
A Tree-Structured Multi-Task Model Recommender 1

Anonymous1 2

1
Anonymous Institution 3

Abstract Tree-structured multi-task architectures have been employed to jointly tackle multiple vision 4

tasks in the context of multi-task learning (MTL). The major challenge is to determine where 5

to branch out for each task given a backbone model to optimize for both task accuracy 6

and computation efficiency. To address the challenge, this paper proposes a recommender 7

that, given a set of tasks and a convolutional neural network-based backbone model, auto- 8

matically suggests tree-structured multi-task architectures that could achieve a high task 9

performance while meeting a user-specified computation budget without performing model 10

training. Extensive evaluations on popular MTL benchmarks show that the recommended 11

architectures could achieve competitive task accuracy and computation efficiency compared 12

with state-of-the-art MTL methods. 13

1 Introduction 14

Multi-task learning (MTL) aims to solve multiple tasks simultaneously. Compared to independently 15

learning tasks, it is an effective approach to improve task performance while reducing computation 16

and storage costs. However, over-sharing information between tasks can cause task interference 17

(Sener and Koltun, 2018; Maninis et al., 2019) and accuracy degradation. The major challenge in 18

designing a multi-task architecture is thus to identify an intermediate state between over-shared 19

and independent architectures (i.e., a partially-shared architecture), which not only preserves the 20

benefits of lower computation cost and memory overhead, but also avoid task interference as much 21

as possible to guarantee acceptable task accuracy. Such a partially-shared architecture is also called 22

a tree-structured multi-task architecture. Its shallow network layers are shared across tasks like tree 23

roots, whereas deeper ones gradually grow more task-specific like tree branches (Vandenhende 24

et al., 2019). Identifying the best tree-structured multi-task architecture needs to determine where 25

to branch out for each task to optimize for both computation efficiency and task accuracy. 26

Previous works opted for the simplest strategy of sharing the initial layers of a backbone model, 27

after which all tasks branch out simultaneously (Ruder, 2017; Nekrasov et al., 2019; Suteu and Guo, 28

2019; Leang et al., 2020). Since the point at which the branching occurs is determined manually, 29

they call for domain expertise when tackling different tasks and usually result in unsatisfactory 30

solutions due to the enormous architecture design space. To automate architecture design, one line 31

of work deduced the layer sharing possibility based on measurable task relatedness (Lu et al., 2017; 32

Vandenhende et al., 2019; Standley et al., 2020) and minimized the total task dissimilarity when 33

designing multi-task architectures. However, they ignore task interactions that could bring the 34

potential generalization improvement and positive inhibition of overfitting when multiple tasks are 35

trained together (Ruder, 2017; Vandenhende et al., 2020). Another line of work attempted to learn 36

how to branch a network such that the overall multi-task loss is minimized via differentiable neural 37

architecture search (Bruggemann et al., 2020; Guo et al., 2020). Such end-to-end frameworks inte- 38

grated the architecture search with the network training process, which easily leads to sub-optimal 39

multi-task architectures (Choromanska et al., 2015; Sun et al., 2020) due to training difficulties. 40

Besides, the learned multi-task architectures cannot guarantee to meet a user-defined computation 41

budget since these methods are like a black box where users cannot control the exploring process. 42

In this paper, we overcome the aforementioned limitations and propose a tree-structured multi- 43

task model recommender. It takes as inputs an arbitrary convolutional neural network (CNN) 44

Submitted to AutoML Conference 2022 © 2022 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

backbone model and a set of tasks in interest, and then predicts the top-𝑘 tree-structured multi-task 45

architectures that achieve high task accuracy while meeting a user-specified computation budget. 46

Our basic idea is to build a task accuracy estimator that can predict the task accuracy of each 47

multi-task model architecture in the design space without performing model training. The task 48

accuracy estimator captures task interactions by leveraging the task performance of well-trained 49

two-task architectures instead and enables ranking of all multi-task architectures with more than 50

two tasks using their predicted task accuracy. The recommender can then enumerate the design space 51

and identify the multi-task models with the highest predicted task accuracy. Unlike differentiable 52

neural architecture search-based approaches, the recommender is a white-box that allows users to 53

easily control the computation complexity of the multi-task architectures. The basic idea poses 54

three major research questions: 55

• RQ 1: how to build an accurate task accuracy estimator that enables a faithful ranking of the 56

multi-task architectures in the design space based on their estimated task performance? 57

• RQ 2: how to represent multi-task model architectures such that a recommender can completely 58

enumerate the design space for estimating their performance? 59

• RQ 3: how to automatically support various CNN backbone models? 60

To answer RQ 1, our task accuracy estimator predicts the task accuracy of a multi-task ar- 61

chitecture by averaging the task accuracy of associated well-trained two-task architectures. A 62

ranking score of the multi-task architecture is calculated as the weighted sum of the tasks’ accuracy, 63

where the weight of each task is determined by quantified accuracy variance to ensure faithful 64

ranking. To answer RQ 2, we propose a novel data structure called Layout to represent a multi-task 65

architecture and an operation called Layout Cut to derive multi-task architectures. We further 66

propose a cut-based recursive algorithm that is proved to be able to enumerate the design space 67

completely. To answer RQ 3, we design a branching point detector to automatically separate a CNN 68

backbone model into a sequence of computation blocks where each block corresponds to a possible 69

branching point.
1
The detector saves manual efforts in applying the recommender to an arbitrary 70

CNN architecture. 71

Experiments on popular MTL benchmarks, NYUv2 (Silberman et al., 2012) and Tiny-Taskonomy 72

(Zamir et al., 2018), using different backbone models, Deeplab-ResNet34 (Chen et al., 2017) and 73

MobileNetV2 (Sandler et al., 2018), demonstrate that the recommended tree-structured multi-task 74

architectures achieve competitive task accuracy compared with state-of-the-art MTL methods 75

under specified computation budgets. Our empirical evaluation also demonstrates that ranking of 76

the multi-task architectures using estimated task accuracy without training has a high correlation 77

(Pearson’s 𝛾 is 0.5 ∼ 0.85) with the oracle ranking after training for different CNN architectures. 78

2 Related Works 79

Multi-task learning (MTL) is commonly categorized into either hard or soft parameter sharing 80

(Ruder, 2017; Vandenhende et al., 2020). In hard parameter sharing, a set of parameters in the 81

backbone model are shared among tasks. In soft parameter sharing (Misra et al., 2016; Ruder et al., 82

2019; Gao et al., 2019), each task has its own set of parameters. Task information is shared by 83

applying regularization on parameters during training, such as enforcing the weights of the model 84

for each task to be similar. In this paper, we focus on hard parameter sharing as it produces memory- 85

and computation-efficient multi-task models. 86

Early works on multi-task architecture design rely on domain expertise to decide which layers 87

should be shared across tasks and which ones should be task-specific (Long et al., 2017; Nekrasov 88

1
A branching point usually corresponds to a micro-architecture such as a residual block in ResNet50, following prior

works (Vandenhende et al., 2019; Guo et al., 2020; Bruggemann et al., 2020).

2

…

Branching Point Detector

A backbone model

Model with

branching points

Design Space Enumerator

Multi-task model

candidates

Task Accuracy Estimator

3 Tasks

Performance table

Model Accuracy ↓ Flops

#23 87.98 > C

#5 87.12 < C

#48 86.76 < C

#3 86.68 > C

… … …

Computational Budget C

Available

Figure 1: Tree-structured multi-task model recommender workflow.

et al., 2019; Suteu and Guo, 2019; Leang et al., 2020). Due to the enormous design space, such 89

approaches are difficult to find an optimal solution. 90

In recent years, researchers attempt to automate the procedure of designing multi-task architec- 91

tures. Deep Elastic Network (DEN) (Ahn et al., 2019) uses reinforcement learning (RL) to determine 92

whether each filter in convolutional layers can be shared across tasks. Similarly, AdaShare (Sun 93

et al., 2019) and AutoMTL (Zhang et al., 2021) learn task-specific policies that select which lay- 94

ers to execute for a given task. Some other works (Gao et al., 2020; Wu et al., 2021) adopt NAS 95

techniques to explore feature fusion opportunities across tasks. Their primary goal is to improve 96

task accuracy instead of computation efficiency by minimizing the overall multi-task loss. Thus 97

there is no guarantee that the searched multi-task model architectures will meet the computation 98

budget. Also, their architecture search procedure requires substantial search time and is usually 99

hard to converge since the sharing strategy and network parameters generally prefer the alternating 100

training principle to stabilize the training process (Xie et al., 2018; Sun et al., 2019; Wu et al., 2019). 101

Our work pays more attention to balancing task accuracy and computation efficiency through 102

recommending branching structures for multi-task models. There also exist several interesting 103

methods under this direction. FAFS (Lu et al., 2017) starts from a thin network where tasks initially 104

share all layers and dynamically grows the model in a greedy layer-by-layer fashion depending on 105

task similarities. It computes task similarity based on the likelihood of input samples having the same 106

difficulty level. What-to-Share (Vandenhende et al., 2019) measures the task affinity by analyzing the 107

representation similarity between independent models for each task. It recommends the multi-task 108

architecture with the minimum total task dissimilarity. However, because the task dissimilarity 109

between two tasks is always non-negative, the theoretical optimal multi-task architecture would 110

be always independent models whose total task dissimilarity is zero. In contrast to pre-computing 111

the task relatedness, BMTAS (Bruggemann et al., 2020) and Learn-to-Branch (Guo et al., 2020) 112

utilize differentiable neural architecture search to construct end-to-end trainable frameworks that 113

integrate the architecture exploration with the network training process. These learning-based 114

methods easily lead to the suboptimal multi-task model (Choromanska et al., 2015; Sun et al., 2020) 115

due to difficulties in training and cannot guarantee the resulting multi-task architecture to obey a 116

user-defined computation budget. 117

3 Proposed Approach 118

Given a backbone model with 𝐵 branching point and a set of 𝑇 tasks, our goal is to build a 119

recommender that, when deployed, predicts 𝑘 tree-structured multi-task architectures that achieve 120

a high task accuracy while meeting a user-specified computation budget 𝐶 . Figure 1 illustrates 121

the offline building process and the online usage of the recommender. During the offline building 122

process, users provide an arbitrary CNN-based backbone model and a set of tasks. A branching point 123

3

1, 2 31,

1, 2, 3

1

1

 2

1,1,1,1,

11

1

1,1,

2

 21,1,1,1,1,1,1,1,1,

2

22 3

1, 2 33 2

, 2, 3 2, , 3

1, 21, 2

, , ,

33

3

1, 2 3 2

1, 2, 3 2

(a) A multi-task model for three tasks.

