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ABSTRACT

State-of-the-art approaches for training Differentially Private (DP) Deep Neural
Networks (DNN) face difficulties to estimate tight bounds on the sensitivity of the
network’s layers, and instead rely on a process of per-sample gradient clipping.
This clipping process not only biases the direction of gradients but also proves
costly both in memory consumption and in computation. To provide sensitivity
bounds and bypass the drawbacks of the clipping process, we propose to rely on
Lipschitz constrained networks. Our theoretical analysis reveals an unexplored link
between the Lipschitz constant with respect to their input and the one with respect
to their parameters. By bounding the Lipschitz constant of each layer with respect
to its parameters, we prove that we can train these networks with privacy guarantees.
Our analysis not only allows the computation of the aforementioned sensitivities at
scale, but also provides guidance on how to maximize the gradient-to-noise ratio
for fixed privacy guarantees. The code has been released as a Python package
available at https://github.com/Algue-Rythme/lip-dp

1 INTRODUCTION

The field of differential privacy seeks to enable deep learning on sensitive data, while ensuring that
models do not inadvertently memorize or reveal specific details about individual samples in their
weights. This involves incorporating privacy-preserving mechanisms into the design of deep learning
architectures and training algorithms, whose most popular example is Differentially Private Stochastic
Gradient Descent (DP-SGD) (Abadi et al., 2016). One main drawback of classical DP-SGD methods
is that they require costly per-sample backward processing and gradient clipping. In this paper,
we offer a new method that unlocks fast differentially private training through the use of Lipschitz
constrained neural networks.

Differential privacy. Informally, differential privacy (DP) is a definition that bounds how much the
change of a single sample in a dataset affects the range of a stochastic function (here, the training
algorithm). This definition is largely accepted as a strong guarantee against privacy leakages under
various scenarii, including data aggregation or post-processing (Dwork et al., 2006).

In this paper we focus on supervised learning tasks: we assume that the dataset D is a finite collection
of input/label pairs D = {(x1, y1), . . . ...(xN , yN )}. The definition of DP relies on the notion of
neighboring datasets, i.e datasets that vary by at most one example. We highlight below the central
tools related to the field, inspired from Dwork et al. (2014).

Definition 1 ((ϵ, δ)-Approximate Differential Privacy). Two datasets D and D′ are said to be
neighboring for the “add/remove-one” relation if they differ by exactly one sample: |D′ ⊖D| = 1
where ⊖ denotes the symmetric difference between sets. Let ϵ and δ be two non-negative scalars. An
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model = DP_Sequential([ # step 1: use DP_Sequential to build a model
# step 2: add Lipschitz layers of known sensitivity
DP_BoundedInput(input_shape=(28, 28, 1), upper_bound=20.),
DP_SpectralConv2D(filters=16, kernel_size=3, use_bias=False),
DP_GroupSort(2),
DP_Flatten(),
DP_SpectralDense(1)],

dp_parameters=dp_parameters,
dataset_metadata=dataset_metadata,

) # step 4: compile the model, and choose any first order optimizer
model.compile(loss=DP_TauBCE(tau=20.), optimizer=Adam(1e-3))
model.fit( # step 5: train the model and measure the DP guarantees

train_dataset, validation_data=val_dataset,
epochs=num_epochs, callbacks=[DP_Accountant()]

)

Figure 1: An example of usage of our framework lip-dp, illustrating how to create a small
Lipschitz VGG and how to train it under (ϵ, δ)-DP guarantees while reporting (ϵ, δ) values.

algorithm A is (ϵ, δ)-DP if for any two neighboring datasets D and D′, and for any S ⊆ range(A):
P[A(D) ∈ S] ≤ eϵ × P[A(D′) ∈ S] + δ. (1)

A popular rule of thumb suggests using ϵ ≤ 10 and δ < 1
N with N the number of records (Ponomareva

et al., 2023) for mild guarantees. In practice, most classic algorithmic procedures (called queries in
this context) do not readily fulfill the definition for useful values of (ϵ, δ): in particular, randomization
is mandatory. A general recipe to make a query differentially private is to compute its sensitivity ∆,
and to perturb its output by adding a Gaussian noise of predefined variance ζ2 = ∆2σ2, where the
(ϵ, δ) guarantees depend on σ, yielding what is called a Gaussian mechanism (Dwork et al., 2006).
Definition 2 (l2-sensitivity). LetM be a query mapping from the space of the datasets to Rp. Let N
be the set of all possible pairs of neighboring datasets D,D′. The l2 sensitivity ofM is defined by:

∆(M) = sup
D,D′∈N

∥M(D)−M(D′)∥2. (2)

This randomization comes at the expense of “utility”, i.e the usefulness of the output for downstream
tasks (Alvim et al., 2012). The goal is then to strike a balance between privacy and utility, ensuring that
the released information remains useful and informative for the intended purpose while minimizing
the risk of privacy breaches. The privacy/utility trade-off yields a Pareto front, materialized by
plotting ϵ against a measurement of utility, such as validation accuracy for a classification task.

Differentially Private SGD. The SGD algorithm consists of a sequence of queries that (i) take the
dataset in input, sample a minibatch from it, and return the gradient of the loss evaluated on the
minibatch, before (ii) performing a descent step following the gradient direction. In “add-remove”
neighboring relations, if the gradients are bounded by K > 0, the sensitivity of the gradients averaged
on a minibatch of size b is ∆ = K/b. DP-SGD (Abadi et al., 2016) makes each of these queries
private by resorting to the Gaussian mechanism. Crucially, the algorithm requires a bound on gradient
norms ∥∇θL(ŷ, y)∥2 ≤ C. This upper bound on gradient norms is generally unknown in advance,
which leads practitioners to clip it to C > 0, in order to bound the sensitivity manually. Unfortunately,
this creates a number of issues: 1. Hyper-parameter search on the broad-range clipping value C
is required to train models with good privacy/utility trade-offs (Papernot & Steinke, 2022), 2. The
computation of per-sample gradients is expensive: DP-SGD is usually slower and consumes more
memory than vanilla SGD, in particular for the large batch sizes often used in private training (Lee &
Kifer, 2021), 3. Clipping the per-sample gradients biases their average (Chen et al., 2020). This is
problematic as the average direction is mainly driven by misclassified examples.

An unexplored approach: Lipschitz constrained networks. To avoid these issues, we propose to
train neural networks for which the parameter-wise gradients are provably and analytically bounded
during the whole training procedure, in order to get rid of the clipping process. This allows for
efficient training of models without the need for tedious hyper-parameter optimization. The main
reason why this approach has not been experimented much in the past is that upper bounding the
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gradient of neural networks is often intractable. However, by leveraging the literature on Lipschitz
constrained networks introduced by Anil et al. (2019), we show that these networks have computable
bounds for their gradient’s norm. This yields tight bounds on the sensitivity of SGD steps, making
their transformation into Gaussian mechanisms inexpensive - hence the name Clipless DP-SGD. Thus,
our approach is qualitatively different from methods that replace clipping with re-normalization (Bu
et al., 2022b; Yang et al., 2022), or from those that aim to reduce its time and memory footprint (Li
et al., 2021; Bu et al., 2022a; He et al., 2022; Bu et al., 2023). A comparison is made in Appendix A.5.

The Lipschitz constant of a function and the norm of its gradient are two sides of the same coin.
The function f : Rm → Rn is said ℓ-Lipschitz for l2 norm if for every x, y ∈ Rm we have
∥f(x)−f(y)∥2 ≤ ℓ∥x−y∥2. Per Rademacher’s theorem Simon et al. (1983), its gradient is bounded:
∥∇xf∥ ≤ ℓ. Reciprocally, continuous functions with gradient bounded by ℓ are ℓ-Lipschitz.

A feedforward neural network of depth D, with input space X ⊂ Rn, output space Y ⊂ RK (e.g
logits), and parameter space Θ ⊂ Rp, is a parameterized function f : Θ× X → Y defined by the
sequential composition of layers f1 . . . fD:

f(θ, x) := (fD(θD) ◦ . . . ◦ f2(θ2) ◦ f1(θ1)) (x). (3)
The parameters of the layers are denoted by θ = (θd)1≤d≤D ∈ Θ. For affine layers, it corresponds to
bias and weight matrix θd = (Wd, bd). For activation functions, there are no parameters: θd = ∅.
Feedforward networks include notably Fully Connected networks, CNN, Resnets, or MLP mixers.
Definition 3 (Lipschitz feed-forward neural network). Lipschitz networks are feedforward networks,
with the additional constraint that each layer xd 7→ fd(θd, xd) := yd is ℓd-Lipschitz for all θd.
Consequently, the function x 7→ f(θ, x) is ℓ-Lipschitz with ℓ = ℓ1 × . . .× ℓD for all θ ∈ Θ.

The literature has predominantly focused on investigating the control of Lipschitzness with respect to
the inputs (i.e bounding ∇xf ), primarily motivated by concerns of robustness (Szegedy et al., 2014;
Li et al., 2019a; Fazlyab et al., 2019), or improved generalization (Bartlett et al., 2017; Béthune et al.,
2022). However, in this work, we will demonstrate that it is also possible to control Lipschitzness
with respect to parameters (i.e bounding ∇θf ), which is essential for ensuring privacy. Our first
contribution will point out the tight link that exists between those two quantities. The closest work to
ours is Shavit & Gjura (2019), where a Lipschitz network is used as a general function approximator of
bounded sensitivity ∥∇xf(θ, x)∥2, but to this day the sensitivity of the gradient query x 7→ ∇θf(θ, x)
itself remains largely unexplored. The idea of using automatic differentiation to compute sensitivity
bounds has also been discussed in Ziller et al. (2021) and Usynin et al. (2021).

