∈ Ui} > κl/|Kopt|) > p′. In that case, we have ropt = 1,
which leads to more refined results.

The proof of Lemma D.3 and Lemma D.4 needs the following result: For a fixed β ∈ (0, 1],

we define h0 =
hsub

8LCB
,λ0 = (2LCB)−1(

p′

2γ
)1/β , At := {supi∈Kopt‖θ̂t,i − θi‖ ≤ λ0}, H0 :=

{supi∈[K]‖θ̂Ks0,i − θi‖ ≤ h0}.

Lemma D.5. Define Ft the filtration generated by {Xi}i∈[t],{εi}i∈[t] together with all randomness
from {ψi}i∈[t]. Then we have:

λmin(E[XtXt1{at = i}|Ft−1]) ≥ p′κl
2K

1At−1
1H0

, ∀i ∈ Kopt.
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Proof. We have for every unit vector v

E[vTXtX
T
t v1{at = i}|Ft−1]

≥1H0

κl
K

E[1{|vTX1{Xt ∈ Ui}|2 ≥ κl/K, at = i, At−1}|Ft−1]

≥1H01At−1

κl
K

E[1{|vTX1{Xt ∈ Ui}|2 ≥ κl/K} − 1{at 6= i,Xt ∈ Ui, At−1}|Ft−1]

≥1H0
1At−1

κl
K

[p′ − P({at 6= i,Xt ∈ Ui} ∩H0 ∩At−1|Ft−1)].

P({at 6= i,Xt ∈ Ui} ∩H0 ∩At−1|Ft−1) = 1H0
1At−1

P({at 6= i,Xt ∈ Ui} ∩ Et ∩At−1|Ft−1)

≤ 1At−1
1H0

P(4t < 2LCBλ0)

≤ 1At−11H0γ(2LCBλ0)β

≤ 1At−1
1H0

p′

2
,

where the last inequality is by the choice of λ0. Then the proof is finished.

D.2 Proof of Lemma D.3

We first establish the lower bound of the sample-covariance matrix sampled by the greedy action
based on the following matrix-martingale concentration result:
Lemma D.6 (Theorem 3.1 in [40]). Let z1, . . . , zt be a sequence of random, positive-semidefinite
d× d matrices adapted to a filtration F ′t , let Zt :=

∑t
i=1 z

i and Z̃t :=
∑t
i=1 E[zi|F ′i−1]. Suppose

that λmax(zi) ≤ R2 almost surely for all i, then for any µ and α ∈ (0, 1),

P[λmin(Zt) ≤ (1− α)µ, λmin(Z̃t) ≥ µ] ≤ d(
1

eα(1− α)1−α
)µ/R

2

.

Now we can show the following result:

Lemma D.7. For t1 < t2 ∈ N such that (t2 − t1) · κlp
′

8K
> 10C2

B log(d/α′), for a fixed i ∈ [K] we
have

P(λmin(

t2∑
t=t1

XtXt1{at = i}) ≤ t2 − t1
8K

κlp
′, sup
t1≤t≤t2,i∈Kopt

‖θ̂t,i − θi‖ ≤ λ0, H0) ≤ α′.

Proof. Denote St1,t2 := ∩t1≤t≤t2At, by Lemma D.5 we have

λmin(

t2∑
t=t1

E[XtX
T
t 1{at = i}|Ft−1]) ≥

t2∑
t=t1

1At−11H0

κlp
′

2K
.

That implies

P(λmin(

t2∑
t=t1

XtX
T
t 1{at = i}) ≤ t1 − t2

4K
κlp
′, St1,t2 , H0)

≤P(λmin(

t2∑
t=t1

XtX
T
t 1{at = i}) ≤ t1 − t2

4K
κlp
′,E[XtX

T
t 1{at = i}|Ft−1]) ≥ (t2 − t1)

κlp
′

2K
).

Then selecting α = 1/2 and µ = (t2 − t1) · κlp
′

4K
in Lemma D.6, we have

P(λmin(

t2∑
t=t1

XtX
T
t 1{at = i}) ≤ (t2 − t1)

κlp
′

8K
,St1,t2 , H0) ≤ d(

1√
e/2

)10 log( d
α′ ) ≤ α′.