1 3

1, 3

1

1

1, 3

1

1,1,1,1,

1 3

33

 3 31,1,1,

33

3

1, 31, 3

1, 31, 3

1

2 3

2, 3

2

2

2, 3

2

2,2,2,2,

2 3

33

 3 32,2,2,2,

33

3

2, 32, 3

2, 32, 3

2

1, 21, 2

1, 2

1

1

1 2

1,1,1,

1

1 2

 2 21,1,1,

2

2

1 21 2

1, 21 2

1, 21, 2

,1, 2

(b) Associated two-task models.

Figure 2: Amulti-task architecture and the related two-task architectures. The average of task accuracy

in (b) is a good indicator of the task accuracy in (a).

detector will automatically identify the sequential computational blocks in the backbone model, 124

each of the blocks corresponding to a viable branching point. A task accuracy estimator is then built 125

based on the given set of tasks and the identified branching points to predict the performance of all 126

the tree-structured multi-task architectures in the design space, which are explored using a design 127

space enumerator. The performance of these multi-task architectures including their other attributes 128

such as model size, FLOPs etc. could be stored in a performance table to facilitate online queries. 129

When deployed, the recommender takes a user-specified computation budget 𝐶 as input, and 130

suggests multi-task architectures by looking up the performance table on the fly. We next elaborate 131

the three major components, task accuracy estimator, design space enumerator, and branching point 132

detector in detail. 133

3.1 Task Accuracy Estimator 134

Task accuracy estimator predicts the task accuracy of a tree-structured multi-task architecture 135

without performing actual model training. The problem is challenging because predicting a 136

single-task architecture’s accuracy is already non-trivial and multi-task architectures introduce 137

more complexities due to task interactions and interference. Task accuracy estimator addresses the 138

problem by leveragingwell-trained two-task architectures to quantify task accuracy and interactions 139

and predict the performance of a multi-task architecture. Specifically, for any tree-structured multi- 140

task architecture, the estimator predicts its task accuracy by averaging the task accuracy of all the 141

associated two-task architectures. A two-task architecture is considered associated if it meets both 142

conditions: (1) the two tasks are a subset of the tasks in the multi-task architecture; (2) the two tasks 143

have the identical branching point as in the multi-task architecture. The algorithm pseudocode for 144

identifying associated two-task architectures is in the Appendix Section A. 145

Figure 2 illustrate the basic idea. Figure 2(a) shows a multi-task architecture constructed from 146

a backbone model with five branching points for three tasks and Figure 2(b) shows the three 147

associated two-task architectures. The numbers inside each block indicate among which tasks the 148

block is shared. Tasks 1 and 2 branch out after the third block, which is the same branching point 149

as the first two-task architecture in Figure 2(b). Similarly, tasks 1 and 3 branch out after the second 150

block, which is the same branching point as the second two-task architecture in Figure 2(b). We 151

estimate task 1 accuracy of the multi-task architecture by averaging task 1 accuracy of the first and 152

second two-task architectures, task 2 accuracy from those of the first and third two-task models, 153

and task 3 accuracy from those of the second and third two-task models. 154

The ultimate goal of the task accuracy estimator is to enable ranking of multi-task architectures 155

based on their estimated task accuracy. Due to the noise in training two-task architectures (Pham 156

et al., 2020), an estimated task accuracy of a multi-task architecture could suffer from some accuracy 157

variance and lead to an inaccurate ranking. A ranking score is thus calculated as the weighted sum 158

of the tasks’ performance. Tasks with higher accuracy variance have lower task weight. 159

To quantify accuracy variance and task weight, we adopt the Singular Value Decomposition 160

Entropy (SVDE) (Li et al., 2008; Jelinek et al., 2019) to measure the regularity of each task 𝑡𝑖 ’s 161

performance in its 𝐵 + 1 two-task architectures with another task 𝑡 𝑗 . SVDE reflects the number of 162

orthogonal vectors contributed to a task performance sequence (Δ𝑡 (0)
𝑖

, . . . ,Δ𝑡 (𝐵)
𝑖
|𝑡𝑖 , 𝑡 𝑗), where Δ𝑡 (𝑏)𝑖

163

4

is 𝑡𝑖 ’s performance in a two-task model that branches at 𝑏-th point. Higher entropy indicates lower 164

regularity and thus higher variance. The task weight of 𝑡𝑖 is the average of the negative entropy 165

over all possible two task combinations (𝑡𝑖 , 𝑡 𝑗),∀𝑗 ≠ 𝑖: 166

𝑤𝑖 =
1

𝑇 − 1
∑︁

𝑗 ∈T , 𝑗≠𝑖

−𝑆𝑉𝐷𝐸 (Δ𝑡 (0)
𝑖

, . . . ,Δ𝑡 (𝐵)
𝑖
|𝑡𝑖 , 𝑡 𝑗), (1)

where T is the set of tasks and 𝑇 = |T | is the number of tasks. The final ranking score of a 167

multi-task architecture is: 168

𝑆 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ([𝑤1, . . . ,𝑤𝑇])𝑇 [Δ𝑡1, . . . ,Δ𝑡𝑇], (2)

where 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ([𝑤1, . . . ,𝑤𝑇]) is the normalized task weights so that their sum is equal to one. 169

Estimating the accuracy of a multi-task architecture requires training of its associated two-task 170

architectures. Given 𝑇 number of tasks and 𝐵 number of branching points, the total number of 171

two-task architectures to train is 𝐶2

𝑇
· (𝐵 + 1), where 𝐶2

𝑇
is the number of two task combinations. 172

The training overhead of the two-task architectures is much less than training all the multi-task 173

architectures whose number is𝑂 ([(2𝑇−1 − 1) · 𝐵]𝑇−1). Our experiments in Section 4.3 demonstrate 174

that the ranking of multi-task architectures using estimated task accuracy without training has a 175

high correlation (Pearson’s 𝛾 is 0.5 ∼ 0.85) with the oracle ranking from training for different CNN 176

architectures. 177

3.2 Design Space Enumerator 178

Design space enumerator formalizes the representation of tree-structured multi-task architectures 179

so that the recommender can completely enumerate the design space. It introduces a data structure 180

called Layout and an operator called Layout Cut to derive multi-task architectures. Based on the two 181

core concepts, we propose a cut-based recursive algorithm to enumerate all possible architectures. 182

Definition 3.1 (Layout). A layout is a symbolized representation of a tree-structured multi-task 183

architecture. Formally, for 𝑇 tasks and a backbone model with 𝐵 branching points, a layout L = 184

[𝐿1, 𝐿2, · · · , 𝐿𝐵], where 𝐿𝑖 is a list of task sets at the 𝑖-th branching point. Task sets in 𝐿𝑖 = [𝐿1𝑖 , 𝐿2𝑖 , · · ·] 185

are subsets of tasks T and satisfy two conditions: (1) 𝐿1𝑖 ∪𝐿2𝑖 ∪· · · = T , and (2) 𝐿𝑝
𝑖
∩𝐿𝑞

𝑖
= ∅,∀𝐿 {𝑝,𝑞 }

𝑖
∈ 𝐿𝑖 . 186

A task set 𝐿
𝑝

𝑖
means the set of tasks in 𝐿

𝑝

𝑖
sharing the 𝑖-th block. Figure 2 illustrates the 187

layouts of a multi-task architecture and three two-task architectures. We define the initial layout as 188

L0 = [[T], · · · , [T]︸ ︷︷ ︸
𝐵

] = [[{𝑡1, . . . , 𝑡𝑇 }], · · · , [{𝑡1, . . . , 𝑡𝑇 }]︸ ︷︷ ︸
𝐵

], which means all the tasks share all the 189

blocks in the multi-task model. 190

Definition 3.2 (Layout Cut). A layout cut is an operator that transforms one layout to another layout 191

by selecting an available task set and dividing it into two task sets. (The complete definition can be 192

found in the Appendix Section C) 193

Based on Definition 3.2, we propose a cut-based algorithm to enumerate all possible layouts, 194

namely tree-structured multi-task architectures. The main idea is to recursively apply layout 195

cuts on the initial layout L0 and all the generated layouts until no new layout is generated. The 196

pseudocode of the layouts enumerator is included in the Appendix Section D. 197

Theorem 3.1. The cut-based layout enumeration algorithm could explore the design space of tree- 198

structured multi-task models completely. 199

This completeness theorem is proved by induction as demonstrated in the Appendix Section E. 200

5

3.3 Branching Point Detector 201

Branching point detector allows the recommender to support an arbitrary CNN backbone model 202

without manual reimplementation. Its design is motivated by the observation that common CNN 203

backbone models are a sequence of computation blocks, such as residual blocks in ResNet50 (He 204

et al., 2016) and bottleneck blocks in MobileNetV2 (Sandler et al., 2018). These computation blocks 205

are typically treated as branching points in MTL (Vandenhende et al., 2019; Bruggemann et al., 206

2020) and satisfy two requirements. (1) They contain trainable parameters so that whether they are 207

shared across tasks is likely to make a difference in task accuracy. (2) They are connected to each 208

other sequentially–that is, there is no link across non-sequential blocks. The two requirements 209

inspire us to design a two-stage branching point detector. 210

The first stage is to identify groups of operators called candidate blocks in a given backbone 211

model. Each candidate block is a subgraph in the computation graph of the backbone model that 212

takes only one input tensor and produces only one output tensor. The branching point detector 213

leverages the Cut Theorem
2
in the Graph Theory to partition the original computation graph of 214

the backbone model into candidate blocks. A subgraph can be divided into two subgraphs if the 215

size of the minimum cut is one; otherwise, the subgraph can be no longer partitioned and is a 216

candidate block. Because a candidate block could contain operators that have no parameters at all, 217

the second stage is to merge candidate blocks that contain only unparameterized layers (e.g., ReLU, 218

Pooling) and normalization layers (e.g., Batch Normalization) with adjacent candidate blocks (e.g., 219

Convolution Layer) to generate final computation blocks (e.g., ConvBNReLU). Each computation 220

block corresponds to a viable branching point. The detailed algorithm and pseudocode are in the 221

Appendix Section F. 222

The proposed branching point detector enables the recommender to automatically parse the 223

backbone model and produce two-task architectures and multi-task architectures based on a layout. 224

It saves manual efforts in generalizing multi-task architecture search across different backbone 225

models. We also allow users to flexibly add or remove branching points to adjust the architecture 226

search space. 227

4 Experiments 228

4.1 Experiment Settings 229

Datasets and Tasks. Our experiments are conducted on two popular datasets in multi-task learning, 230