Contributions. While the properties of Lipschitz constrained networks regarding their inputs are well
explored, the properties with respect to their parameters remain non-trivial. This work provides a first
step to fill this gap: our analysis shows that under appropriate architectural constraints, a l-Lipschitz
network has a tractable, finite Lipschitz constant with respect to its parameters, which allows for easy
estimation of the sensitivity of the gradient computation queries. Our contributions are the following:

1. We extend the field of applications of Lipschitz constrained neural networks. We extend the
framework to compute the Lipschitzness with respect to the parameters. This general
framework allows to track layer-wise sensitivities that depends on the loss and the model’s
structure. This is exposed in Section 2. We show that SGD training of deep neural networks
can be achieved without per-sample gradient clipping using Lipschitz constrained layers.

2. We establish connections between Gradient Norm Preserving (GNP) networks and improved
privacy/utility trade-offs (Section 3.1). To the best of our knowledge, we are the first ones to
produce neural networks benefiting from both Lipschitz-based robustness certificates
and privacy guarantees.

3. Finally, a Python package companions the project, with pre-computed Lipschitz constants
for each loss and each layer type. This is exposed in Section 3.2. It covers widely used
architectures, including VGG, ResNets or MLP Mixers. Our package enables the use of
larger networks and larger batch sizes, as illustrated by our experiments in Section 4.

2 CLIPLESS DP-SGD WITH ℓ-LIPSCHITZ NETWORKS

Our framework relies on the computation of the maximum gradient norm of a network w.r.t its
parameters to obtain a per-layer sensitivity ∆d. It is based on the recursive formulation of the chain
rule involved in backpropagation and requires some natural assumptions that we highlight below.
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Figure 2: Backpropagation for bounds (Algorithm 1) computes the per-layer sensitivity ∆d.

Requirement 1 (Lipschitz loss.). The loss function ŷ 7→ L(ŷ, y) must be L-Lipschitz with respect to
the logits ŷ for all ground truths y ∈ Y . This is notably the case of Categorical Softmax-Crossentropy.

The Lipschitz constants of common supervised losses has been computed and reported in the appendix.
Requirement 2 (Bounded input). There exists X0 > 0 such that for all x ∈ X we have ∥x∥ ≤ X0.

There exist numerous approaches for the parametrization of Lipschitz networks, such as differentiable
re-parametrization (aka “trivialization”) like Miyato et al. (2018); Anil et al. (2019), optimization
over matrix manifolds (Absil et al., 2008), direct parametrization (Meunier et al., 2022; Wang &
Manchester, 2023), or projections (Arjovsky et al., 2017). We can distinguish two strategies:

1. With a differentiable reparametrization Π : Rp → Θ where θ̃ = Π(θ): the weights θ̃ are
used during the forward pass, but the gradients are back-propagated to θ through Π. This
turns the training into an unconstrained optimization problem on the landscape of L◦f ◦Π.

2. With a suitable projection operator Π : Rp → Θ: this is the celebrated Projected Gradient
Descent (PGD) algorithm (Bubeck et al., 2015) applied on the landscape of L ◦ f .

Option 1 requires the analysis of the Lipschitz constant of Π. If Θ is convex, then Π is 1-Lipschitz
w.r.t the projection norm, otherwise the Lipschitz constant is generally unknown. For simplicity,
option 2 will be the focus of our work.
Requirement 3 (Lipschitz projection). The Lipschitz constraints must be enforced with a projection
operator Π : Rp → Θ. This corresponds to Tensorflow constraints and Pytorch hooks.
Projection is a post-processing (Dwork et al., 2006) of private data: it induces no privacy leakage.

To compute the per-layer sensitivities, our framework mimics the backpropagation algorithm, where
Vector-Jacobian products (VJP) are replaced by Scalar-Scalar products of element-wise bounds. For
an arbitrary layer xd 7→ fd(θd, xd) := yd the operation is sketched below, as a simple consequence
of Cauchy-Schwartz inequality:

∇xd
L := (∇yd

L) ∂fd
∂xd︸ ︷︷ ︸

Vector-Jacobian product: backpropagate gradients

=⇒ ∥∇xd
L∥2 ≤ ∥∇yd

L∥2 ×
∥∥∥∥ ∂fd∂xd

∥∥∥∥
2

.︸ ︷︷ ︸
Scalar-Scalar product: backpropagate bounds

(4)

The notation ∥ · ∥2 must be understood as the spectral norm for Jacobian matrices, and the Euclidean
norm for gradient vectors. The scalar-scalar product is inexpensive. For Lipschitz layers, the spectral
norm of the Jacobian ∥∂f∂x∥ is kept constant during training with projection operator Π. The bound of
the gradient with respect to the parameters takes a simple form:

∥∇θdL∥2 ≤ ∥∇yd
L∥2 ×

∥∥∥∥∂fd∂θd

∥∥∥∥
2

. (5)

This term can be analytically bounded, as exposed in the following section.

2.1 BACKPROPAGATION FOR BOUNDS

The pseudo-code of Clipless DP-SGD is sketched in Algorithm 2. The algorithm avoids per-sample
clipping by computing a per-layer bound on the element-wise gradient norm. The computation of this
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per-layer bound is described by Algorithm 1 (graphically explained in Figure 2). Crucially, it requires
to compute the spectral norm of the Jacobian of each layer with respect to input and parameters.

Input bound propagation (line 2). We compute Xd = max∥x∥≤Xd−1
∥fd(x)∥2. For activation

functions it depends on their range. For linear layers, it depends on the spectral norm of the operator
itself. This quantity can be computed through the SVD or Power Iteration (Trefethen & Bau, 2022;
Miyato et al., 2018), and constrained during training using projection operator Π. In particular, it
covers the case of convolutions, for which tight bounds are known (Singla & Feizi, 2021a). For affine
layers, it additionally depends on the magnitude of the bias ∥bd∥.
Remark 1 (Tighter bounds in literature). Exact estimation of the Lipschitz bound is notoriously an
NP-hard problem, as proven by (Virmaux & Scaman, 2018). Algorithm 2 can be seen as an extension
of their AutoLip algorithm to the case of parameters, while their work focused on Lipschitness with
respect to the input. Although libraries such as Decomon (Airbus, 2023) or auto-LiRPA (Xu et al.,
2020) provide tighter bounds for Xd via linear relaxations (Singh et al., 2019; Zhang et al., 2018),
our approach is capable of delivering practically tighter bounds than worst-case scenarios thanks to
the projection operator Π, while also being significantly less computationally expensive. Moreover,
hybridizing our method with scalable certification methods can be a path for future extensions.

Computing maximum gradient norm (line 6). We now present how to bound the Jacobian ∂fd(θd,x)
∂θd

.
In neural networks, the parameterized layers f(θ, x) (fully connected, convolutions) are bilinear
operators. Hence, we typically obtain bounds of the form:∥∥∥∥∂fd(θd, x)∂θd

∥∥∥∥
2

≤ K(fd, θd)∥x∥2 ≤ K(fd, θd)Xd−1, (6)

where K(fd, θd) is a constant that depends on the nature of the operator. Xd−1 is obtained in line 2
with input bound propagation. Values of K(fd, θd) for popular layers are reported in the appendix.

Backpropagate cotangent vector bounds (line 7). Finally, we bound the Jacobian ∂fd(θd,x)
∂x . For

activation functions, this value can be hard-coded, while for affine layers it is the spectral norm of the
linear operator. Like before, this value is enforced by the projection operator Π.

Algorithm 1 Backpropagation for Bounds(f,X)

Input: Feed-forward architecture f(θ, ·) = fD(θD, ·) ◦ . . . ◦ f1(θ1, ·)
Input: Weights θ = (θ1, θ2, . . . θD), input bound X0

1: for all layers 1 ≤ d ≤ D do
2: Xd ← max

∥x∥≤Xd−1

∥fd(θd, x)∥2. ▷ Input bounds propagation

3: end for
4: G← L/b. ▷ Lipschitz constant of the (averaged) loss for batchsize b
5: for all layers D ≥ d ≥ 1 do
6: ∆d ← G max

∥x∥≤Xd−1

∥∂fd(θd,x)∂θd
∥2. ▷ Compute sensitivity from gradient norm

7: G← G max
∥x∥≤Xd−1

∥∂fd(θd,x)∂x ∥2 = Gld. ▷ Backpropagate cotangent vector bounds

8: end for
9: return sensitivities ∆1,∆2 . . . ,∆D

Privacy accounting for Clipless DP-SGD. We keep track of (ϵ, δ)-DP values with a privacy
accountant (Abadi et al., 2016), by composing different mechanisms. For a dataset with N records
and a batch size b, it relies on two parameters: the sampling ratio p = b

N and the “noise multiplier” σ
defined as the ratio between effective noise strength ζ and sensitivity ∆. We propose two strategies
to keep track of (ϵ, δ) values as the training progresses, based on either the “per-layer” sensitivities
∆d (composition of Gaussian mechanisms), or by aggregating them into a “global” sensitivity
∆ =

√∑
d ∆

2
d (single isotropic Gaussian mechanism). We rely on the autodp1 library as it uses the

Rényi Differential Privacy (RDP) adaptive composition theorem (Mironov, 2017), that ensures tighter
bounds than naive DP composition. Following standard practices of the community (Ponomareva

1https://github.com/yuxiangw/autodp distributed under Apache License 2.0.
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Algorithm 2 Clipless DP-SGD with per-layer sensitivity accounting
Input: Feed-forward architecture f(θ, ·) = fD(θD, ·) ◦ . . . ◦ f1(θ1, ·)
Input: Initial weights θ = (θ1, θ1, . . . θD), learning rate η, noise multiplier σ.