That leads to the claim.
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In warm up stage, we have the following lemma.

Lemma D.8. As long as s0 ≥ C(roptκlp
′)−2 max{log

1

α
, d} for some absolute constant C, we have

with probability at least 1− α,

λmin(

Ks0∑
t=1

1{at = i}XtX
T
t )−1 ≤ 2

s0p′roptκl
, ∀i ∈ [K].

Proof. Since Xt are i.i.d. for (i − 1)s0 + 1 ≤ t ≤ is0, using classical concentration results for
i.i.d. sub-gaussian covariance matrix result (e.g. Theorem 6.5 in [42] ), we have when s0 >

C(roptκlp
′)−2 max{log

1

α
, d}, with probability at least 1− α,

‖ 1

s0

Ks0∑
t=1

1{at = i}XtX
T
t − E[X1X

T
1 ]‖ ≤ c1(

√
d

s0
+

d

s0
) + c2 max{

√
log 1/α

s0
,

log 1/α

s0
}

≤ c3(

√
d

s0
+

√
log(1/α)

s0
)

≤ roptp′κl/2.

On the other hand, we have by Markov’s inequality

λminE[X1X
T
1 ] ≥

∑
i∈Kopt

λminE[X1X
T
1 1{X1 ∈ Ui}] ≥ roptκlp′.

Thus we have with probability at least 1− α,

λmin(

Ks0∑
t=1

XtX
T
t ) ≥ s0roptp′κl/2.

Now we can claim our first result about the private OLS-estimator in the warm up stage:
Lemma D.9. Selecting s0 as in Lemma D.8 . For the warm up stage with private-OLS-estimator and
length Ks0, we have for any α > 0, with probability at least 1− α,

sup
i∈[K]

‖θ̂t,i − θi‖ ≤
(4CBσε + σε,δ)

√
t(log(TKα ) + d)

s0p′roptκl
holds for all Ks0 ≤ t ≤ T .

Proof. DenoteUt =
∑t
s=1(1{as = i}XsX

T
s +(1{as = i, s ≤ Ks0}+1{s > Ks0})Ws)+c̃

√
tId,

we have

θ̂t,i = U−1t (

t∑
s=1

1{as = i}Xsys + (1{as = i, s ≤ Ks0}+ 1{s > Ks0})ξs)

= U−1t (

t∑
s=1

1{as = i}[XsX
T
s θi +Xsεs] + (1{as = i, s ≤ Ks0}+ 1{s > Ks0})ξs)

= θi + U−1t (

t∑
s=1

(1{as = i}Xsεs + (1{as = i, s ≤ Ks0}+ 1{s > Ks0})(ξs −Wsθi))− c̃
√
tIdθi).

By ‖
∑Ks0
s=1 1{as = i}Ws +

∑t
s=Ks0+1Ws‖ ≤ c̃

√
t,∀Ks0 ≤ t ≤ T, i ∈ [K] with probability at

least 1− α, we have with probability at least 1− 2α,

[λmin(U)]−1 ≤ λmin(

Ks0∑
s=1

1{as = i}XsX
T
s )−1 ≤ 2

s0roptp′κl
, ∀Ks0 ≤ t ≤ T.
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On the other hand, we have by the concentration of sub-gaussian random vector, the following bounds
hold with probability at least 1− α/(T 2K):

‖
t∑

s=1

1{as = i}Xsεs‖ ≤ CCBσε
√
t(d+ log(TK/α)), (17)

‖
t∑

s=1

(1{as = i, s ≤ Ks0}+ 1{s > Ks0})ξs‖ ≤ Cσε,δ
√
t(d+ log(TK/α)), (18)

‖
Ks0∑
s=1

1{as = i}Wsθi +

t∑
s=Ks0+1

Wsθi‖ ≤ c̃
√
t‖θi‖ ≤ Cσε,δ

√
t(d+ log(TK/α)). (19)

Gathering all bounds together, we have with probability at least 1− (2 +
1

T 2
)α,

sup
i∈[K]

‖θ̂t,i − θi‖ ≤
2C

s0p′roptκl
(CBσε + σε,δ)

√
t(log(TK/α) + d).