NYUv2 (Silberman et al., 2012) and Tiny-Taskonomy (Zamir et al., 2018). The NYUv2 dataset 231

consists of RGB-D indoor scene images and three tasks, 13-class semantic segmentation, depth 232

estimation, and surface normal prediction. Tiny-Taskonomy contains indoor images and five tasks: 233

semantic segmentation, surface normal prediction, depth estimation, keypoint detection, and edge 234

detection. The data splits follow prior works (Sun et al., 2019; Zhang et al., 2021). 235

Loss Functions and Evaluation Metrics. In NYUv2, Semantic segmentation uses a pixel-wise 236

cross-entropy loss for each predicted class label, and is evaluated using mean Intersection over 237

Union and Pixel Accuracy (mIoU and Pixel Acc, the higher the better). Surface normal prediction 238

uses the inverse of cosine similarity between the normalized prediction and ground truth, and is 239

evaluated using mean and median angle distances between the prediction and the ground truth 240

(the lower the better), and the percentage of pixels whose prediction is within the angles of 11.25°, 241

22.5° and 30° to the ground truth (Eigen and Fergus, 2015) (the higher the better). Depth estimation 242

uses the L1 loss, and the absolute and relative errors between the prediction and the ground truth 243

are computed (the lower the better). In Taskonomy, all the tasks are trained using the same loss as 244

in NYUv2 and directly evaluated by the task-specific loss. Since tasks have multiple evaluation 245

metrics and their value can also be at different scales, we compute a single relative performance 246

2https://en.wikipedia.org/wiki/Minimum_cut

6

https://en.wikipedia.org/wiki/Minimum_cut

Table 1: Performance of top-5 recommended architectures on NYUv2 using Deeplab-ResNet34.

Model

FLOPs

(%) ↓
#Params

(%) ↓

Semantic Seg. Surface Normal Prediction Depth Estimation

Δ𝑡 ↑
mIoU ↑ Pixel

Acc. ↑ Δ𝑡1 ↑
Error ↓ 𝜃 , within ↑

Δ𝑡2 ↑
Error ↓ 𝛿 , within ↑

Δ𝑡3 ↑
Mean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.252 1.253

Ind. Models - - 26.50 58.20 - 17.70 16.30 29.40 72.30 87.30 - 0.62 0.24 57.80 85.80 96.00 - -

#0 -66.67 -66.66 25.23 57.69 -2.8 17.14 15.15 35.85 72.20 85.54 6.0 0.55 0.23 63.85 89.38 97.03 5.8 3.0
#45 -36.56 -35.45 25.18 57.36 -3.2 17.26 14.93 36.33 72.27 85.16 6.4 0.58 0.22 62.70 88.79 96.93 5.5 2.9

#50 -46.87 -46.13 24.72 56.71 -4.6 17.24 15.13 32.17 72.66 85.75 3.6 0.56 0.23 63.87 88.72 96.81 5.6 1.5

#37 -34.87 -33.70 26.30 57.94 -0.6 17.24 15.16 35.78 71.90 85.43 5.7 0.61 0.22 60.09 87.18 96.31 2.6 2.6

#49 -46.87 -46.13 25.56 57.62 -2.3 17.77 15.70 33.18 70.99 84.64 2.3 0.55 0.22 64.62 89.78 97.55 7.8 2.6

metric following (Maninis et al., 2019; Sun et al., 2019). The overall performance is the average of 247

the relative performance over all tasks, namely Δ𝑡 = 1

𝑇

∑
𝑖=1 Δ𝑡𝑖 . The units for relative performance 248

Δ𝑡𝑖 and Δ𝑡 are percentage (%). 249

Baselines for Comparison. Our baselines include both tree-structured MTL methods and general 250

MTL approaches. For state-of-the-art tree-structured MTL methods, we compare withWhat-to- 251

Share3 (Vandenhende et al., 2019), BMTAS4 (Bruggemann et al., 2020), Learn-to-Branch5 (Guo 252

et al., 2020), Task-Grouping5 (Standley et al., 2020). For general MTL approaches, we compare with 253

following baselines: the Single-Task baseline where each task has its own model and is trained 254

independently, popular MTL methods (e.g., Cross-Stitch (Misra et al., 2016), Sluice (Ruder et al., 255

2019), NDDR-CNN (Gao et al., 2019),MTAN (Liu et al., 2019)), and state-of-the-art NAS-based MTL 256

methods (e.g. DEN (Ahn et al., 2019), AdaShare (Sun et al., 2019), AutoMTL (Zhang et al., 2021)). 257

We use the same backbone model in all baselines and in our approach for fair comparisons. We 258

use Deeplab-ResNet34 (Chen et al., 2017) and MobileNetV2 (Sandler et al., 2018) as the backbone 259

model and the Atrous Spatial Pyramid Pooling (ASPP) architecture as the task-specific head. Both 260

of them are popular architectures for pixel-wise prediction tasks. The branching points of Deeplab- 261

ResNet34 are generated by our branching point detector and then further customized to be five 262

according to He et al. (2016) to reduce search space, each computation block corresponding to one 263

ConvBNReLU block or one Residual Block. Similarly, MobileNetV2 is split into separate Inverted 264

Blocks firstly and then its branching points are defined by merging adjacent blocks into five larger 265

ones with similar computation cost measured by FLOPs. 266

4.2 Performance of Recommended Tree-Structured Multi-Task Models 267

Table 1∼2 report the real task performance of the recommended tree-structured multi-task models 268

after training using Deeplab-ResNet34. It reports both absolute values of all evaluation metrics and 269

the relative performance. Results on MobileNetV2 can be found in the Appendix Section H. The 270

first column “Model” lists the index of the recommended models. The specific model structures 271

are shown in the Appendix Section I. Overall, the recommendation of our framework is consistent 272

with the common belief that MTL can achieve higher task accuracy and improved efficiency for 273

each task by leveraging commonalities across related tasks (Caruana, 1997; Ruder, 2017). 274

The superiority of our recommender can be observed more clearly in Table 2. With different 275

computation budgets (specified by the number of backbone models in column “Com. Budget”), 276

our recommender could always recommend multi-task architectures with high task performance 277

within the computation constraint. Unlike prior works (Sun et al., 2019; Bruggemann et al., 2020), 278

which have to re-train the whole architecture searching framework when the computational 279

requirement changes, there is no extra effort for our framework to re-predict the top architectures. 280

3
We implemented the algorithm ourselves since the work is not open-sourced.

4
It has implementation on MobileNetV2 only.

5
Its tree-structured multi-task model for Taskonomy is implemented based on the architecture reported in the paper

by ourselves since the work is not open-sourced.

7

Table 2: Performance of top-1 recommended architectures on Taskonomy using Deeplab-ResNet34

under different computation budgets.

Models

Com.

Budget

FLOPs

(%) ↓
#Params

(%) ↓
Semantic Seg. Normal Pred. Depth Est. Keypoint Det. Edge Det.

Δ𝑡 ↑
Abs. ↓ Δ𝑡1 ↑ Abs. ↑ Δ𝑡2 ↑ Abs. ↓ Δ𝑡3 ↑ Abs. ↓ Δ𝑡4 ↑ Abs. ↓ Δ𝑡5 ↑

Ind. Models - - - 0.5217 - 0.8070 - 0.0220 - 0.2024 - 0.2140 - -

#353 w/o -11.31 -7.90 0.5168 0.9 0.8745 8.4 0.0195 11.4 0.2003 1.0 0.2082 2.7 4.9

#958 4 Models -22.05 -21.27 0.5268 -1.0 0.8744 8.4 0.0202 8.2 0.1887 6.8 0.2159 -0.9 4.3

#1046 3 Models -41.93 -41.27 0.5368 -2.9 0.8723 8.1 0.0201 8.6 0.1987 1.8 0.2118 1.0 3.3

#817 2 Models -60.00 -60.00 0.5891 -12.9 0.8725 8.1 0.0200 9.1 0.1915 5.4 0.2105 1.6 2.3

#0 1 Model -80.00 -80.00 0.5994 -14.9 0.8390 4.0 0.0265 -20.5 0.1947 3.8 0.2072 3.2 -4.9

The recommender can suggest top architectures on the fly by filtering out architectures that do not 281

satisfy the given requirement. 282

4.3 Evaluation of the Task Accuracy Estimator 283

Table 3: Pearson’s 𝛾 between the predicted ranking

and the oracle ranking.

Method

Deeplab-ResNet34 MobileNetV2

NYUv2 Taskonomy NYUv2 Taskonomy

What-to-Share -0.478 -0.147 -0.4901 -0.754

Ours 0.699 0.768 0.504 / 0.772 0.836

Our recommender can get a predicted rank- 284

ing of all the multi-task architectures based on 285

their estimated task performance from the task 286

accuracy estimator. To evaluate the predicted 287

ranking, we also get an oracle ranking, by ac- 288

tual training the multi-task architectures. We 289

use the Pearson correlation coefficient (Pear- 290

son’s 𝛾) (Benesty et al., 2009) of the predicted 291

ranking and the oracle ranking to evaluate the 292

efficacy of the task accuracy estimator component. We compare with the correlation of What-to- 293

Share (Vandenhende et al., 2019), the only existing branched MTL method which could sort the 294

architectures according to task dissimilarity scores. Table 3 reports the correlation results. For 295

reproducibility, the random seed of the experiments is set as 10. For NYUv2 on MobileNetV2, we 296

also conduct the same experiment with seed 20. The range of 𝛾 is [−1, 1]. The larger the value of 𝛾 297

is, the stronger the positive correlation, and the better the predicted ranking. Overall, our estimated 298

architecture ranking has a moderately high correlation (i.e., 0.4 ≤ 𝛾 < 0.7) or even very strong 299

correlation (i.e., 0.7 ≤ 𝛾 < 0.9) with the oracle ranking according to the interpretation of Pearson’s 300

𝛾 (Akoglu, 2018), which demonstrates the reliability of the task accuracy estimator and the effec- 301

tiveness of our recommender. In contrast, What-to-Share produces negative correlations, indicating 302

that their estimations from task dissimilarity are unreliable. Compared with What-to-Share, our 303

recommender improves the correlation significantly. 304

4.4 Comparison with State-of-the-Art MTL Methods 305

Table 4 summarizes the comparisons with state-of-the-art MTLmethods for Taskonomy on Deeplab- 306

ResNet34. Results on other datasets and backbone models are included in the Appendix Section J. 307

Generally, the best multi-task architectures suggested by our recommender could achieve competi- 308

tive or even higher overall task performance as indicated by the Δ𝑡 columns. 309

Our work is closest toWhat-to-Sharewhich also ranks all the candidate multi-task architectures 310

and outperforms it by 4.8% in terms of the overall task performance. Task-Grouping focuses on 311

deciding how to split the tasks into groups according to the given computation budget so that 312

one group will share the entire backbone model. Compared to Task-Grouping, our recommender 313

yields better branching models under the same budget. For instance, when the budget is three 314

models, our top-1 multi-task architecture could achieve higher task performance (3.3% vs 2.4%) 315

with lower computation cost (-41.93% vs -40%) and number of parameters (-41.27% vs -40%) than 316

Task-Grouping. 317

8

Table 4: Comparison with state-of-the-art MTL methods for Taskonomy using Deeplab-ResNet34.