1: repeat
2: ∆1,∆2 . . .∆D ← Backpropagation for Bounds(f,X).
3: Sample a batch B = {(x1, y1), (x2, y2), . . . , (xb, yb)}.
4: Compute the averaged gradient for each layer d: gd := 1

b

∑b
i=1∇θdL(f(θ, xi), yi)).

5: Sample per-layer noise: ζd ∼ N (0, σ∆d).
6: Perform perturbed gradient step: θd ← θd − η(gd + ζd).
7: Enforce Lipschitz constraint with projection: θd ← Π(θd).
8: Compute new (ϵ, δ)-DP guarantees with privacy accountant.
9: until privacy budget (ϵ, δ) has been reached.

et al., 2023), we used sampling without replacement at each epoch (by shuffling examples), but we
reported ϵ assuming Poisson sampling to benefit from privacy amplification (Balle et al., 2018).

3 SIGNAL-TO-NOISE RATIO ANALYSIS

We discuss how the tightness of the bound provided by Algorithm 1 can be controlled.

3.1 THEORETICAL ANALYSIS OF CLIPLESS DP-SGD

In some cases we can manually derive the bounds across diverse configurations.

Theorem (informal) 1. Gradient Norm of Lipschitz Networks. Assume that every layer fd is
K-Lipschitz, i.e l1 = · · · = lD = K. Assume that every bias is bounded by B. We further assume
that each activation is centered at zero (i.e fd(0) = 0, like ReLU, GroupSort...).Then the global
upper bound of Algorithm 2 can be computed analytically, as follows:

1. If K < 1 we have: ∥∇θL(f(θ, x), y)∥2 = O
(
L
(
KD(X0 +B) + 1

))
.

Due to the KD ≪ 1 term this corresponds to a vanishing gradient phenomenon (Pascanu et al., 2013).
The output of the network is essentially independent of its input, and training is nearly impossible.

2. If K > 1 we have: ∥∇θL(f(θ, x), y)∥2 = O
(
LKD (X0 +B + 1)

)
.

Due to the KD ≫ 1 term this corresponds to an exploding gradient phenomenon (Bengio et al.,
1994). The upper bound becomes vacuous for deep networks: the added noise ζ will be too high.

3. If K = 1 we have: ∥∇θL(f(θ, x), y)∥2 = O
(
L
(√

D +X0

√
D +

√
BX0D +BD3/2

))
,

which for linear layers without biases further simplify to O(L
√
D(1 +X0)).

The formal statement can be found in appendix. We see that most favorable bounds are achieved by
1-Lipschitz neural networks with 1-Lipschitz layers. In classification tasks, they are as expressive
as conventional networks (Béthune et al., 2022). Hence, this choice of architecture is not at the
expense of utility. Moreover an accuracy/robustness trade-off exists, determined by the choice of loss
function (Béthune et al., 2022). However, setting K = 1 merely ensures that ∥∇xf∥ ≤ 1, and in the
worst-case scenario we could have ∥∇xf∥ ≪ 1 almost everywhere. This results in a situation where
the bound of case 3 in Theorem 1 is not tight, leading to an underfitting regime as in the case K < 1.
With Gradient Norm Preserving (GNP) networks, we expect to mitigate this issue.

Controlling K with Gradient Norm Preserving (GNP) networks. GNP (Li et al., 2019a) net-
works are 1-Lipschitz neural networks with the additional constraint that the Jacobian of layers
consists of orthogonal matrices. They fulfill the Eikonal equation

∥∥∥∂fd(θd,xd)
∂xd

∥∥∥
2
= 1 for any interme-

diate activation fd(θd, xd). As a consequence, the gradient of the loss with respect to the parameters
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is bounded by

∥∇θdL∥ ≤ ∥∇yD
L∥×

∥∥∥∥∥∥
∏

d<i≤D

∂fi(θi, xi)

∂xi

∥∥∥∥∥∥×
∥∥∥∥∂fd(θd, xd)

∂θd

∥∥∥∥ = ∥∇yD
L∥×

∥∥∥∥∂fd(θd, xd)

∂θd

∥∥∥∥ , (7)

which for weight matrices Wd further simplifies to ∥∇Wd
L∥ ≤ ∥∇yD

L∥×∥fd−1(θd−1, xd−1)∥. We
see that this upper bound crucially depends on two terms than can be analyzed separately. On the one
hand, ∥fd−1(θd−1, xd−1)∥ depends on the scale of the input. On the other, ∥∇yD

L∥ depends on the
loss, the predictions and the training stage. We show below how to intervene on these two quantities.

Controlling X0 with input pre-processing. The weight gradient norm ∥∇Wd
L∥ indirectly depends

on the norm of the inputs. Multiple strategies are available to keep this norm under control: projection
onto the ball (“norm clipping”), or projection onto the sphere (“normalization”). In the domain of
natural images, this result sheds light on the importance of color space: RGB, HSV, etc. Empirically,
a narrower distribution of input norms would make up for tighter gradient norm bounds.

Controlling L with the hybrid approach: loss gradient clipping As training progresses, the
magnitude of ∥∇fL∥ tends to diminish when approaching local minima, falling below the upper
bound and diminishing the signal to noise ratio. Fortunately, for Lipschitz constrained networks,
the norm of the elementwise-gradient remains lower bounded throughout (Béthune et al., 2022).
Since the noise amplitude only depends on the architecture and the loss, and remains fixed during
training, the loss with the best signal-to-noise ratio would be a loss whose gradient norm w.r.t the
logits remains constant during training. For the binary classification case, with labels y ∈ {−1,+1},
this yields the loss LKR(ŷ, y) = −yŷ, that arises in Kantorovich-Rubinstein duality (Villani, 2008):

W1(P,Q) :=
1

ℓ
inf

f∈ℓ-Lip(D,R)
E(x,y)∼D[LKR(f(x), y)], (8)

whereW1(P,Q) is the Wasserstein-1 distance between the two classes P and Q.

Another way to ensure high signal-to-noise ratio is to diminish the noise and clip the gradients of the
loss w.r.t the logits. We emphasize that this is different from the clipping of the “parameter gradient”
∇θL done in DP-SGD. Here, any intermediate gradient∇fdL can be clipped during backpropagation.
This can be achieved with a special “clipping layer” that behaves like the identity function at the
forward pass, and clips the gradient during the backward pass. In DP-SGD the clipping is applied
on the element-wise gradient ∇Wd

L of size b× h2 for matrix weight Wd ∈ Rh×h and batch size b,
and clipping it can cause memory issues or slowdowns (Lee & Kifer, 2021). In our case,∇yD

L is of
size b× h: this is far smaller, especially for the last layer. Moreover, this clipping is compatible with
the adaptive clipping introduced by (Andrew et al., 2021): the quantiles of ∥∇yD

L∥ can be privately
estimated for a small privacy budget. This allows to effectively reduce the noise while ensuring that
most of the gradients remain unbiased. Furthermore, this bias of this clipping can be characterized.

Proposition (informal) 1 (Bias of loss gradient clipping in binary classification tasks). Let LBCE

be the binary cross-entropy loss, with sigmoid activation. Assume that the loss gradient (w.r.t the
logits)∇ŷED[LBCE(ŷ, y)] is clipped to norm at most C > 0. Then there exists C ′ > 0 such that for
all C ≤ C ′ a gradient descent step with the clipped gradient is identical in direction to the gradient
descent step obtained from the loss LKR(ŷ, y) = −ŷy.

As observed in Serrurier et al. (2021) and Béthune et al. (2022) this descent direction yields classifiers
with high certifiable robustness, but lower clean accuracy. Therefore, in practice, we set the adaptive
clipping threshold at not less than the 90%-th quantile to mitigate the bias and avoid utility drop.

3.2 LIP-DP LIBRARY

To foster and spread accessibility, we provide an open source TensorFlow library for Clipless DP-
SGD training2 , named lip-dp, with Keras API. The code is available at https://github.
com/Algue-Rythme/lip-dp. Its usage is illustrated in Figure 1. We rely on the deel-lip3

library Serrurier et al. (2021) to enforce Lipschitz constraints in practice, with Reshaped Kernel

2https://anonymous.4open.science/r/lipdp-5EA1 distributed under MIT License.
3https://github.com/deel-ai/deel-lip distributed under MIT License.
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Dataset Size Dim. δ
Validation AUROC ↑
DP-SGD Clipless

DP-SGD
ALOI 39,627 27 10−5 56.5 56.2
campaign 32,950 62 10−5 90.0 82.2
celeba 162,079 39 10−6 96.6 96.5
census 239,428 500 10−6 93.3 92.5
donors 495,460 10 10−6 100.0 100.0
magic 15,216 10 10−5 90.7 89.7
shuttle 39,277 9 10−5 98.3 99.4
skin 196,045 3 10−6 100.0 99.8
yeast 1,187 8 10−4 66.8 75.1

(a) Best AUROC values (in %) for models trained under
(ϵ, δ)-DP privacy with ϵ = 1, on binary classification tasks of
tabular data from Adbench datasets Han et al. (2022). We use
a random stratified split into train (80%) / validation (20%).

(b) Pareto front on Mnist. Each green dot corre-
sponds to a (val. acc, ϵ) pair from an epoch.

Figure 3: Comparison of the utility of DP-SGD and Clipless DP-SGD on tabular and image data.