That finishes the proof.

Lemma D.10. As long as

s0 ≥ CK(
CBσε + σε,δ

min{λ0, h0}roptp′κl
)2(d+ log(TK/α)),

we have with probability at least 1− α,

sup
i∈[K]

‖θ̂Ks0,i − θi‖2 ≤ min{λ0, h0}, (20)

sup
i∈Kopt

‖θ̂s,i − θi‖2 ≤ λ0 holds uniformly for Ks0 ≤ s ≤ (K + 1)s0, (21)

C
K(CBσε + σε,δ)

√
d+ log(TK/α)√

t−Ks0κlp′
≤ λ0 holds for all t ≥ 2Ks0 . (22)

Proof. To show (20),(21), we can just plug the value of s0 into the upper bound in Lemma D.9. (22)
comes directly from the value of s0.

Now, we can show the following result:
Lemma D.11. With the choice of s0 same as in Lemma D.10, for t > Ks0, denote t′ = t−Ks0 and
t̃0 = 2Ks0, we have if

H0 holds and ‖θ̂t,i − θi‖2 ≤ min{Ũs(α), λ0} holds uniformly for i ∈ Kopt, t̃0 ≤ s ≤ t ,

with probability at least 1−
∑t′

j=1

2

j2
α, then

H0 holds and ‖θ̂t,i − θi‖2 ≤ min{Ũs(α), λ0} holds uniformly for i ∈ Kopt, t̃0 ≤ s ≤ t+ 1 ,

with probability at least 1−
∑t′+1
j=1

2

j2
α , where

Ũs(α) = C
K(CBσε + σε,δ)

√
d+ log(TK/α)√

sκlp′
.

Proof. Denote St̃0,t = {‖θ̂s,i − θi‖ ≤ min{Ũs(α), λ0},∀K ∈ Kopt,∀t̃0 ≤ s ≤ t}, Ãt =

{supi∈Kopt‖θ̂i,t − θi‖ ≤ Ũt(α)} , we have by Lemma D.7

P(St̃0,t, H0, λmin(

t∑
s=1

XsXs1{as = i}) > t′κlp
′

8K
) ≥ 1− α

2KT 2
.
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Applying the inequalities (17),(18) (19), we have

P(H0, St̃0,t, At+1) ≥ 1−
t′∑
j=1

2

j2
α− 3α

2T 2
−
∑

i∈Kopt

P(H0, St̃0,t, Ãt+1, λmin(

t∑
s=1

XsXs1{as = i}) ≤ t′κlp
′

4
)

≥ 1−
t′∑
j=1

2

j2
α− 2α

T 2

≥ 1− 2

t′+1∑
j=1

1

j2
α.

By the selection of s0 , we have Ũs(α) ≤ λ0 for t̃0 ≤ s ≤ t+ 1, and as a result, P(H0, St̃0,t+1) =

P(H0, St̃0,t, Ãt+1). Thus the claim holds.

Proof of Lemma D.3. Lemma D.3 is implied directly by Lemma D.11 and Lemma D.10.

D.3 Proof of Lemma D.4

Proof. For the estimator θ̂Ks0,i at the end of warm up stage, since the action is independent of the
contexts, every θ̂Ks0,i can be seen as an output of performing private gradient descent over s0 i.i.d.
samples. Without loss of generality, we perform the analysis for the parameter of the first arm θ̂Ks0,1
(notice that by the sampling strategy in the warm up stage, we have θ̂Ks0,1 = θ̂s0,1). The result for
other θ̂Ks0,i can be established using the same argument. For 2 ≤ t ≤ s0,

‖θ̂t,i − θi‖2 = ‖θ̂t−1,i − ηtĝt − θi‖2

= ‖θ̂t−1,i − θi‖2 − 2ηtĝ
T
t (θ̂t−1,i − θi) + 2η2t ‖ĝt‖2

Here ĝt := Ψε[(µ(XT
t θ̂t,i)− rt)Xt], by the unbiasedness of Ψε in Lemma 2.2 we have

E[Ψε((µ(XT
t θ̂t−1,i)− rt)Xt)

T (θ̂t−1,i − θi)|Ft−1]

= E[(µ(XT
t θ̂t−1,i)− µ(XT

t θi))X
T
t (θ̂t−1,i − θi)|Ft−1]

≥ ζE[[XT
t (θ̂t−1,i − θi)]2|Ft−1]

≥ ζκlroptp′‖θ̂t−1,i − θi‖2.