Models

FLOPs

(%) ↓
#Params

(%) ↓
Semantic Seg. Normal Pred. Depth Est. Keypoint Det. Edge Det.

Δ𝑡 ↑
Abs. ↓ Δ𝑡1 ↑ Abs. ↑ Δ𝑡2 ↑ Abs. ↓ Δ𝑡3 ↑ Abs. ↓ Δ𝑡4 ↑ Abs. ↓ Δ𝑡5 ↑

Ind. Models - - 0.5217 - 0.807 - 0.022 - 0.2024 - 0.214 - -

What-to-Share -0.13 -0.01 0.5378 -3.1 0.8696 7.8 0.0233 -5.9 0.2019 0.2 0.2113 1.3 0.1

Task-Grouping -40.00 -40.00 0.5388 -3.3 0.8743 8.3 0.0202 8.2 0.2037 -0.6 0.2151 -0.5 2.4

Cross-Stitch 0.00 0.00 0.57 -9.3 0.779 -3.5 0.021 4.5 0.199 1.7 0.217 -1.4 -1.6

Sluice 0.00 0.00 0.596 -14.2 0.795 -1.5 0.023 -4.5 0.196 3.2 0.207 3.3 -2.8

NDDR-CNN 8.38 8.20 0.599 -14.8 0.8 -0.9 0.022 0.0 0.196 3.2 0.203 5.1 -1.5

MTAN -10.55 -9.80 0.621 -19.0 0.787 -2.5 0.022 0.0 0.197 2.7 0.206 3.7 -3.0

Learn-to-Branch -68.11 -67.67 0.5214 0.1 0.8503 5.4 0.0235 -6.8 0.2021 0.1 0.2171 -1.4 -0.5

DEN 2.15 -77.60 0.737 -41.3 0.786 -2.6 0.026 -18.2 0.192 5.1 0.203 5.1 -10.4

AdaShare -5.42 -71.20 0.562 -7.7 0.802 -0.6 0.022 0.0 0.191 5.6 0.200 6.5 0.8

AutoMTL -3.85 -50.10 0.536 -2.7 0.873 8.2 0.021 4.5 0.191 5.6 0.197 7.9 4.7

Top-1 w/o budget -11.31 -7.90 0.5168 0.9 0.8745 8.4 0.0195 11.4 0.2003 1.0 0.2082 2.7 4.9
Top-1 within 3 models -41.93 -41.27 0.5368 -2.9 0.8723 8.1 0.0201 8.6 0.1987 1.8 0.2118 1.0 3.3

Compared with manually-design multi-task architectures, Cross-Stitch, Sluice, NDDR-CNN, 318

and MTAN, which usually consist of separate networks for each task and define a mechanism for 319

feature sharing between independent networks, our recommended architectures perform higher 320

task performance (4.9% vs -1.6%/-2.8%/-1.5%/-3.0%) with computation cost (-11.31% vs 0%/8.38%/- 321

10.55%) and the number of parameters reduction (-7.90% vs 0%/8.20%/-9.80%). 322

We also compare with NAS-based methods, including NAS-based branched MTL methods such 323

as Learn-to-Branch and BMTAS, and NAS-based general MTL approaches such as DEN, AdaShare, 324

and AutoMTL. Learn-to-Branch and BMTAS explore the same tree-structured architecture design 325

space as our recommender. However, since they resort to integrating space searching with network 326

training, the searched multi-task models are usually sub-optimal. Instead, our recommender could 327

overcome the limitation to identify multi-task architectures with higher task performance, 5.4% 328

higher than Learn-to-Branch, and 0.3%/4.1% higher than BMTAS on NYUv2 and Taskonomy using 329

MobileNetV2 as shown in Table 10 and 11 in the Appendix. When comparing to DEN, AdaShare, and 330

AutoMTL, our recommender identifies multi-task architectures with competitive task performance 331

(4.9% vs -10.4%/0.8%/4.7%), even though the search space of those methods are larger and more 332

complex than our tree-structured multi-task model space. 333

5 Conclusion 334

This paper proposes a tree-structured multi-task model recommender that predicts the top-𝑘 335

architectures with high task performance given a set of tasks, an arbitrary CNN backbone model, 336

and a user-specified computation budget. Our recommender consists of three key components, a 337

branching point detector that automatically detects branching points in any given CNN backbone 338

model, a design space enumerator that enumerates all the multi-task architecture in the design 339

space, and a task accuracy estimator that predicts the task performance of multi-task architectures 340

without performing actual training. Experiments on popular MTL benchmarks demonstrate the 341

superiority and reliability of our recommender compared with state-of-the-art approaches. 342

Limitations and Broader Impact Statement. Our research facilitates the adoption of deep learning 343

techniques to solve many tasks at once in resource-constraint scenarios. It also promotes the 344

leverage of multi-task learning to increase task performance and computation efficiency. It has 345

a positive impact on applications that tackle multiple tasks such as environment perceptions for 346

autonomous vehicles and human-computer interactions in robotic, mobile, and IoT applications. 347

The negative social impact of our research is difficult to predict since it shares the same pitfalls with 348

general deep learning techniques that suffer from dataset bias, adversarial attacks, fairness, etc. 349

9

References 350

Ahn, C., Kim, E., and Oh, S. (2019). Deep elastic networks with model selection for multi-task 351

learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 352

6529–6538. 353

Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 354

18(3):91–93. 355

Benesty, J., Chen, J., Huang, Y., and Cohen, I. (2009). Pearson correlation coefficient. In Noise 356

Reduction in Speech Processing, pages 1–4. Springer. 357

Bruggemann, D., Kanakis, M., Georgoulis, S., and Van Gool, L. (2020). Automated search for 358

resource-efficient branched multi-task networks. arXiv preprint arXiv:2008.10292. 359

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75. 360

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Deeplab: Semantic 361

image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. 362

IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):834–848. 363

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015). The loss surfaces of 364

multilayer networks. In Artificial Intelligence and Statistics, pages 192–204. PMLR. 365

Eigen, D. and Fergus, R. (2015). Predicting depth, surface normals and semantic labels with a common 366

multi-scale convolutional architecture. In Proceedings of the IEEE International Conference on 367

Computer Vision, pages 2650–2658. 368

Gao, Y., Bai, H., Jie, Z., Ma, J., Jia, K., and Liu, W. (2020). Mtl-nas: Task-agnostic neural architecture 369

search towards general-purpose multi-task learning. In Proceedings of the IEEE/CVF Conference 370

on Computer Vision and Pattern Recognition, pages 11543–11552. 371

Gao, Y., Ma, J., Zhao, M., Liu, W., and Yuille, A. L. (2019). Nddr-cnn: Layerwise feature fusing in 372

multi-task cnns by neural discriminative dimensionality reduction. In Proceedings of the IEEE/CVF 373

Conference on Computer Vision and Pattern Recognition, pages 3205–3214. 374

Guo, P., Lee, C.-Y., and Ulbricht, D. (2020). Learning to branch formulti-task learning. In International 375

Conference on Machine Learning, pages 3854–3863. PMLR. 376

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In 377

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778. 378

Jelinek, H. F., Donnan, L., and Khandoker, A. H. (2019). Singular value decomposition entropy as a 379

measure of ankle dynamics efficacy in a y-balance test following supportive lower limb taping. In 380

2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society 381

(EMBC), pages 2439–2442. IEEE. 382

Leang, I., Sistu, G., Bürger, F., Bursuc, A., and Yogamani, S. (2020). Dynamic task weighting 383

methods for multi-task networks in autonomous driving systems. In 2020 IEEE 23rd International 384

Conference on Intelligent Transportation Systems (ITSC), pages 1–8. IEEE. 385

Li, S.-y., Yang, M., Li, C.-c., and Cai, P. (2008). Analysis of heart rate variability based on singular 386

value decomposition entropy. Journal of Shanghai University (English Edition), 12(5):433–437. 387

10

Liu, S., Johns, E., and Davison, A. J. (2019). End-to-end multi-task learning with attention. In 388

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1871– 389

1880. 390

Long, M., Cao, Z., Wang, J., and Philip, S. Y. (2017). Learning multiple tasks with multilinear 391

relationship networks. In Advances in Neural Information Processing Systems, pages 1594–1603. 392

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris, R. (2017). Fully-adaptive feature sharing 393

in multi-task networks with applications in person attribute classification. In Proceedings of the 394

IEEE Conference on Computer Vision and Pattern Recognition, pages 5334–5343. 395

Maninis, K.-K., Radosavovic, I., and Kokkinos, I. (2019). Attentive single-tasking of multiple tasks. 396

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 397

1851–1860. 398

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). Cross-stitch networks for multi-task 399

learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 400

3994–4003. 401

Nekrasov, V., Dharmasiri, T., Spek, A., Drummond, T., Shen, C., and Reid, I. (2019). Real-time joint 402

semantic segmentation and depth estimation using asymmetric annotations. In 2019 International 403

Conference on Robotics and Automation (ICRA), pages 7101–7107. IEEE. 404

Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., Yu, Y., and Nagappan, N. (2020). 405

Problems and opportunities in training deep learning software systems: An analysis of variance. 406

In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, 407

pages 771–783. 408

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv preprint 409

arXiv:1706.05098. 410

Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. (2019). Latent multi-task architecture learning. 411

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4822–4829. 412

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted 413

residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and 414

Pattern Recognition, pages 4510–4520. 415

Sener, O. and Koltun, V. (2018). Multi-task learning as multi-objective optimization. Advances in 416

Neural Information Processing Systems, 31. 417

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and support inference 418

from rgbd images. In European Conference on Computer Vision, pages 746–760. Springer. 419

Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., and Savarese, S. (2020). Which tasks should 420

be learned together in multi-task learning? In Proceedings of the International Conference on 421