Orthogonalization (RKO) for fast and near-orthogonal convolutions (Li et al., 2019b). The Lipschitz
constraint is enforced by using activations with known Lipschitz constant ld (most activations fulfill
this condition), and by applying a projection Π : Rp → Θ on the weights of affine layers. These
constraints correspond to spectrally normalized matrices Yoshida & Miyato (2017); Bartlett et al.
(2017), since for affine layers we have ℓd = ∥Wd∥2 := max

∥x∥≤1
∥Wdx∥2 and therefore Θ = {∥Wd∥2 ≤

ℓq}. We rely on Power Iteration for fast computation of the spectral norm. The leading eigenvector
is cached from a step to another to speed-up computations. The seminal work of Anil et al. (2019)
proved that universal approximation in the set of ℓ-Lipschitz functions was achievable by this family
of architectures. In practice, GNP networks are parametrized with GroupSort activation Anil et al.
(2019); Tanielian & Biau (2021), Householder activation Mhammedi et al. (2017), and orthogonal
weight matrices Li et al. (2019a;b).

Remark 2 (GNP networks limitations). Strict orthogonality is challenging to enforce, especially for
convolutions for which it is still an active research area (see Trockman & Kolter (2021); Singla &
Feizi (2021b); Achour et al. (2022); Singla & Feizi (2022); Xu et al. (2022) and references therein).
Our line of work traces an additional motivation for the development of GNP and the bounds will
strengthen as the field progresses. Concurrent approaches based on regularization (Gulrajani et al.,
2017; Cisse et al., 2017; Gouk et al., 2021)) fail to produce formal guarantees.

4 EXPERIMENTAL RESULTS

We validate our implementation with a speed benchmark against competing approaches, and we
present the privacy/utility Pareto fronts that can be obtained with GNP networks.

4.1 EVALUATION OF PRIVACY, ACCURACY AND ROBUSTNESS

For the comparisons, we leverage the DP-SGD implementation from Opacus. We perform a search
over a broad range of hyper-parameter values: the configuration is given in Appendix D. We ignore
the privacy loss that may be induced by this hyper-parameter search, which is a limitation per recent
studies like Papernot & Steinke (2022) or Ding & Wu (2022).

Accuracy and Privacy. We validate the performance of our approach on tabular data from Adbench
suite (Han et al., 2022) using a MLP, and report the result in Table 3a. For MNIST (Fig. 3b we use a
Lipschitz LeNet-like architecture.

Robustness and Privacy. One of the most prominent advantage of Lipchitz networks is their ability
to provide robustness certificates against adversarial attacks, and was the primary motivation for
their development (Szegedy et al., 2014; Li et al., 2019a; Fazlyab et al., 2019). For a ℓ-Lipschitz
classifier f , with predictions k̄ := argmaxk fk(x) the decision is invariant under perturbation of
norms smaller than 1

ℓ
√
2
(fk̄(x)− argmaxi ̸=k̄ fi(x)). Therefore, for each perturbation radius r we
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Figure 4: Privacy/accuracy/robustness trade-off on Cifar-10: We report the pareto front of
robustness certificates at different radii r for Lipschitz constrained networks, while unconstrained
networks cannot produce robustness certificates. Models are trained in an "out of the box setting": no
pre-training, no data augmentation and no handcrafted features. To ensure a fair comparison between
algorithms, we perform 30 repetitions with a Bayesian optimizer to select the best hyper-parameters.

can measure the accuracy of the perturbed network, and we report these results in Fig. 4. The
computation of the certificates is straightforward, while methods applicable to conventional networks
(like randomized smoothing (Cohen et al., 2019) or interval propagation, see remark 1), are expensive.
This suggests that robust decisions and privacy are not necessarily antipodal objectives, contrary to
what was observed in Song et al. (2019). The work of Wu et al. (2023) also study the link between
certified robustness and privacy, albeit through the lens of adversarial training (Zhang et al., 2019).

4.2 SPEED AND MEMORY CONSUMPTION

We benchmarked the median runtime per batch of vanilla DP-SGD against the one of Cli-
pless DP-SGD, on a CNN architecture and its Lipschitz equivalent respectively. The ex-
periment was run on a GPU with 48GB video memory. We compare against the im-
plementation of tf_privacy, opacus and optax. In order to allow a fair com-
parison, when evaluating Opacus, we reported the runtime with respect to the logical
batch size, while capping the physical batch size to avoid Out Of Memory error (OOM).

Figure 5: Our approach outperforms concur-
rent frameworks in terms of runtime and mem-
ory: we trained CNNs (ranging from 130K to 2M
parameters) on CIFAR-10, and report the median
batch processing time (including noise, and con-
straints application Π or gradient clipping).

An advantage of the projection Π over per-
sample gradient clipping is that its cost is in-
dependent of the batch size. Fig 5 validates that
our method scales much better than vanilla DP-
SGD, and is compatible with large batch sizes. It
offers several advantages: firstly, a larger batch
size contributes to a decrease of the sensitivity
∆ ∝ 1/b, which diminishes the ratio between
noise and gradient norm. Secondly, as the batch
size b increases, the variance decreases at the
parametric rate O(

√
b) (as demonstrated in ap-

pendix E.1), aligning with expectations. This
observation does not apply to DP-SGD: clipping
biases the direction of the average gradient, as
noticed by Chen et al. (2020).

5 LIMITATIONS, FUTURE WORK AND BROADER IMPACT

Our framework offers a novel approach to address differentially private training, but also introduces
new challenges. Clipless DP-SGD replaces a bias of optimizer with a bias in function space (as

9



discussed in Appendix A.4). We primary rely on GNP networks, where high performing architectures
are quite different from the usual CNN architectures. This serves as (1) a motivation to further
develop Gradient Norm Preserving architectures. As emphasized in Remark 2, we anticipate
that progress in these areas will greatly enhance the effectiveness of our approach. Additionally, to
meet requirement 3, we rely on projections, necessitating additional efforts to incorporate “trivializa-
tions” Trockman & Kolter (2021); Singla & Feizi (2021b). Finally, as mentioned in Remark 1, our
propagation bound method can be refined. Comparison of Clipless DP-SGD with recent methods
based on back-propagation, in particular Bu et al. (2023), is discussed in appendix A.5. Furthermore,
the development of networks with known Lipschitz constant with respect to parameters is a ques-
tion of independent interest, making lip-dp (2) a useful tool for the study of the optimization
dynamics in Lipschitz constrained neural networks.
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A DEFINITIONS AND METHODS

A.1 ADDITIONNAL BACKGROUND

The purpose of this appendix is to provide additionnal definitions and properties regarding Lipschitz
Neural Networks, their possible GNP properties and Differential Privacy.

A.1.1 LIPSCHITZ NEURAL NETWORKS BACKGROUND

For simplicity of the exposure, we will focus on feedforward neural networks with densely connected
layers: the affine transformation takes the form of a matrix-vector product h 7→Wh. In Section C.2
we tackle the case of convolutions h 7→ Ψ ∗ h with kernel Ψ.
Definition 4 (Feedforward neural network). A feedforward neural network of depth T , with input
space X ⊂ Rn, and with parameter space Θ ⊂ Rp, is a parameterized function f : Θ × X → Y
defined by the following recursion:

h0(x) := x, zt(x) := Wtht−1(x) + bt,

ht(x) := σ(zt(x)), f(θ, x) := zT+1(x). (9)

The set of parameters is denoted as θ = (Wt, bt)1≤t≤T+1, the output space as Y ⊂ RK (e.g logits),
and the layer-wise activation as σ : Rn → Rn.
Definition 5 (Lipschitz constant). The function f : Rm → Rn is said l-Lipschitz for l2 norm if for
every x, y ∈ Rm we have:

∥f(x)− f(y)∥2 ≤ l∥x− y∥2. (10)
Per Rademacher’s theorem Simon et al. (1983), its gradient is bounded: ∥∇f∥ ≤ l. Reciprocally,
continuous functions gradient bounded by l are l-Lipschitz.
Definition 6 (Lipschitz neural network). A Lipschitz neural network is a feedforward neural network
with the additional constraints:

• the activation function σ is S-Lipschitz. This is a standard assumption, frequently fulfilled
in practice.

• the affine functions x 7→ Wx + b are U -Lipschitz, i.e ∥W∥2 ≤ U . This is achieved in
practice with spectrally normalized matrices Yoshida & Miyato (2017) Bartlett et al. (2017).
The feasible set is the ball {∥W∥2 ≤ U} of radius U (which is convex), or a subset of
thereof (not necessarily convex).

As a result, the function x 7→ f(θ, x) is U(US)T -Lipschitz for all θ ∈ Θ.

Two strategies are available to enforce Lipschitzness:

1. With a differentiable reparametrization Π : Rp → Θ where θ̃ = Π(θ): the weights θ̃ are
used during the forward pass, but the gradients are back-propagated to θ through Π. This
turns the training into an unconstrained optimization problem on the landscape of L ◦ f ◦Π.

2. With a suitable projection operator Π : Rp → Θ: this is the celebrated Projected Gradient
Descent (PGD) algorithm Bubeck et al. (2015) applied on the landscape of L ◦ f .

For arbitrary re-parametrizations, option 1 can cause some difficulties: the Lipschiz constant of Π is
generally unknown. However, if Θ is convex then Π is 1-Lipschitz (with respect to the norm chosen
for the projection). To the contrary, option 2 elicits a broader set of feasible sets Θ. For simplicity,
option 2 will be the focus of our work.