We get

‖θ̂t,i − θi‖2 ≤ (1− 2ζroptκlp
′ηt)‖θ̂t−1,i − θi‖2 + 2ηt(E[ĝt|Ft−1]− ĝt)T (θ̂t−1,i − θi) + 2η2t ‖ĝt‖2.

Notice ‖ĝt‖22 is upper bounded by r2ε,d. Now using the same argument as in the proof of Proposition
1 of [28] leads to the following result:

Lemma D.12. If we pick ηt = 1/(roptζκlp
′t) in the warm up stage, then with probability at least

1− α,

sup
i∈[K]

‖θ̂Ks0,i − θi‖2 ≤ C
(log(log(KT )/δ) + 1)r2ε,δ

ζ2κ2l r
2
optp

′2s0
. (23)

Notice that in our algorithm, when t > Ks0, for any i ∈ Kopt, the private gradient descent formula
is given by

θ̂t,i = θ̂t−1,i − ηtg̃t,
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with g̃t = 1{at = i}ĝt+1{at 6= i}Ψε(0).Again without loss of generality we assume that 1 ∈ Kopt,
and we provide the analysis for i = 1, the argument is same for other i ∈ Kopt:

E[g̃T (θ̂t−1,1 − θ1)|Ft−1] = E[1{at = i}ĝT (θ̂t−1,1 − θ1)|Ft−1]

= E[1{at = i}(µ(XT
t θ̂t−1,1)− µ(XT

t θi))X
T
t (θ̂t−1,1 − θ1)|Ft−1]

≥ ζE[1{at = i}[XT
t (θ̂t−1,1 − θ1)]2|Ft−1]

≥ 1At,H0ζκlp
′ηt‖θ̂t−1,1 − θ1‖2/K

select ηt := K/(ζκlp
′t′), with t′ = t− (K − 1)s0 we have then

‖θ̂t,1 − θ1‖22 ≤ (1− 2

t′
1At,H0

)‖θ̂t−1,1 − θ1‖2 +
2K

ζκlp′t′
(E[g̃t|Ft−1]− g̃t)T (θ̂t−1,1 − θ1) + 2(

Krε,d
ζκlp′t′

)2

If we denote St := ∩ts=Ks0As, then using the above inequality recursively until t = Ks0 + 1(i.e.
until t′ = s0 + 1) , we have

1St−1,H0
‖θ̂t,1 − θ1‖2 ≤

s0(s0 − 1)

t′(t′ − 1)
‖θ̂Ks0,1 − θ1‖2 + 2(

Krε,d
ζκlp′t′

)2

+
2K

(t′ − 1)t′ζκlp′

t∑
s=Ks0+1

(E[g̃s|Ft−1]− g̃s)T (θ̂s−1,1 − θ1).

Then it follows from the same proof as in Proposition 1 in [28] that for any fixed Ks0 < t ≤ T , we
have with probability at least 1− α/T ,

1St−1,H0‖θ̂t,1 − θ1‖2 ≤
s0(s0 − 1)

t′(t′ − 1)
‖θ̂Ks0,1 − θ1‖2 + C

K2(log(TK log(TK)/α) + 1)r2ε,d
ζ2κ2l p

′2t′
,

(24)

Now choose s0 ≥ 2C
K2(log(TK log(TK)/α) + 1)r2ε,d

r2optζ
2κ2l p

′2 min{λ0, h0}2
, so that the second term in (24) is less or

equal to λ0/2, we have P(SKs0+1, H0) ≥ 1− 2α by (23). And by calling (24) recursively we can

get P(St−1, H0) > 1− 2α− t−Ks0
T

α ≥ 1− 3α,∀Ks0 < t ≤ T . Then with probability at least
1− 3α, we have

‖θ̂t,1 − θ1‖2 ≤ C
K2(log(3TK log(TK)/α))r2ε,d

ζ2κ2l p
′2(t− (K − 1)s0)

, ∀Ks0 < t ≤ T.