Machine Learning, pages 9120–9132. 422

Sun, R., Li, D., Liang, S., Ding, T., and Srikant, R. (2020). The global landscape of neural networks: 423

An overview. IEEE Signal Processing Magazine, 37(5):95–108. 424

Sun, X., Panda, R., Feris, R., and Saenko, K. (2019). Adashare: Learning what to share for efficient 425

deep multi-task learning. arXiv preprint arXiv:1911.12423. 426

11

Suteu, M. and Guo, Y. (2019). Regularizing deep multi-task networks using orthogonal gradients. 427

arXiv preprint arXiv:1912.06844. 428

Vandenhende, S., Georgoulis, S., De Brabandere, B., and Van Gool, L. (2019). Branched multi-task 429

networks: deciding what layers to share. arXiv preprint arXiv:1904.02920. 430

Vandenhende, S., Georgoulis, S., Proesmans, M., Dai, D., and Van Gool, L. (2020). Revisiting 431

multi-task learning in the deep learning era. arXiv preprint arXiv:2004.13379, 2:3. 432

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K. (2019). 433

Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. 434

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 435

10734–10742. 436

Wu, B., Li, C., Zhang, H., Dai, X., Zhang, P., Yu, M., Wang, J., Lin, Y., and Vajda, P. (2021). Fbnetv5: 437

Neural architecture search for multiple tasks in one run. arXiv preprint arXiv:2111.10007. 438

Xie, S., Zheng, H., Liu, C., and Lin, L. (2018). Snas: stochastic neural architecture search. arXiv 439

preprint arXiv:1812.09926. 440

Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., and Savarese, S. (2018). Taskonomy: 441

Disentangling task transfer learning. In Proceedings of the IEEE Conference on Computer Vision 442

and Pattern Recognition, pages 3712–3722. 443

Zhang, L., Liu, X., and Guan, H. (2021). Automtl: A programming framework for automated 444

multi-task learning. arXiv preprint arXiv:2110.13076. 445

12

A Associated Two-Task Models Identifier 446

As introduced in Section 3.1, to estimate the task accuracy for a multi-task model with three or 447

more tasks, we first need to identify its associated two-task models. To achieve the goal, we propose 448

an iterative algorithm. The pseudocode of the algorithm is shown in Algorithm 1. The layout 449

representation proposed in Section 3.2 is used to refer to the multi-task models for simplicity. 450

Algorithm 1 Associated Two-Task Layout Identifier 451

Input: A multi-task layout L 452

Output: A dictionary 𝐷 containing associated two-task layouts 453

1: 𝐷 ← {} 454

2: 455

3: for 𝑡1 ∈ L do ⊲ For each task in L 456

4: 𝐷 [𝑡1] ← [] ⊲ Store the associated two-task layouts for 𝑡1 457

5: 458

6: for 𝑡2 ∈ L do ⊲ Identify for all possible task combinations 459

7: ⊲ Skip identical task 460

8: if 𝑡1 = 𝑡2 then 461

9: continue 462

10: end if 463

11: 464

12: ⊲ Initiate the branching out point to the maximum possible branching point 465

13: 𝑏 = 𝐵 + 1 466

14: for 𝑖 = 1→ 𝐵 do ⊲ Check every possible branching point 467

15: 𝑓 𝑙𝑎𝑔← false ⊲ Store if 𝑡1 and 𝑡2 share at the 𝑖-th branching point 468

16: for 𝐿 𝑗

𝑖
∈ L do ⊲ Check for each task set at the 𝑖-th branching point 469

17: if 𝑡1 ∈ 𝐿 𝑗

𝑖
and 𝑡2 ∈ 𝐿 𝑗

𝑖
then 470

18: 𝑓 𝑙𝑎𝑔← true ⊲ There exists a task set has both 𝑡1 and 𝑡2 471

19: break 472

20: end if 473

21: end for 474

22: if 𝑓 𝑙𝑎𝑔 is false then ⊲ 𝑡1 and 𝑡2 don’t share at the 𝑖-th branching point 475

23: 𝑏 = 𝑖 476

24: break 477

25: end if 478

26: end for 479

27: 480

28: ⊲ Store the associated two-task layouts for 𝑡1 and 𝑡2 based on 𝑏 481

29: L′← [[{𝑡1, 𝑡2}]1, . . . , [{𝑡1, 𝑡2}]𝑏−1, [{𝑡1}, {𝑡2}]𝑏, . . . , [{𝑡1}, {𝑡2}]𝐵] ⊲ 𝑡1 and 𝑡2 separate at 482

𝑏-th branching point 483

30: 𝐷 [𝑡1].append(L′) 484

31: end for 485

32: end for 486

B Property of Layout 487

This section introduces the properties of the proposed layout definitions. Given a layout L = 488

[𝐿1, . . . , 𝐿𝑖 , 𝐿𝑖+1, . . . , 𝐿𝐵], for 𝐿𝑖+1 = [𝐿1𝑖+1, 𝐿2𝑖+1, · · ·], we have, 489

∀𝐿𝑞
𝑖
∃{𝐿𝑎1

𝑖+1, 𝐿
𝑎2
𝑖+1, · · · } : 𝐿

𝑞

𝑖
=
⋃

𝐿
𝑎𝑝

𝑖+1

∀𝐿𝑝
𝑖+1 ∃𝐿𝑞

𝑖
: 𝐿

𝑝

𝑖+1 ⊆ 𝐿
𝑞

𝑖

13

In other words, these are two properties for successive lists of task sets in a layout. 490

• Any task set in the 𝑖-th list of task sets is the union of some task sets in the 𝑖 + 1-th list. 491

• Any task set in the 𝑖 + 1-th list of task sets is a subset of one task set in the 𝑖-th list. 492

The above two properties can be derived directly from the fact that a layout describes a tree. 493

C Complete Definition of Layout Cut 494

We first define available branching points of a layout as follows. 495

Definition C.1 (Available Branching Point). Given a layout, a branching point is available if the list 496

of task sets in the branching point is the same as that in all the subsequent branching points, and there 497

exists a task set that contains at least 2 tasks. 498

From the definition, we could identify available branching points in a given layout by comparing 499

the list of task sets from the 𝐵-th branching point up to its previous ones until reaching a different 500

list, then checking whether there exists an eligible task set with at least 2 elements. As shown in 501

Figure 3, the available branching points of the left layout are the last three branching points. 502

Then the complete definition of Layout Cut for enumerating all possible layouts is defined as 503

follows. 504

Definition C.2 (Layout Cut). A layout cut is an operator that transforms one layout to another layout 505

by selecting a task set containing at least two tasks from an available branching point and dividing it 506

into two task sets. 507

Formally, given a layout L, the format of a cut C would be like, 508

C = {𝑖, 𝐿 𝑗

𝑖
, [𝐿 𝑗

𝑖 1
, 𝐿

𝑗

𝑖 2
]}(|𝐿 𝑗

𝑖
| ≥ 2)

where 𝐿 𝑗

𝑖
is the selected task set containing at least 2 tasks from the 𝑖-th branching point (available) of 509

L to be divided into 2 sub task sets 𝐿 𝑗

𝑖 1
and 𝐿 𝑗

𝑖 2
. 510

When applying the cut C on the layout L, the selected task set 𝐿 𝑗

𝑖
will be divided into 𝐿 𝑗

𝑖 1
and 𝐿 𝑗

𝑖 2
511

in the new layout L′. 512

Notice that the 𝑖-th branching point must be an available branching point of L. Then according 513

to Definition C.1, we know that the list of task sets in the 𝑖-th branching point and its subsequent 514

branching points are the same. In other words, the selected task set 𝐿 𝑗

𝑖
also exists in the subsequent 515

branching points. Therefore we define that when applying the cut C on the layout L, all the task sets in 516

the subsequent branching points that are the same as 𝐿 𝑗

𝑖
will be divided into 𝐿 𝑗

𝑖 1
and 𝐿 𝑗

𝑖 2
in the new 517

layout L′ as well. 518

For example in Figure 3, there are two different cuts applied on the left given layout which has 519

4 tasks and 5 branching points. The first cut is C = {3, (3, 4), [(3), (4)]}, which divides the task set 520

(3, 4) into task sets (3) and (4) at the third branching point as well as all its subsequent branching 521

points. Similarly, the second one, C = {4, (1, 2), [(1), (2)]}, divides the task set (1, 2) into (1) and 522

(2) at the fourth and fifth branching points. The effects of the defined cuts are just like the red and 523

orange dashed lines applied on the left layout and the generated new layouts are illustrated on the 524

right side. It’s worth mentioning that the available branching points in the new layout L′ may need 525

to be updated as the second example in Figure 3. Specifically, the available branching points of the 526

generated layout L′ would be all the follow-up branching points of the selected branching point of 527

the cut C and the selected one itself. 528

Corollary C.2.1. The maximum number of cuts that can be applied to the initial layout L0 is 𝑇 − 1, 529

where 𝑇 is the number of tasks. 530

14

available

branching

points

available

branching

points

available

branching

points

Figure 3: Examples of applying a cut on a given layout.