A.1.2 GRADIENT NORM PRESERVING NETWORKS

Definition 7 (Gradient Norm Preserving Networks). GNP networks are 1-Lipschitz neural networks
with the additional constraint that the Jacobian of layers consists of orthogonal matrices:(

∂fd
∂xd

)T (
∂fd
∂xd

)
= I. (11)
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Figure 6: Accountant for locally enforced differential privacy. (i) The gradient query for each
layer is made private using the Gaussian mechanism Dwork et al. (2014); (ii) their composition across
the layers of the whole network can be seen as a non isotropic Gaussian mechanism, (iii) that benefits
from amplification via sub-sampling Balle et al. (2018); (iv) the train steps are composed over the
course of training.

This is achieved with GroupSort activation Anil et al. (2019); Tanielian & Biau (2021), Householder
activation Mhammedi et al. (2017), and orthogonal weight matrices Li et al. (2019a;b) or orthogonal
convolutions (see Achour et al. (2022); Singla & Feizi (2022); Xu et al. (2022) and references therein).
Without biases these networks are also norm preserving: ∥f(θ, x)∥ = ∥x∥.

The set of orthogonal matrices (and its generalization the Stiefel manifold Absil et al. (2008)) is
not convex, and not even connected. Hence projected gradient approaches are mandatory: for
re-parametrization methods the Jacobian ∂Π

∂θ may be unbounded which could have uncontrollable
consequences on sensitivity.

A.1.3 BACKGROUND ON DIFFERENTIAL PRIVACY

Definition 8 (Neighboring datasets). A labelled dataset D is a finite collection of input/label pairs
D = {(x1, y1), (x2, y2), . . . ...(xN , yN )}. Two datasets D and D′ are said to be neighbouring if they
differ by at most one sample: D′ = D ∪ {(x′, y′)} − {(xi, yi)}.

The sensitivity is also referred as algorithmic stability Bousquet & Elisseeff (2002), or bounded
differences property in other fields McDiarmid et al. (1989). We detail below the building of a
Gaussian mechanism from an arbitrary query of known sensitivity.

Definition 9 (Gaussian Mechanism). Let f : D → Rp be a query accessing the dataset of known
l2-sensitivity ∆(f), a Gaussian mechanism adds noise sampled from N (0, σ.∆(f)) to the query f .

Property 1 (DP of Gaussian Mechanisms). Let G(f). be a Gaussian mechanism of l2-sensitivity
S2(f) adding the noise N (0, σ.S2(f)) to the query f . The DP guarantees of the mechanism are
given by the following continuum: σ =

√
2. log(1.25/δ)/ϵ.

SGD is a composition of queries. Each of those query consists of sampling a minibatch from the
dataset, and computing the gradient of the loss on the minibatch. The sensitivity of the query is
proportional to the maximum gradient norm l, and inversely proportional to the batch size b. By
pertubing the gradient with a Gaussian noise of variance σ2 l2

b2 the query is transformed into a
Gaussian mechanism. By composing the Gaussian mechanisms we obtain the DPSGD variant, that
enjoy (ϵ, δ)-DP guarantees.

Proposition 1 (DP guarantees for SGD, adapted from Abadi et al. (2016).). Assume that the loss
fulfills ∥∇θL(ŷ, y)∥2 ≤ l, and assume that the network is trained on a dataset of size N with SGD
algorithm for T steps with noise scale N (0, σ2) such that:

σ ≥
16K

√
T log (2/δ) log (1.25T/δN)

Nϵ
. (12)

Then the SGD training of the network is (ϵ, δ)-DP.
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A.2 PRIVACY ACCOUNTING OF CLIPLESS DP-SGD

The “global” strategy. This strategy simply aggregates the individual sensitivities ∆d of each
layer to obtain the global sensitivity of the whole gradient vector ∆ =

√∑
d ∆

2
d. The origin of the

clipping-based version of this strategy can be traced back to McMahan et al. (2018). With noise
variance σ2∆2 we recover the accountant that comes with DP-SGD. It tends to overestimate the true
sensitivity (in particular for deep networks), but its implementation is straightforward with existing
tools. We detail in Algorithm 3 the global variant of our approach.

The “per-layer” strategy. Recall that we are able to characterize the sensitivity ∆d of every layer
of the network. Hence, we can apply a different noise to each of the gradients. We dissect the whole
training procedure in Figure 6.

1. On each layer, we apply a Gaussian mechanism with noise variance σ2∆2
d.

2. Their composition yields an other Gaussian mechanism with non isotropic noise.

3. The Gaussian mechanism benefits from privacy amplification via subsampling (Balle et al.,
2018) thanks to the stochasticity in the selection of batches of size b = pN .

4. Finally an epoch is defined as the composition of T = 1
p sub-sampled mechanisms.

At same noise multiplier σ, “per-layer” strategy tends to produce a higher value of ϵ per epoch than
the “global” strategy, but has the advantage over the latter to add smaller effective noise ζ to each
weight. Different layers exhibit different maximum gradient bounds - and in turn this implies different
sensitivities. This also suggests that different noise multipliers σd can be used for each layer. This
open extensions for future work.

For practical computations, we rely on the autodp library (Wang et al., 2019; Zhu & Wang, 2019;
2020) as it uses the Rényi Differential Privacy (RDP) adaptive composition theorem (Mironov, 2017;
Mironov et al., 2019), that ensures tighter bounds than naive DP composition.

Algorithm 3 Clipless DP-SGD with global sensitivity accounting
Input: Feed-forward architecture f(·, ·) = fT+1(θT+1, ·) ◦ fT (θT , ·) ◦ . . . ◦ f0(θ0, ·)
Input: Initial weights θ0, learning rate scheduling ηt, noise multiplier σ.

1: repeat
2: ∆0 . . .∆T+1 ← compute_gradient_bounds(f,X).
3: Sample a batch Bt = {(x1, y1), (x2, y2), . . . , (xb, yb)}.
4: Compute the mean gradient of the batch for each layer t:

g̃t :=
1

b

b∑
i=1

∇θtL(ŷi, yi)).

5: For each layer t of the model, get the theoretical bound of the gradient:

∀1 ≤ i ≤ b, ∥∇θtL(ŷi, yi)∥2 ≤ ∆t.

6: Update Moment accountant state with global sensitivity ∆ = 2
b

√∑T+1
t=1 ∆2

t .
7: Add global noise ζ ∼ N (0, 2σ∆/b) to each weights and perform projected gradient step:

θt ← Π(θt − η(g̃t + ζ)).

8: Report new (ϵ, δ)-DP guarantees with accountant.
9: until privacy budget (ϵ, δ) has been reached.

A.3 ROBUSTNESS CERTIFICATES OF LIPSCHITZ CONSTRAINED NETWORKS

The temperature parameter τ of softmax has a strong influence on the certificates. The models with
the most robust decisions are not the ones with the best clean accuracy, which is compliant with the
observations of Béthune et al. (2022).

20



Softmax
Temperature

Certifiable accuracy at radius r/255 Membership
Inference Attacks

r = 0 r = 1 r = 2 r = 4 r = 8 r = 16 AUROC Adv.
τ = 0.01 47.4 5.9 0.1 0.0 0.0 0.0 59.8 23.9
τ = 0.22 44.4 39.1 34.2 24.9 11.5 0.8 50.1 15.0
τ = 0.40 41.6 38.4 35.6 29.6 19.1 5.3 50.0 11.3
τ = 0.74 38.4 36.4 34.7 30.9 24.1 13.0 51.9 20.5
τ = 2.77 33.3 32.2 31.2 29.3 25.9 18.8 52.5 21.3
τ = 5.40 32.5 31.4 30.4 28.8 25.5 19.7 59.7 23.6

Table 1: Certifiable accuracy scores under (20.0, 10−5)-DP training on Cifar-10 dataset. For
each targeted robustness radius r/255, we optimize over softmax-crossentropy temperature τ , and
report the best value. We also monitor the best AUROC and the best attacker Advantage (Adv.) Yeom
et al. (2018) achieved by two popular membership inference attacks: threshold attacks Song & Mittal
(2021) and a logistic regression shadow model Shokri et al. (2017).

A.4 BIAS OF CLIPLESS DP-SGD

Clipless DP-SGD also exhibits a bias, but this bias takes a different form than the bias induced by
clipping in DP-SGD.

The bias of the optimizer. In DP-SGD (with clipping) the average gradient is biased by the
elementwise clipping. Therefore, the clipping may slow down convergence or lead to sub-optimal
solutions.

The bias of the model in the space in Lipschitz networks. This is a bias of the model, not of
the optimizer. It has been shown that any classification task could be solved with a 1-Lipschitz
classifier (Béthune et al., 2022), and in this sense, the bias induced by the space of 1-Lipschitz
functions is not too severe. Better, this bias is precisely what allows to produce robustness certificates,
see for example Yang et al. (2020).

Finally, there is the implicit bias. It is induced by a given architecture on the optimizer, which can
have strong effects on effective generalization. For neural networks (Lipschitz or not), this implicit
bias is not fully understood yet. But even on large Lipschitz models, it seems that the Lipschitz
constraint biases the network toward better robustness radii but worse clean accuracy, as frequently
observed in the relevant literature.

Therefore, these biases influence the learning process differently, and they constitute two distinct (not
necessarily exclusive) approaches. We illustrate the difference between these paradigms in Figure 7.

A.5 EFFICIENCY OF GRADIENT CLIPPING

Beyond the conventional implementation of gradient clipping that can be found in Opacus or Tf-
privacy, recent developments proposed more efficient forms of clipping, or to get rid of the clipping
introduced by Abadi et al. (2016) and to use renormalization instead.

In this regard, we can mention the works of Bu et al. (2022b) or Yang et al. (2022) that study
alternative implementations of clipping based on renormalization, which eliminates the need to tune
the clipping value, with convergence guarantees.