The above inequality is because the term
s0(s0 − 1)

t′(t′ − 1)
‖θ̂Ks0,1 − θ1‖2 ≤

s0(s0 − 1)

t′(t′ − 1)

min{λ0, h0}
2

,

which can be absorbed into the constant C.

E Proof of Theorem 3.2

In this section, we would give a proof on the Theorem 3.2 by combining the argument in [22] and the
divergence contraction inequality in [15].

Proof of Theorem 3.2. Consider the two-arm stochastic contextual bandit environment: for each
d-dimensional context i = 1 or 2, xt,i ∼ N (0, 1dId) independently. If choosing action at
at time t, the reward yt is generated via yt = xTt,atθ + εt with εt ∼i.i.d. N (0, 1). Given
any fixed ε-LDP bandit algorithm π with ε ≤ 1, we denote its decision at t-th step by at,
by definition at can be seen as a function of current contextual xt,1, xt,2 and all history out-
puts (x1,a1 , y1, x2,a2 , y2, . . . , xt−1,at−1 , yt−1). Since the algorithm is under the ε-LDP constraint,
each at can only access St := (M1(x1,a1 , y1),M2(x2,a2 , y2), . . . ,Mt−1(xt−1,at−1 , yt−1)) with
M1, . . . ,Mt−1 a sequence of ε-LDP mechanisms. We denote the distribution of St by Qtθ, and we
have

Eθ∼Q0
[EtQθ [(xt,a∗t − xt,at)

T θ|xt,1, xt,2]]

=Eθ∼Q0
[((xt,1 − xt,2)T θ)+Q

t
θ(at(St, xt) = 2) + ((xt,2 − xt,1)T θ)+Q

t
θ(at(St, xt) = 1)],

(25)

26



where (x)+ denote max{x, 0} and Q0 denote the uniform distribution over 4Sd−11 with 4 > 0
some positive number to be determined, we define Q1, Q2 as

dQ1

dQ0
:=

((xt,1 − xt,2)T θ)+
Z0

,
dQ2

dQ0
:=

((xt,2 − xt,1)T θ)+
Z0

,

where Z0 = EQ0
[((xt,1−xt,2)T θ)+] = EQ0

[((xt,2−xt,1)T θ)+] is the normalization factor. Denote
rt = ‖xt,1 − xt,2‖, ut = r−1t (xt,1 − xt,2) , then the right hand side of (25) is lower bounded by

= Z0(Q1 ◦Qtθ(at(St, xt) = 2) +Q2 ◦Qtθ(at(St, xt) = 1))

≥(a) Z0(1− TV(Q1 ◦Qtθ, Q2 ◦Qtθ))

≥(b)
Z0

2
exp(−DKL(Q1 ◦Qtθ‖Q2 ◦Qtθ))

=(c)
Z0

2
exp(−DKL(Q1 ◦Qtθ‖Q1 ◦Qtθ−2(uTt θ)ut))

≥(d)
Z0

2
exp(−EQ1 [DKL(Qtθ‖Qtθ−2(uTt θ)ut)]), (F.1)

where DKL(·‖·) denote the KL-divergence, TV (·, ·) denote the total variation distance and Qi ◦Qtθ
means Eθ∼Qi [Qtθ]. The (a) inequality comes from the fundamental limit of two-point testing (see e.g.
Section 15.2 in [42]), and the (b) inequality comes from Lemma 2.6 of [41], the (c) equality comes
from Lemma 8 in [22] and the (d) inequality comes from the strongly-convexity of KL-divergence.
Now by chain rule of KL-divergence, the divergence contraction inequality in Theorem 1 of [15] and
the formula of KL-divergence between Gaussian distributions, we have