Proof of Corollary C.2.1. The corollary can be proved by contradiction easily. 531

If we apply 𝑇 cuts on the initial layout L0, [{𝑡1, . . . , 𝑡𝑇 }] at the 𝐵-th branching point will be 532

divided into𝑇 +1 task sets, since the task sets in the subsequent branching points are also influenced 533

when applying a cut according to Definition C.2, which means the task sets in 𝐵-th branching point 534

will be divided into subsets by all the 𝑇 cuts. However, it is impossible that [{𝑡1, . . . , 𝑡𝑇 }] is divided 535

into 𝑇 + 1 task sets since there are only 𝑇 tasks in it. □ 536

D Layouts Enumerator 537

As introduced in Section 3.2, we propose a cut-based algorithm to enumerate all possible layouts in 538

the design space fully in a recursive way. 539

Algorithm 2 Layouts Enumerator 540

Input: 𝑇 tasks and a backbone model with 𝐵 branching points 541

Output: A set of all possible layouts 𝑆 542

1: function Enumerator(L) 543

2: 𝑆 ← 𝑠𝑒𝑡 () 544

3: ⊲ Exit Case: The number of cuts applied to L is 𝑇 − 1 545

4: if L.𝑛𝑢𝑚_𝑐𝑢𝑡 = 𝑇 − 1 then 546

5: return 𝑆 547

6: end if 548

7: 549

8: ⊲ Enumerate all possible layout cuts on L 550

9: for 𝑖 ∈ L.𝑎𝑣𝑎𝑖𝑙_𝑏𝑝 do ⊲ Cut for every available branching points 551

10: for 𝐿 𝑗

𝑖
∈ L do ⊲ Cut for each task set at the 𝑖-th branching point 552

11: if |𝐿 𝑗

𝑖
| = 1 then ⊲ If the selected task set has only 1 task, no more cut applied 553

12: continue 554

13: end if 555

14: for [𝐿 𝑗

𝑖 1
, 𝐿

𝑗

𝑖 2
] ∈ partition(𝐿 𝑗

𝑖
) do ⊲ For every possible partition of 𝐿

𝑗

𝑖
556

15: C← {𝑖, 𝐿 𝑗

𝑖
, [𝐿 𝑗

𝑖 1
, 𝐿

𝑗

𝑖 2
]} 557

16: L′← apply_cut(L,C) 558

17: L′.𝑛𝑢𝑚_𝑐𝑢𝑡+ = 1 ⊲ Update the number of cuts applied 559

18: L′.𝑎𝑣𝑎𝑖𝑙_𝑏𝑝 ← [𝑖, · · · , 𝐵] ⊲ Update the available branching points 560

19: 𝑆 .append(L′) 561

20: 𝑆 ′←Enumerator(L′) ⊲ Enumerate cuts for L′ recursively 562

21: 𝑆+ = 𝑆 ′ 563

22: end for 564

15

23: end for 565

24: end for 566

25: return 𝑆 567

26: end function 568

27: 569

28: L0 ← [[{𝑡1, . . . , 𝑡𝑇 }], · · · , [{𝑡1, . . . , 𝑡𝑇 }]︸ ︷︷ ︸
𝐵

] 570

29: L0.𝑛𝑢𝑚_𝑐𝑢𝑡 ← 0 571

30: L0.𝑎𝑣𝑎𝑖𝑙_𝑏𝑝 ← [1, · · · , 𝐵] 572

31: 𝑆 ← Enumerator(L0) 573

Considering the recursive tree of the enumerator, the time complexity of this algorithm is 574

𝑂 ([(2𝑇−1 − 1) · 𝐵]𝑇−1), where 𝑇 − 1 is the depth of the recursive tree according to Corollary C.2.1 575

and 𝑂 ((2𝑇−1 − 1) · 𝐵) is the branching factor of it. Here 𝑂 (2𝑇−1 − 1) is the time complexity of 576

partitioning a set into two subsets (line 14). 577

E Proof of Theorem 3.1 578

Proof of Theorem 3.1. We want to show that for 𝑇 tasks and a backbone model with 𝐵 branching 579

points, the layouts enumerated by the cut-based algorithm can cover all tree-structured multi-task 580

architectures. We can prove it by induction. 581

582

Base Case: When 𝐵 = 1, all possible tree-structured multi-task architectures can be considered 583

as dividing the 𝑇 tasks into 𝑛 groups {{Γ1, Γ2, · · · , Γ𝑛}|
⋃𝑛

𝑖=1 Γ𝑖 = T , 𝑛 ≤ 𝑇 } where Γ𝑖 is a task set, 584

indicating the sharing pattern across tasks at the only branching point. Then each tree-structured 585

multi-task model can be represented as a layout L = [[Γ1, Γ2, · · · , Γ𝑛]] and such a layout can be 586

generated by applying 𝑛 − 1 cuts on the initial layout L0 = [[T]] inductively. 587

The first cut is C1 = {1, T , [Γ1,
⋃𝑛

𝑖=2 Γ𝑖]}, which divides the initial task set T into Γ1 and 588⋃𝑛
𝑖=2 Γ𝑖 . By applying C1 on L0, we can get L1 = [[Γ1,

⋃𝑛
𝑖=2 Γ𝑖]]. Then the second cut is 589

C2 = {1,⋃𝑛
𝑖=2 Γ𝑖 , [Γ2,

⋃𝑛
𝑖=3 Γ𝑖]}, and we can get L2 = [[Γ1, Γ2,

⋃𝑛
𝑖=3 Γ𝑖]]. Similarly the 𝑘-th cut is 590

C𝑘 = {1,⋃𝑛
𝑖=𝑘

Γ𝑖 , [Γ𝑘 ,
⋃𝑛

𝑖=𝑘+1 Γ𝑖]}, and we can get L𝑘 = [[Γ1, Γ2, · · · , Γ𝑘 ,
⋃𝑛

𝑖=𝑘+1 Γ𝑖]]. Finally, the 591

(𝑛 − 1)-th cut is C𝑛−1 = {1, Γ𝑛−1
⋃

Γ𝑛, [Γ𝑛−1, Γ𝑛]}, and we can get L𝑛−1 = [[Γ1, Γ2, · · · , Γ𝑛−1, Γ𝑛]] = L, 592

which is any layout we want. The overall chain would be like, 593

L0 = [[T]]
C1={1,T , [Γ1,

⋃𝑛
𝑖=2 Γ𝑖] }

===================⇒ L1 = [[Γ1,
𝑛⋃
𝑖=2

Γ𝑖]]

...

C𝑘={1,
⋃𝑛

𝑖=𝑘
Γ𝑖 , [Γ𝑘 ,

⋃𝑛
𝑖=𝑘+1 Γ𝑖] }

=========================⇒ L𝑘 = [[Γ1, Γ2, · · · , Γ𝑘 ,
𝑛⋃

𝑖=𝑘+1
Γ𝑖]]

...

C𝑛−1={1,Γ𝑛−1
⋃

Γ𝑛, [Γ𝑛−1,Γ𝑛] }
=========================⇒ L𝑛−1 = [[Γ1, Γ2, · · · , Γ𝑛−1, Γ𝑛]] = L

In summary, when 𝐵 = 1, any tree-structured multi-task model can be generated by the 594

cut-based layout enumeration algorithm through the cuts chain above. 595

596

Inductive Hypothesis: Any tree-structured multi-task model for 𝑇 tasks based on a backbone 597

model with 𝐵 branching points can be enumerated through the cut-based layout enumeration 598

16

algorithm completely. 599

600

Inductive Goal: The completeness also holds for any backbonemodel with 𝐵+1 branching point. 601

602

Inductive Steps: Suppose we have a tree-structured multi-task model𝑀 built on a backbone 603

model with 𝐵 branching point whose layout representation is L = [𝐿1, 𝐿2, · · · , 𝐿𝐵] where 𝐿𝑖 is a 604

list of task sets. We can derive a new layout L′ = [𝐿1, 𝐿2, · · · , 𝐿𝐵, 𝐿𝐵+1] with 𝐵 + 1 branching point 605

from L easily by keeping the first 𝐵 levels unchanged and adding one more level 𝐿𝐵+1, which is 606

equivalent to adding a new level with leaf nodes to𝑀 . There are two cases about this new level: 607

(1) 𝐿𝐵+1 = 𝐿𝐵 . Since according to Definition C.2, a cut will influence all the subsequent branching 608

points from the selected one, the cuts we used to generate the layout L from the initial layout L0 609

can generate the new layout L′ as well. 610

(2) 𝐿𝐵+1 ≠ 𝐿𝐵 . Suppose we have, 611

𝐿𝐵 = [Γ1, · · · , Γ𝑛]
𝐿𝐵+1 = [Γ′1 , · · · , Γ′𝑚]

Then according to the two properties of a layout introduced in Section B, we have, 612

∀Γ𝑖∃{Γ′𝑎1, Γ
′
𝑎2
, · · · , Γ′𝑎𝑘 } : Γ𝑖 =

𝑘⋃
𝑗=1

Γ′𝑎 𝑗

For any Γ𝑖 with such a set |{Γ′𝑎1, Γ
′
𝑎2
, · · · , Γ′𝑎𝑘 }| > 1, we could apply 𝑘 − 1 cuts whose selected 613

branching points are 𝐵 + 1 on the layout L̂ which is derived from the layout L with one more 614

level 𝐿𝐵+1 = 𝐿𝐵 to divide Γ′𝑖 = Γ𝑖 at the 𝐵 + 1 level into 𝑘 task sets Γ′𝑎1, Γ
′
𝑎2
, · · · , Γ′𝑎𝑘 . This process 615

is the same as the process that we divide the task set T into 𝑛 groups in the base case. Therefore 616

if we have 𝑟 such Γ𝑖 at the 𝐵-th level in the target layout L′, we can apply 𝑟 (𝑘 − 1) cuts on the 617

layout L̂ inductively to generate L′. 618

In summary, if any tree-structured multi-task model for 𝑇 tasks based on a backbone model 619

with 𝐵 branching point can be enumerated through the cut-based layout enumeration algorithm 620

completely, we can achieve it for any backbone model with 𝐵 + 1 branching point as well. Together 621

with the base case, we have proved that the search space of tree-structured multi-task models can 622

be explored by the cut-based layout enumeration algorithm completely. □ 623

F Branching Point Detector 624

As in described in Section 3.3, we propose a 2-stage branching point detector to partition the 625

user-provided backbone into sequential blocks. 626

An example is illustrated in Figure 4. In the first stage, if the size of the minimum cut of the 627

computation graph is 1 as in Figure 4(a), the graph can be divided into two subgraphs with only 628

one link between them according to the definition of the minimum cut. Then for each subgraph, 629

the same division occurs if it has a minimum cut of size 1 (e.g., blocks A and B). However, if the 630

size of the minimum cut in the subgraph is greater than 1 (e.g., block C) or the subgraph has only 631

one node (e.g., blocks D and E), the subgraph can no longer be partitioned. After the first stage, 632

each candidate block is assigned a label to reveal its property for merging. If a block contains only 633

unparameterized layers and normalization layers, it is labeled as U, otherwise it is labeled as P. 634

Then the merging carries out from bottom to the top. If the label of a block is U, it should be merged 635

with its next blocks until reaching a block labeled P, otherwise no action is required. 636

The whole process is illustrated in the following pseudocode. 637

17

A
B

C

D

E

(a) Stage 1: Divisor

U

P

P

U

P

m
er
g
in
g

(b) Stage 2: Merger

Figure 4: Process of the branching point detector.