Other works study the alternative implementation of elementwise clipping to reduce the computational
cost, like Bu et al. (2022a), Li et al. (2021) He et al. (2022), and Bu et al. (2023). Taking inspiration
from Bu et al. (2023) we summarize each one in Tables 2 and 3.

B LIPDP TUTORIAL

This section gives advice on how to start your DP training processes using the framework. Moreover,
it provides insights into how input pre-processing, building networks with Residual connections and
Loss-logits gradient clipping could help offer better utility for the same privacy budget.
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Instantiating
per-sample

gradient

Storing every
layer’s gradient

Instantiating
non-DP
gradient

Number of
back-propagations

Overhead
independent of

batch size
non-DP ✗ ✗ ✓ 1 ✓

TF-Privacy, like Abadi et al. (2016) ✓ ✗ ✓ B ✗
Opacus (Yousefpour et al., 2021) ✓ ✓ ✓ 1 ✗
FastGradClip (Lee & Kifer, 2021) ✓ ✗ ✗ 2 ✗

GhostClip (Li et al., 2021; Bu et al., 2022a) ✗ ✗ ✓ 1 ✗
Book-Keeping (Bu et al., 2023) ✗ ✗ ✗ 1 ✗

Clipless w/ Lipschitz (ours) ✗ ✗ ✓ 1 ✓
Clipless w/ GNP (ours) ✗ ✗ ✓ 1 ✓

Table 2: Comparison of DP-SGD against existing techniques of literature. Clipless DP-SGD is
the only technique whose time/memory overhead depends exclusively on weight matrices but not the
batch size.

Time Complexity Overhead Memory Overhead
non-DP 0 0

TF-Privacy, like Abadi et al. (2016) O(BTpd) 0
Opacus (Yousefpour et al., 2021) O(BTpd) O(Bpd)
FastGradClip (Lee & Kifer, 2021) O(BTpd) O(Bpd)

GhostClip (Li et al., 2021; Bu et al., 2022a) O(BTpd+BT 2) O(BT 2)
Book-Keeping (Bu et al., 2023) O(BTpd) O(Bmin(pd, T 2))

Clipless w/ Lipschitz (ours) O(Upd) 0
Clipless w/ GNP (ours) O(Upd+ V pdmin(p, d)) 0

Table 3: Time and memory costs for each method for feedforward networks. We assume weight
matrices of shape p × d, and a physical batch size B. For images, T is height×width. U is the
number of iterations in Power Iteration algorithm, and V the number of iterations in Björck projection.
Typically U, V < 15 in practice. The overhead is taken relatively to non-DP training without clipping.
This table is largely inspired from Bu et al. (2023).

Figure 7: Comparison between the bias of DP-SGD with clipping, and Clipless DP-SGD. One is an
instance of optimizer bias, and the other of function space bias.
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B.1 PREREQUISITE: BUILDING A ℓ-LIPSCHITZ NETWORK

As per def 3 a l-Lipschitz neural network of depth d can be built by composing
d√
l layers. In the rest

of this section we will focus on 1-Lipschitz networks (rather than controlling l we control the loss
to obtain the same effects Béthune et al. (2022)). In order to do so the strategy consists in choosing
only 1-Lipschitz activations, and to constrain the weights of parameterized layers such that it can
only express 1-Lipschitz functions. For instance normalizing the weight matrix of a dense layer by
its spectral norm yield a 1-Lipschitz layer (this, however cannot be applied trivially on convolution’s
kernel). In practice we used the layers available in the open-source library deel-lip. In practice, when
building a Lipschitz network, the following block can be used:

• Dense layers: are available as SpectralDense or QuickSpectralDense which apply spectral
normalization and Björck orthogonalization, making them GNP layers.

• Relu activations are replaced by Groupsort2 activations, and such activations are GNP,
preventing vanishing gradient.

• pooling layers are replaced with ScaledL2NormPooling, which is GNP since it performs the
operation x 7→ (∥xm∥2)m where m is the multi-index of a patch of contiguous pixels.

• normalization layers like BatchNorm are not K-Lipschitz. We did not accounted these
layers since they can induce a privacy leak (as they keep a rolling mean and variance). A
1-Lipschitz drop-in replacement is studied in C.2.3. The relevant literature also propose
drop-in replacement for this layer with proper sensitivity accounting.

Originally, this library relied on differentiable re-parametrizations, since it yields higher accuracy
outside DP training regime (clean training without noise). However, our framework does not
account for the Lipschitz constant of the re-parametrization operator. This is why we provide
QuickSpectralDense and QuickSpectralConv2D layers to enforce Lipschitz constraints, where the
projection is enforced with a tensorflow constraint. Note that SpectralDense and SpectralConv2D
can still be used with a CondenseCallack to enforce the projection, and bypass the back-propagation
through the differentiable re-parametrization. However this last solution, while being closer to the
original spirit of deel-lip, is also less efficient in speed benchmarks.

The Lipschitz constant of each layer is bounded by 1, since each weight matrix is divided by
the largest singular value σmax. This singular value is computed with Power Iteration algorithm.
Power Iteration computes the largest singular value by repeatedly computing a Rayleigh quotient
asssociated to a vector u, and this vector eventually converges to the eigenvector umax associated to
the largest eigenvalue. These iterations can be expensive. However, since gradient steps are smalls,
the weight matrices Wt and Wt+1 remain close to each other after a gradient step. Hence their largest
eigenvectors tend to be similar. Therefore, the eigenvector umax can be memorized at the end of each
train step, and re-used as high quality initialization at the next train step, in a “lazy” fashion. This
speed-up makes the overall projection algorithm very efficient.

B.2 GETTING STARTED

The framework we propose is built to allow DP training of neural networks in a fast and controlled
approach. The tools we provide are the following :

1. A pipeline to efficiently load and pre-process the data of commonly used datasets like
MNIST, FashionMNIST and CIFAR10.

2. Configuration objects to correctly account DP events we provide config objects to fill in
that will

3. Model objects on the principle of Keras’ model classes we offer both a DP_Model and a
DP_Sequential class to streamline the training process.

4. Layer objects where we offer a readily available form of the principal layers used for DNNs.
These layers are already Lipschitz constrained and possess class specific methods to access
their Lipschitz constant.

5. Loss functions, identically, we offer DP loss functions that automatically compute their
Lipschitz constant for correct DP enforcing.
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We highlight below an example of a full training loop on Mnist with lip-dp library. Refer to the
“examples” folder in the library for more detailed explanations in a jupyter notebook.

dp_parameters = DPParameters(
noisify_strategy="global",
noise_multiplier=2.0,
delta=1e-5,

)

epsilon_max = 3.0

input_upper_bound = 20.0
ds_train, ds_test, dataset_metadata = load_and_prepare_data(

"mnist",
batch_size=1000,
drop_remainder=True,
bound_fct=bound_clip_value(

input_upper_bound
),

)

# construct DP_Sequential
model = DP_Sequential(

layers=[
layers.DP_BoundedInput(

input_shape=dataset_metadata.input_shape, upper_bound=
input_upper_bound

),
layers.DP_QuickSpectralConv2D(

filters=32,
kernel_size=3,
kernel_initializer="orthogonal",
strides=1,
use_bias=False,

),
layers.DP_GroupSort(2),
layers.DP_ScaledL2NormPooling2D(pool_size=2, strides=2),
layers.DP_QuickSpectralConv2D(

filters=64,
kernel_size=3,
kernel_initializer="orthogonal",
strides=1,
use_bias=False,

),
layers.DP_GroupSort(2),
layers.DP_ScaledL2NormPooling2D(pool_size=2, strides=2),

layers.DP_Flatten(),

layers.DP_QuickSpectralDense(512),
layers.DP_GroupSort(2),
layers.DP_QuickSpectralDense(dataset_metadata.nb_classes),

],
dp_parameters=dp_parameters,
dataset_metadata=dataset_metadata,

)

model.compile(
loss=losses.DP_TauCategoricalCrossentropy(18.0),
optimizer=tf.keras.optimizers.SGD(learning_rate=2e-4, momentum=0.9),
metrics=["accuracy"],

)
model.summary()

num_epochs = get_max_epochs(epsilon_max, model)
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(a) Input norms. (b) Gradient norms.

Figure 8: Histogram of norms for different image space on CIFAR-10 images. We see that for
GNP networks the distribution of dataset norms have a strong influence on the norm of the individual
parameterwise gradient norms of missclassified examples. The global gradient bound is equal to
135.66 on this architecture: less than two times the maximum empirical bound of 73.

hist = model.fit(
ds_train,
epochs=num_epochs,
validation_data=ds_test,
callbacks=[

# accounting is done thanks to a callback
DP_Accountant(log_fn="logging"),

],
)

B.3 IMAGE SPACES AND INPUT CLIPPING

Input preprocessing can be done in a completely dataset agnostic way (i.e without privacy leakages)
and may yield positive results on the models utility. We explore here the choice of the color space,
and the norm clipping of the input.

B.3.1 COLOR SPACE REPRESENTATIONS

The color space of images can yield very different gradient norms during the training process.
Therefore, we can take advantage of this to train our DP models more efficiently. Empirically,
Figures 8a and 8b show that some color spaces yield narrower image norm distributions that happen
to be more advantageous to maximise the mean gradient norm to noise ratio across all samples during
the DP training process of GNP networks.