DKL(Qtθ‖Qtθ−2(uTt θ)ut) =

t−1∑
s=1

EQs−1
θ

[DKL(P tθ(·|Ss−1)‖P tθ−2(uTt θ)ut(·|Ss−1))]

≤
t−1∑
s=1

c

2
(eε − 1)2(2(uTt θ)

2‖ut‖2)

By the argument of in [22], we have (F.1) is lower bounded by

rt4
C
√
d

exp(−C (eε − 1)242

d+ 1
uTt (

t−1∑
s=1

xt,atx
T
t,at)ut).

Now taking expectation over xt,1, xt,2, and using the convexity of function f(x) = exp(−x) we get

ExEθEQtθ [xt,a∗t − x
T
t,at ] ≥

4
C
√
d

exp(−C(eε − 1)242t

d2
).

Selecting4 � d

(eε − 1)
√
t

and taking summation over 1 ≤ t ≤ T leads to Ω(
√
Td/(eε − 1)) lower

bound, finally noticing eε − 1 ≤ Cε for ε ≤ 1 leads to the desired lower bound when ε ≤ 1.

F Additional Experiments

In this section, We evaluate all the four methods on two different privacy levels ε = 0.5 and 1 in
a larger scale scheme. To be specific, for single-param setting we increase dimension d to 20 and
increase the number of arms K to 20; for multi-param setting we increase dimension d to 10 and
increase the number of the arms K to 10.

In this simulation we change the learning rate scheme of LDP-SGD from ηt = c1d/(κlζp∗t) to
ηt = c2d/(κlζp∗

√
t) for some c2 > 1 for its better empirical performance, while other details in data

generation process are the same as in Section 5. The first and second columns in Figure 3 are for
single-param and multi-param settings, respectively, which are simulation studies on linear bandits.
As we can see the proposed LDP-OLS and LDP-SGD algorithms can still achieve better performance
against their competitors under different privacy constraints.
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Figure 3: Simulation study in larger-scale scheme. We perform 10 replications for each case and plot
the mean and 0.5 standard deviation of their regrets.

G Auto Loan Experiment Details

We use the same features selection as in [1, 11] in the dataset and select FICO score, the term of
contract, the loan amount approved, prime rate, the type of car, and the competitor’s rate as the feature
vector for each customer. Note that a description of the data set (with descriptive statistics on the
demand and available features) is available in [1]. The objective is to offer a personalized lending
price (from a range of choices) based on personal information such as FICO score to a customer who
will either accept or reject it. In contrast to linear bandits, the binary reward is non-linear. Therefore
we leave LDP-UCB and LDP-OLS out of considerations. To formulate a bandit environment, first we
need to recover the underlying true parameter. Since the lender’s decision, i.e., the price for each
customer, is not presented in the dataset, we follow [1, 11] and impute it by using the net-present
value of futher payment minus the loan amount, i.e.,

p = Monthly Payment ×
Term∑
τ=1

(1 + Rate )−τ − Loan Amount .

After imputing the loan prices, to represent customers’ binary loan choices, we employ the logit
demand model. To be specific, given a price p and a context x ∈ Rd, the binary variable apply
takes value of 1 with probability exp(v)

1+exp(v) and takes value of 0 with probability 1
1+exp(v) where

the linear predictor v = (x, px)T θ?. We conduct one-hot encoding for categorical features in the
dataset and use the python package sklearn [25] for the estimation of the underlying parameter θ?.
We use the interval [0, 25000] as the feasible region of the prices, which covers the lending prices
computed from the dataset, and we discrete the feasible region uniformly into 25 options {pi}i∈[25].
We use LDP-SGD and LDP-GLOC to sequentially compute the loan prices for the 100,000 with
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randomly selected customers in the dataset , and compute the company’s expected regret based on
the population model mentioned above under two privacy constraints scheme ε = 0.5 and ε = 1.
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Figure 4: We perform 10 replications for each case and plot the mean and 0.5 standard deviation of
their regrets.
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