Algorithm 3 Branching Point Detector 638

Input: A backbone model𝑀 639

Output: A set of subgraphs 𝑆 ′ indicating sequential blocks 640

1: function Divisor(𝐺 = (𝑉 , 𝐸)) 641

2: 𝑆 ← 𝑠𝑒𝑡 () 642

3: ⊲ Case 1: The graph has only 1 node 643

4: if |𝐺.𝑉 | = 1 then 644

5: 𝑆 .append(𝐺) 645

6: return 𝑆 646

7: end if 647

8: 648

9: 𝐶 ←𝑚𝑖𝑛_𝑐𝑢𝑡 (𝐺) ⊲ Find the minimum cut 𝐶 = (𝐴, 𝐵) of 𝐺 649

10: ⊲ Case 2: The size of the minimum cut is greater than 1 650

11: if |𝐶.𝐸 | > 1 then ⊲ 𝐶.𝐸 = {(𝑢, 𝑣) ∈ 𝐺.𝐸 |𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵} 651

12: 𝑆 .append(𝐺) 652

13: else 653

14: ⊲ Case 3: The size of the minimum cut is 1 654

15: 𝑆𝐴 ←Divisor(𝐺𝐴 = (𝐴, 𝐸𝐴)) ⊲ 𝐸𝐴 = {(𝑢, 𝑣) ∈ 𝐺.𝐸 |𝑢 ∈ 𝐴, 𝑣 ∈ 𝐴} 655

16: 𝑆𝐵 ←Divisor(𝐺𝐵 = (𝐵, 𝐸𝐵)) ⊲ 𝐸𝐵 = {(𝑢, 𝑣) ∈ 𝐺.𝐸 |𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵} 656

17: 𝑆 .append(𝑆𝐴, 𝑆𝐵) 657

18: end if 658

19: return 𝑆 659

20: end function 660

21: 661

22: function Merger(𝑆) 662

23: 𝑆.reverse() ⊲ Handle merging from bottom to the top 663

24: for 𝐵 ∈ 𝑆 do 664

25: if 𝐵.label is P then 665

26: continue 666

27: else ⊲ 𝐵 is a block with only unparameterized layers and normalization layers 667

28: 𝑆 [𝐵] ← 𝐵 + 𝑆 [𝐵 + 1] ⊲ Merge 𝐵 with 𝐵 + 1 668

29: if 𝑆 [𝐵 + 1] .label is P then ⊲ Update the label of new 𝐵 according to the label of 𝐵 + 1 669

30: 𝑆 [𝐵] .label← P 670

31: else 671

32: 𝑆 [𝐵] .label← U 672

18

33: end if 673

34: end if 674

35: end for 675

36: end function 676

37: 677

38: 𝐺 ← 𝐶𝐺 (𝑀) ⊲ Convert the model to its computation graph (CG) 678

39: 𝑆 ← Divisor(𝐺) ⊲ Stage 1: Divide the model into candidate blocks 679

40: 𝑆 ′←Merger(𝑆) ⊲ Stage 2: Merge auxiliary blocks with adjacent primary blocks 680

G Hyper-Parameters Settings 681

Table 5 summarizes the hyper-parameters used in 2-task and multi-task model training. The settings 682

are chosen by experience in previous works (Sun et al., 2019; Zhang et al., 2021).

Table 5: Hyper-parameters for training NYUv2, and Tiny-Taskonomy.

Dataset lr lr decay epoch

NYUv2 0.001 0.5/4,000 iters 20,000

Tiny-Taskonomy 0.0001 0.3/10,000 iters 50,000

683

H More Recommended Multi-Task Models 684

Table 6 and 7 report more recommended multi-task models on MobileNetV2. Table 8 is a detailed 685

version of Table 2 to include the top-5 recommended models within different computation budgets. 686

Table 6: Performance of top-5 recommended models for NYUv2 using MobileNetV2.

Model

FLOPs

(%) ↓
#Params

(%) ↓

Semantic Seg. Surface Normal Prediction Depth Estimation

Δ𝑡 ↑
mIoU ↑ Pixel

Acc. ↑ Δ𝑡1 ↑
Error ↓ 𝜃 , within ↑

Δ𝑡2 ↑
Error ↓ 𝛿 , within ↑

Δ𝑡3 ↑
Mean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.252 1.253

Ind. Models - - 20.36 49.44 - 18.17 16.62 28.37 70.20 85.58 - 0.77 0.28 47.92 78.46 92.81 - -

#0 -66.67 -66.67 19.36 48.97 -2.9 17.99 16.02 31.43 70.41 84.65 2.9 0.61 0.23 60.02 86.89 96.34 15.7 5.2
#7 -33.16 -33.41 19.60 48.33 -3.0 18.00 15.96 30.39 71.15 85.22 2.6 0.61 0.23 60.03 86.78 96.31 15.7 5.1

#11 -30.83 -27.12 20.04 48.82 -1.4 18.21 16.38 30.37 68.95 84.45 1.0 0.60 0.23 60.37 84.04 96.16 15.3 5.0

#10 -22.89 -8.24 19.42 48.49 -3.3 18.06 16.07 29.48 71.12 85.26 1.8 0.63 0.24 58.23 85.57 95.45 13.2 3.9

#9 -16.35 -3.60 21.09 50.25 2.6 18.10 16.73 26.85 72.13 87.11 -0.2 0.64 0.25 57.10 85.07 95.32 11.6 4.7

Table 7: Performance of top-5 recommended models for Taskonomy using MobileNetV2.

Models

FLOPs

(%) ↓
#Params

(%) ↓
Semantic Seg. Normal Pred. Depth Est. Keypoint Det. Edge Det.

Δ𝑡 ↑
Abs. ↓ Δ𝑡1 ↑ Abs. ↑ Δ𝑡2 ↑ Abs. ↓ Δ𝑡3 ↑ Abs. ↓ Δ𝑡4 ↑ Abs. ↓ Δ𝑡5 ↑

Ind. Models - - 1.0096 - 0.7662 - 0.0277 - 0.2395 - 0.2681 - -

#3221 -53.99 -44.86 0.9770 3.2 0.7625 -0.5 0.0277 0.0 0.2232 6.8 0.2519 6.0 3.1

#3220 -52.73 -41.17 1.0120 -0.2 0.7624 -0.5 0.0273 1.4 0.2269 5.3 0.2443 8.9 3.0

#2947 -60.26 -60.05 1.0179 -0.8 0.7510 -2.0 0.0275 0.7 0.2117 11.6 0.2547 5.0 2.9

#3215 -53.99 -44.86 1.0066 0.3 0.7620 -0.5 0.0274 1.1 0.2250 6.1 0.2552 4.8 2.3

#3261 -59.01 -56.27 1.0359 -2.6 0.7489 -2.3 0.0273 1.4 0.2060 14.0 0.2477 7.6 3.6

19

Table 8: Performance of top-5 recommended models for Taskonomy using Deeplab-ResNet34 under

different computation budgets.

Models

FLOPs

(%) ↓
#Params

(%) ↓
Semantic Seg. Normal Pred. Depth Est. Keypoint Det. Edge Det.

Δ𝑡 ↑
Abs. ↓ Δ𝑡1 ↑ Abs. ↑ Δ𝑡2 ↑ Abs. ↓ Δ𝑡3 ↑ Abs. ↓ Δ𝑡4 ↑ Abs. ↓ Δ𝑡5 ↑

Ind. Models - - 0.5217 - 0.8070 - 0.0220 - 0.2024 - 0.2140 - -

No computation budget

#353 -11.31 -7.90 0.5168 0.9 0.8745 8.4 0.0195 11.4 0.2003 1.0 0.2082 2.7 4.9
#352 -9.43 -1.49 0.5166 1.0 0.8741 8.3 0.0200 9.1 0.1992 1.6 0.2116 1.1 4.2

#958 -22.05 -21.27 0.5268 -1.0 0.8744 8.4 0.0202 8.2 0.1887 6.8 0.2159 -0.9 4.3

#480 -22.83 -21.48 0.5168 0.9 0.8734 8.2 0.0210 4.5 0.2018 0.3 0.2146 -0.3 2.7

#360 -22.05 -21.27 0.5178 0.7 0.8735 8.2 0.0206 6.4 0.2003 1.0 0.2126 0.7 3.4

computation budget: 4 Models

#958 -22.05 -21.27 0.5268 -1.0 0.8744 8.4 0.0202 8.2 0.1887 6.8 0.2159 -0.9 4.3
#480 -22.83 -21.48 0.5168 0.9 0.8734 8.2 0.0210 4.5 0.2018 0.3 0.2146 -0.3 2.7

#360 -22.05 -21.27 0.5178 0.7 0.8735 8.2 0.0206 6.4 0.2003 1.0 0.2126 0.7 3.4

#1037 -41.93 -41.27 0.5300 -1.6 0.8725 8.1 0.0212 3.6 0.1888 6.7 0.2192 -2.4 2.9

#962 -28.24 -27.68 0.5124 1.8 0.8739 8.3 0.0204 7.3 0.1920 5.1 0.2184 -2.1 4.1

computation budget: 3 Models

#1037 -41.93 -41.27 0.5300 -1.6 0.8725 8.1 0.0212 3.6 0.1888 6.7 0.2192 -2.4 2.9

#1046 -41.93 -41.27 0.5368 -2.9 0.8723 8.1 0.0201 8.6 0.1987 1.8 0.2118 1.0 3.3
#943 -40.13 -40.01 0.5308 -1.7 0.8746 8.4 0.0208 5.5 0.1998 1.3 0.2101 1.8 3.0

#1063 -48.11 -47.68 0.5488 -5.2 0.8730 8.2 0.0210 4.5 0.1897 6.3 0.2207 -3.1 2.1

#479 -40.91 -40.22 0.5407 -3.6 0.8724 8.1 0.0198 10.0 0.2040 -0.8 0.2132 0.4 2.8

computation budget: 2 Models

#817 -60.00 -60.00 0.5891 -12.9 0.8725 8.1 0.0200 9.1 0.1915 5.4 0.2105 1.6 2.3
#562 -60.00 -60.00 0.6216 -19.1 0.8713 8.0 0.0202 8.2 0.1976 2.4 0.2011 6.0 1.1

#4697 -60.13 -60.01 0.5985 -14.7 0.8734 8.2 0.0202 8.2 0.1983 2.0 0.2085 2.6 1.3

#6539 -60.91 -60.21 0.5911 -13.3 0.8705 7.9 0.0217 1.4 0.1959 3.2 0.2062 3.6 0.6

#1 -60.00 -60.00 0.6205 -18.9 0.8692 7.7 0.0205 6.8 0.2018 0.3 0.2150 -0.5 -0.9

computation budget: 1 Model

#0 -80.00 -80.00 0.5994 -14.9 0.8390 4.0 0.0265 -20.5 0.1947 3.8 0.2072 3.2 -4.9

I Recommended Tree-Structured Multi-Task Model Architectures 687

As introduced in Section 4.1, we conduct experiments on NYUv2 (3 tasks) and Taskonomy (5 tasks) 688

with Deeplab-ResNet34 (5 branching points) and MobileNetV2 (5 branching points). Figure 5 and 689

6 show the specific structures of the multi-task models recommended by our framework. For 690

simplicity, the model architectures are depicted by their equivalent layouts. 691

J More Comparisons with State-of-the-Art Methods 692

Table 9 ∼ 11 report more comparisons with state-of-the-art MTL methods. Compared with general 693

MTL methods, our recommended model outperforms existing works in computation cost and the 694

number of parameters with competitive task performance. Compared with branched MTL methods, 695

What-to-Share, BMTAS, and Task-Grouping, in terms of the overall task performance in the Δ𝑡 696

columns, our top-1 multi-task architectures could achieve higher results (5.2% vs 4.8%/4.9%, 3.1%, vs 697

-0.5%/-1.0%/0.9%), which indicates that our recommender has the ability to search out predominant 698

architectures in the tree-structured multi-task model design space. 699

20

#0 #45 #50 #37 #49

(a) Corresponding to Table 1 on Deeplab-ResNet34.