B.3.2 INPUT CLIPPING

A clever way to narrow down the distribution of the dataset’s norms would be to clip the norms of the
input of the model. This may result in improved utility since a narrower distribution of input norms
might maximise the mean gradient norm to noise ratio for misclassified examples. Also, we advocate
for the use of GNP networks as their gradients usually turn out to be closer to the upper bound we are
able to compute for the gradient. See Figure 9a and 9b

B.4 PRACTICAL IMPLEMENTATION OF RESIDUAL CONNECTIONS

The implementation of skip connections is made relatively straightforward in our framework by the
make_residuals method. This function splits the input path in two, and wraps the layers inside
the residual connections, as illustrated in figure 10.

from lipdp.layers import make_residuals
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(a) Conventional network. (b) Gradient Norm Preserving network.

Figure 9: Gradient norms of fully-connected networks on CIFAR-10. We see that GNP networks
exhibit a qualitatively different profile of gradient norms with respect to parameters, sticking closer
to the upper bound we are able to compute for the gradient norm. The GNP network does not use
biases, therefore all layers hare the same bound of 78.38 for their gradient norm. Not too far away
from the maximum empirical bound of 56 at initialization.

Figure 10: Implementation of a skip connection in the lip-dp framework. The meta block
DP_WrappedResidual handle the forward propagation and the backward propagation of pairs
of bounds (one for each computation path) by leveraging the forward and the backward of sub-blocks.
DP_SplitResidual handle the creation of a tuple of input bounds at the forward, and collapse the
tuple of gradient bounds into a scalar at the backward, while DP_MergeResidual does the opposite.
All those operations are wrapped under the convenience function make_residuals.

## Manual implementation of residual connection:
layers = [DP_SplitResidual(),

DP_WrappedResidual(DP_QuickSpectralConv2D(16, (3, 3)),
DP_WrappedResidual(DP_GroupSort(2)),
DP_MergeResidual(’1-lip-add’)]

## Or equivalently, with helper function:
layers = make_residuals([

DP_QuickSpectralConv2D(16, (3, 3),
DP_GroupSort(2)

])

By using this implementation, the sensitivity of the gradient computation and the input bounds
to each layer are correctly computed when the model’s path is split. This allows for fairly easy
implementations of models like the MLP-Mixer and ResNets. Since convolutional models may suffer
from gradient vanishing and that dense based models are relatively restrictive in terms of architecture,
implementing skip connections could be a useful feature for our framework.
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B.5 LOSS-LOGITS GRADIENT CLIPPING

The advantage of the traditional DP-SGD approach is that through hyperparameter optimization
on the global gradient clipping constant, we indirectly optimize the mean signal to noise ratio on
missclassified examples. However, this clipping constant is not really explainable and rather just an
empirical result of optimization on a given architecture and loss function.

Importantly, our framework is compatible with a more efficient and explainable form of clipping. As
more and more examples are correctly classified, the magnitude of ∥∇fL∥ tend to diminish over
the course of training, quickly falling below the upper bound and diminishing the gradient norm to
noise standard deviation ratio. Gradient clipping strategy is still available in our framework. But
instead of clipping the parameter gradient ∇θL, any intermediate gradient ∇fdL can be clipped
during backpropagation. Indeed, by introducing a “clipping layer” that behave like identity function
at the forward pass, and clip the gradient during the backward pass, we are able to clip the gradient of
the loss on the final logits for a minimal cost.

Indeed, in this case the size of the clipped vector is the output dimension |ŷ|, which is small for a lot of
practical regression and classification tasks. For example in CIFAR-10 the output vector is of length
10. This scales better with the batch size than the weight matrices that are typically of sizes 64× 64
or 128× 128. More precisely, in vanilla DP-SGD the per-weight gradient clipping is applied on the
batched gradient∇Wd

L which is a tensor of size b× h2 for matrix weight Wd ∈ Rh×h. In privacy it
is not unusual to have b and h in the [102, 104] range. Clipping this vector can cause memory issues
or slowdowns Lee & Kifer (2021). However∇fL is of size b× h which is significantly cheaper to
clip. Note that the resulting “gradient” vector is not a true gradient anymore in a strictly mathematical
sense, but rather a “descent direction” Boyd & Vandenberghe (2004).

Furthermore, if the gradient clipping layer is inserted on the tail of the network (between the logits
and the loss) we can characterize its effects on the training, in particular for classification tasks with
binary cross-entropy loss.

We denote by L(ClipC
∇(ŷ)) the loss wrapped under a DP_ClipGradient layer that behaves like

identity x 7→ x at the forward, and clips the gradient norm to C > 0 in the backward pass:

∇ŷ

(
L(ClipC

∇(ŷ))
)
:=min (1,

C

∥∇ŷL(ŷ)∥
)∇ŷL(ŷ) (13)

=min (∥∇ŷL(ŷ)∥, C)
∇ŷL(ŷ)
∥∇ŷL(ŷ)∥

. (14)

We denote by
−−→
g(ŷ) the unit norm vector ∇ŷL(ŷ)

∥∇ŷL(ŷ)∥ . Then:

∇ŷ

(
L(ClipC∇(ŷ))

)
= min (∥∇ŷL(ŷ)∥, C)

−−→
g(ŷ).

Proposition 2 (Clipped binary cross-entropy loss is the Wasserstein dual loss). Let LBCE(ŷ, y) =
− log (σ(ŷy)) be the binary cross-entropy loss, with σ(ŷy) = 1

1+exp (−ŷy) the sigmoid activation,
assuming discrete labels y ∈ {−1,+1}. Assume examples are sampled from the dataset D. Let
ŷ(θ, x) = f(θ, x) be the predictions at input x ∈ D. Then for every C > 0 sufficiently small, a
gradient descent step with the clipped gradient ∇θED[L(ClipC

∇(ŷ, y))] is identical to the gradient
ascent step obtained from Kantorovich-Rubinstein loss LKR(ŷ, y) = ŷy.

Proof. In the following we use the short notation L in place of LBCE . Assume that examples with
labels +1 (resp. −1) are sampled from distribution P (resp. Q). By definition:

∇θED[L(ClipC∇(ŷ, y))] = ∇θ

(
Ex∼P [L(ClipC∇(f(θ, x),+1))] + Ex∼Q[L(ClipC∇(f(θ, x),−1))]

)
.

Observe that the output of the network is a single scalar, hence
−−→
g(ŷ) ∈ {−1,+1}. We ap-

ply the chainrule ∇θL = ∇ŷL∂ŷ
∂θ =

−−→
g(ŷ)min (∥∇ŷL(ŷ)∥, C)∇θf(θ, x). We note R(ŷ, C) :=

min (∥∇ŷL(ŷ)∥, C) > 0 and we obtain:

∇θED[L(ClipC
∇(ŷ, y))] = ∇θ

(
Ex∼P [

−−→
g(ŷ)R(ŷ, C)∇θf(θ, x)] + Ex∼Q[

−−→
g(ŷ)R(ŷ, C)∇θf(θ, x)]

)
.

(15)
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Observe that the value of
−−→
g(ŷ) can actually be deduced from the label y, which gives:

∇θED[L(ŷ, y)] = −Ex∼P [R(ŷ, C)∇θf(θ, x)] + Ex∼Q[R(ŷ, C)∇θf(θ, x)]. (16)

Observe that the function x 7→ ∇ŷL(ŷ) is piecewise-continuous when the loss ŷ 7→ L(ŷ, y) is
piecewise continuous. Observe that |∇ŷL(ŷ)| is non zero, since the loss L does not achieve its
minimum over the open set (−∞,+∞), since σ(ŷ) ∈ (0, 1). Assuming that the data x ∈ D lives
in a compact space (or equivalently that P and Q have compact support), since x 7→ |∇ŷL(ŷ)| is
piecewise continuous (with finite number of pieces for finite neural networks) it attains its minimum
C ′ > 0. Choosing any C < C ′ implies that R(ŷ, C) = C, which yields:

∇θED[L(ClipC∇(ŷ, y))] = −Ex∼P [C∇θf(θ, x)] + Ex∼Q[C∇θf(θ, x)]

= −C (Ex∼P [∇θf(θ, x)]− Ex∼Q[∇θf(θ, x)]) .

This corresponds to a gradient ascent step of length C on the Kantorovich-Rubinstein (KR) objective
LKR(ŷ, y) = ŷy. This loss is named after the Kantorovich Rubinstein duality that arises in optimal
transport, than states that the Wasserstein-1 distance is a supremum over 1-Lipschitz functions:

W1(P,Q) := sup
f∈1-Lip(D,R)

Ex∼P [f(x)]− Ex∼Q[f(x)]. (17)

Hence, with clipping C small enough the gradient steps are actually identical to the ones performed
during the estimation of Wasserstein-1 distance.

The adaptive clipping of Andrew et al. (2021) takes the form of a Gaussian mechanism so the
implementation of the RDP accountant is straightforward.

In future works, other multi-class losses can be studied through the lens of per-example clipping.
Our framework permits the use of gradient clipping while at the same time faciliting the theoretical
anaysis.

B.5.1 POSSIBLE IMPROVEMENTS

Our framework is compatible with possible improvements in methods of data pre-processing. For
instance some works suggest that feature engineering is the key to achieve correct utility/privacy trade-
off Tramer & Boneh (2021) some other work rely on heavily over-parametrized networks, coupled
with batch size De et al. (2022). While we focused on providing competitive and reproducible
baselines (involving minimal pre-processing and affordable compute budget) our work is fully
compatible with those improvements. Secondly the field of GNP networks (also called orthogonal
networks) is still an active field, and new methods to build better GNP networks will improve the
efficiency of our framework ( for instance orthogonal convolutions Achour et al. (2022),Li et al.
(2019b),Li et al. (2019a),Trockman & Kolter (2021),Singla & Feizi (2021b) are still an active topic).
Finally some optimizations specific to our framework can also be developed: a scheduling of loss-
logits clipping might allow for better utility scores by following the declining value of the gradient of
the loss, therefore allowing for a better mean signal to noise ratio across a diminishing number of
miss-classified examples. Observe that our framework is also compatible with other ideas, such as
the progressing freezing of deeper layers proposed by Tang & Lécuyer (2022).