#0 #7 #11 #10 #9

(b) Corresponding to Table 6 on MobileNetV2.

Figure 5: Recommended multi-task models on NYUv2.

#353 #958 #1046 #817

(a) Corresponding to Table 2 on Deeplab-ResNet34.

#3221 #3220 #2947 #3215 #3261

(b) Corresponding to Table 7 on MobileNetV2.

Figure 6: Recommended multi-task models on Taskonomy.

K Reproducibility Checklist 700

1. For all authors. . . 701

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 702

contributions and scope? [Yes] See Section 1. 703

Table 9: Comparison with state-of-the-art MTL methods for NYUv2 using Deeplab-ResNet34.

Model

FLOPs

(%) ↓
#Params

(%) ↓

Semantic Seg. Surface Normal Prediction Depth Estimation

Δ𝑡 ↑
mIoU ↑ Pixel

Acc. ↑ Δ𝑡1 ↑
Error ↓ 𝜃 , within ↑

Δ𝑡2 ↑
Error ↓ 𝛿 , within ↑

Δ𝑡3 ↑
Mean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.252 1.253

Ind. Models - - 26.50 58.20 - 17.70 16.30 29.40 72.30 87.30 - 0.62 0.24 57.80 85.80 96.00 - -

What-to-Share -1.54 -0.38 25.66 57.64 -2.1 17.75 16.38 29.15 73.02 87.44 -0.1 0.60 0.22 60.49 87.45 96.55 3.7 0.5

Cross-Stitch 0.00 0.00 25.4 57.6 -2.6 17.2 14.0 41.4 67.7 80.4 8.7 0.58 0.23 61.4 88.4 95.5 3.9 3.3

Sluice 0.00 0.00 23.8 56.9 -6.2 17.2 14.4 38.9 69.0 81.4 7.1 0.58 0.24 61.9 88.1 96.3 3.3 1.4

NDDR-CNN 6.44 5.00 21.6 53.9 -12.9 17.1 14.5 37.4 70.9 83.1 7.0 0.66 0.26 55.7 83.7 94.8 -4.4 -3.5

MTAN 22.11 3.70 26.0 57.2 -1.8 17.2 13.9 43.7 70.5 81.9 11.5 0.57 0.25 62.7 87.7 95.9 2.9 4.2

DEN 10.81 -62.70 23.9 54.9 -7.7 17.1 14.8 36.0 70.6 83.4 5.6 0.97 0.31 22.8 62.4 88.2 -36.3 -12.8

AdaShare -6.24 -66.67 24.4 57.8 -4.3 17.7 13.8 42.3 68.9 80.5 9.3 0.59 0.20 61.3 88.5 96.5 6.2 3.8

AutoMTL -0.45 -45.10 26.6 58.2 0.2 17.3 14.4 39.1 70.7 83.1 8.0 0.54 0.22 65.1 89.2 96.9 7.8 5.3

Top-1 -66.67 -66.67 25.23 57.69 -2.8 17.14 15.15 35.85 72.20 85.54 6.0 0.55 0.23 63.85 89.38 97.03 5.8 3.0

21

Table 10: Comparison with Branched MTL methods for NYUv2 using MobileNetV2.

Model

FLOPs

(%) ↓
#Params

(%) ↓

Semantic Seg. Surface Normal Prediction Depth Estimation

Δ𝑡 ↑
mIoU ↑ Pixel

Acc. ↑ Δ𝑡1 ↑
Error ↓ 𝜃 , within ↑

Δ𝑡2 ↑
Error ↓ 𝛿 , within ↑

Δ𝑡3 ↑
Mean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.252 1.253

Ind. Models - - 20.36 49.44 - 18.17 16.62 28.37 70.20 85.58 - 0.77 0.28 47.92 78.46 92.81 - -

What-to-Share -8.41 -0.30 21.10 49.03 1.4 17.82 15.71 30.61 72.60 86.08 3.9 0.67 0.25 54.71 83.25 94.97 9.3 4.8

BMTAS -64.46 -33.41 18.98 48.40 -4.4 17.71 16.09 29.74 72.70 86.90 3.1 0.60 0.24 60.73 87.25 96.33 15.9 4.9

Top-1 -66.67 -66.67 19.36 48.97 -2.9 17.99 16.02 31.43 70.41 84.65 2.9 0.61 0.23 60.02 86.89 96.34 15.7 5.2

Table 11: Comparison with Branched MTL methods for Taskonomy using MobileNetV2.

Models

FLOPs

(%) ↓
#Params

(%) ↓
Semantic Seg. Normal Pred. Depth Est. Keypoint Det. Edge Det.

Δ𝑡 ↑
Abs. ↓ Δ𝑡1 ↑ Abs. ↑ Δ𝑡2 ↑ Abs. ↓ Δ𝑡3 ↑ Abs. ↓ Δ𝑡4 ↑ Abs. ↓ Δ𝑡5 ↑

Ind. Models - - 0.5217 - 0.807 - 0.022 - 0.2024 - 0.214 - -

What-to-Share -5.02 -0.18 1.0283 -1.9 0.7656 -0.1 0.0275 0.7 0.2417 -0.9 0.2688 -0.3 -0.5

BMTAS -78.47 -76.32 1.0239 -1.4 0.7511 -2.0 0.0322 -16.2 0.2202 8.1 0.2508 6.5 -1.0

Task-Grouping -25.11 -5.21 0.9965 1.3 0.7678 0.2 0.0287 -3.6 0.2323 3.0 0.2591 3.4 0.9

Top-1 -53.99 -44.86 0.977 3.2 0.7625 -0.5 0.0277 0.0 0.2232 6.8 0.2519 6.0 3.1

(b) Did you describe the limitations of your work? [Yes] 704

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 5. 705

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? 706

[Yes] 707

2. If you are including theoretical results. . . 708

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.1 and 709

Appendix Section B and C. 710

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix Section E. 711

3. If you ran experiments. . . 712

(a) Did you include the code, data, and instructions needed to reproduce the main experimen- 713

tal results, including all requirements (e.g., requirements.txt with explicit version), an 714

instructive README with installation, and execution commands (either in the supplemental 715

material or as a url)? [Yes] We describe data, models, and experiments in detail. [No] We 716

have not shared code when this answer is written, but plan to open-source the code to 717

assist future research. 718

(b) Did you include the raw results of running the given instructions on the given code and 719

data? [N/A] We will include them in the future public source. 720

(c) Did you include scripts and commands that can be used to generate the figures and tables 721

in your paper based on the raw results of the code, data, and instructions given? [N/A] We 722

will include them in the future public source. 723

(d) Did you ensure sufficient code quality such that your code can be safely executed and the 724

code is properly documented? [N/A] We will ensure it in the future public source. 725

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed 726

hyperparameter settings, and how they were chosen)? [Yes] See Section 4.1. 727

22

(f) Did you ensure that you compared different methods (including your own) exactly on 728

the same benchmarks, including the same datasets, search space, code for training and 729

hyperparameters for that code? [Yes] See Section 4.1 and Appendix Section G. 730

(g) Did you run ablation studies to assess the impact of different components of your approach? 731

[N/A] Our approach consists of three components and cannot work without any one of 732

them. In the paper, we verified the effectiveness of each component through experiments 733

or theoretical proofs. 734

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] See 735

Section 4.1. 736

(i) Did you compare performance over time? [No] 737

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] See 738

Section 4.3. 739

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 740

multiple times)? [No] Instead we conduct correlation experiments to show the reliability of 741

our recommender for each dataset with different backbone models and random seeds. 742

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] 743

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 744

gpus, internal cluster, or cloud provider)? [No] Our algorithms can be executed on any 745

computing resources. In this paper, we train the associated 2-task models on NVIDIA 1080ti 746

and the recommended multi-task models on NVIDIA m40 in parallel. 747

(n) Did you report how you tuned hyperparameters, and what time and resources this required 748

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 749

also hyperparameters of your own method)? [N/A] We conduct experiments with fixed 750

hyperparameters following prior works. 751

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 752

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.1. 753

(b) Did you mention the license of the assets? [N/A] Our experiments were conducted on 754

publicly available datasets. 755

(c) Did you include any new assets either in the supplemental material or as a url? [No] We 756

did not introduce new datasets. 757

(d) Did you discuss whether and how consent was obtained from people whose data you’re 758

using/curating? [No] Our experiments were conducted on publicly available datasets. 759

(e) Did you discuss whether the data you are using/curating contains personally identifiable 760

information or offensive content? [No] We are not aware of relevant issues in the data we 761

use. 762

5. If you used crowdsourcing or conducted research with human subjects. . . 763

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 764

cable? [N/A] We didn’t use crowdsourcing. 765

(b) Did you describe any potential participant risks, with links to Institutional Review Board 766

(irb) approvals, if applicable? [N/A] We didn’t use crowdsourcing. 767

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 768

on participant compensation? [N/A] We didn’t use crowdsourcing. 769

23

	Introduction
	Related Works
	Proposed Approach
	Task Accuracy Estimator
	Design Space Enumerator
	Branching Point Detector

	Experiments
	Experiment Settings
	Performance of Recommended Tree-Structured Multi-Task Models
	Evaluation of the Task Accuracy Estimator
	Comparison with State-of-the-Art MTL Methods

	Conclusion
	Associated Two-Task Models Identifier
	Property of Layout
	Complete Definition of Layout Cut
	Layouts Enumerator
	Proof of Theorem 3.1
	Branching Point Detector
	Hyper-Parameters Settings
	More Recommended Multi-Task Models
	Recommended Tree-Structured Multi-Task Model Architectures
	More Comparisons with State-of-the-Art Methods
	Reproducibility Checklist