C COMPUTING SENSITIVITY BOUNDS

C.1 LIPSCHITZ CONSTANTS OF COMMON LOSS FUNCTIONS

This section contains the proofs related to the content of Table 4. Our framework wraps over some
losses found in deel-lip library, that are wrapped by our framework to provide Lipschitz constant
automatically during backpropagation for bounds.

Multiclass Hinge This loss, with min margin m is computed in the following manner for a one-hot
encoded ground truth vector y and a logit prediction ŷ :

LMH(ŷ, y) = {max(0,
m

2
− ŷ1.y1), ...,max(0,

m

2
− ŷk.yk)}.

And ∥ ∂
∂yLMH(ŷ, y)∥2 ≤ ∥ŷ∥2. Therefore LH = 1.
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Loss Hyper-parameters L(ŷ, y) Lipschitz bound L

Softmax Cross-entropy temperature τ > 0 yT log softmax(ŷ/τ)
√
2/τ

Cosine Similarity bound Xmin > 0 yT ŷ
max(∥ŷ∥,Xmin

1/Xmin

Multiclass Hinge margin m > 0 {max(0, m
2 − ŷi.yi)}1≤i≤K 1

Kantorovich-Rubenstein N/A {ŷ, y} 1

Hinge Kantorovich-Rubenstein margin m > 0
regularization α > 0

α.LMH(ŷ, y) + LMKR(ŷ, y) 1 + α

Table 4: Lipschitz constant of common supervised classification losses used for the training of
Lipschitz neural networks with k classes. Proofs in Section C.1.

Multiclass Kantorovich Rubenstein This loss, is computed in a one-versus all manner, for a
one-hot encoded ground truth vector y and a logit prediction ŷ :

LMKR(ŷ, y) = {ŷ1 − y1, . . . , ŷk − yk)}.

Therefore, by differentiating, we also get LKR = 1.

Multiclass Hinge - Kantorovitch Rubenstein This loss, is computed in the following manner for
a one-hot encoded ground truth vector y and a logit prediction ŷ :

LMHKR(ŷ, y) = αLMH(ŷ, y) + LMKR(ŷ, y).

By linearity we get LHKR = α+ 1.

Cosine Similarity Cosine Similarity is defined in the following manner element-wise :

LCS(ŷ, y) =
ŷT y

∥ŷ∥2∥y∥2
.

And y is one-hot encoded, therefore LCS(ŷ, y) = ŷi

∥ŷ∥2
. Therefore, the Lipschitz constant of

this loss is dependant on the minimum value of ŷ. A reasonable assumption would be ∀x ∈ D :
Xmin ≤ ∥x∥2 ≤ Xmax. Furthermore, if the networks are Norm Preserving with factor K, we ensure
that:

KXmin ≤ ∥ŷ∥2 ≤ KXmax.

Which yields: LCS = 1
KXmin

. The issue is that the exact value of K is never known in advance
since Lipschitz networks are rarely purely Norm Preserving in practice due to various effects (lack of
tightness in convolutions, or rectangular matrices that can not be perfectly orthogonal).

Realistically, we propose the following loss function in replacement:

LK−CS(ŷ, y) =
ŷi

max(KXmin, ∥ŷ∥2)
.

Where K is an input given by the user, therefore enforcing LK−CS = 1
KXmin

.

Categorical Cross-entropy from logits The logits are mapped into the probability simplex with
the Softmax function RK → (0, 1)K . We also introduce a temperature parameter τ > 0, which
hold signifance importance in the accuracy/robustness tradeoff for Lipschitz networks as observed
by Béthune et al. (2022). We assume the labels are discrete, or one-hot encoded: we do not cover the
case of label smoothing.

Sj =
exp(τ ŷj)∑
i

exp(τ ŷi)
. (18)
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Layer Hyper
parameters ∥∂ft(θt,x)∂θt

∥2

1-Lipschitz dense none 1
Convolution window s

√
s

RKO convolution window s
image size H ×W

√
1/((1− (h−1)

2H )(1− (w−1)
2W ))

Table 5: Lipschitz constant with respect to parameters in common Lipschitz layers. We report only
the multiplicative factor that appears in front of the input norm ∥x∥2.

Layer Hyper
parameters ∥∂ft(θt,x)∂x ∥2

Add bias none 1
1-Lipschitz dense none 1
RKO convolution none 1
Layer centering none 1
Residual block none 2

ReLU, GroupSort
softplus, sigmoid, tanh none 1

Table 6: Lipschitz constant with respect to intermediate activations.

We denote the prediction associated to the true label j+ as Sj+ . The loss is written as:

L(ŷ) = − log(Sj+). (19)

Its gradient with respect to the logits is:

∇ŷL =

{
τ(Sj+ − 1) if j = j+,
τSj otherwise (20)

The temperature factor τ is a multiplication factor than can be included in the loss itself, by using 1
τL

instead of L. This formulation has the advantage of facilitating the tuning of the learning rate: this is
the default implementation found in deel-lip library. The gradient can be written in vectorized form:

∇ŷL = S − 1{j=j+}.

By definition of Softmax we have
∑

j ̸=j+ S2
j ≤ 1. Now, observe that Sj ∈ (0, 1), and as a

consequence (Sj+ − 1)2 ≤ 1. Therefore ∥∇ŷL∥22 =
∑

j ̸=j+ S2
j + (Sj+ − 1)2 ≤ 2. Finally

∥∇ŷL∥2 =
√
2 and LCCE =

√
2.

C.2 LAYER BOUNDS

The Lipschitz constant (with respect to input) of each layer of interest is summarized in table 6, while
the Lipschitz constant with respect to parameters is given in table 5.

C.2.1 DENSE LAYERS

Below, we illustrate the basic properties of Lipschitz constraints and their consequences for gradient
bounds computations. While for dense layers the proof is straightforward, the main ideas can be
re-used for all linear operations which includes the convolutions and the layer centering.

Property 2. Gradients for dense Lipschitz networks. Let x ∈ RC be a data-point in space of
dimensions C ∈ N. Let W ∈ RC×F be the weights of a dense layer with F features outputs. We
bound the spectral norm of the Jacobian as∥∥∥∥∂(WTx)

∂W

∥∥∥∥
2

≤ ∥x∥2. (21)
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Proof. Since W 7→WTx is a linear operator, its Lipschitz constant is exactly the spectral radius:

∥WTx−W ′Tx∥2
∥W −W ′∥2

=
∥(W −W ′)Tx∥2
∥W −W ′∥2

≤ ∥W −W ′∥2∥x∥2
∥W −W ′∥2

= ∥x∥2.

Finally, observe that the linear operation x 7→WTx is differentiable, hence the spectral norm of its
Jacobian is equal to its Lipschitz constant with respect to l2 norm.

C.2.2 CONVOLUTIONS

Property 3. Gradients for convolutional Lipschitz networks. Let x ∈ RS×C be an data-point
with channels C ∈ N and spatial dimensions S ∈ N. In the case of a time serie S is the length of the
sequence, for an image S = HW is the number of pixels, and for a video S = HWN is the number
of pixels times the number of frames. Let Ψ ∈ Rs×C×F be the weights of a convolution with:

• window size s ∈ N (e.g s = hw in 2D or s = hwn in 3D),

• with C input channels,

• with F ∈ N output channels.

• we don’t assume anything about the value of strides. Our bound is typically tighter for
strides=1, and looser for larger strides.

We denote the convolution operation as (Ψ ∗ ·) : RS×C → RS×F with either zero padding, either
circular padding, such that the spatial dimensions are preserved. Then the Jacobian of convolution
operation with respect to parameters is bounded:

∥∂(Ψ ∗ x)
∂Ψ

∥2 ≤
√
s∥x∥2. (22)

Proof. Let y = Ψ ∗x ∈ RS×F be the output of the convolution operator. Note that y can be uniquely
decomposed as sum of output feature maps y =

∑F
f=1 y

f where yf ∈ RS×F is defined as:{
(yf )if = yif for all 1 ≤ i ≤ S,

(yf )ij = 0 if j ̸= f.

Observe that (yf )T yf
′
= 0 whenever f ̸= f ′. As a consequence Pythagorean theorem yields

∥y∥22 =
∑F

f=1 ∥yf∥22. Similarly we can decompose each output feature map as a sum of pixels

yf =
∑S

p=1 y
pf . where ypf ∈ RS×F fulfill:{

(ypf )ij = 0 if i ̸= p, j ̸= f,

(ypf )pf = ypf otherwise.

Once again Pythagorean theorem yields ∥yf∥22 =
∑S

p=1 ∥ypf∥22. It remains to bound ypf appropri-
ately. Observe that by definition:

ypf = (Ψ ∗ x)pf = (Ψf )Txp[s].

where Ψf ∈ Rs×C is a slice of Ψ corresponding to output feature map f , and xp[s] ∈ Rs×C denotes
the patch of size s centered around input element p. For example, in the case of images with s = 3×3,
p are the coordinates of a pixel, and xp[s] are the input feature maps of 3× 3 pixels around it. We
apply Cauchy-Schwartz:

∥ypf∥22 ≤ ∥Ψf∥22 × ∥xp[s]∥22.
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By summing over pixels we obtain:

∥yf∥22 ≤ ∥Ψf∥22
S∑

p=1

∥xp[s]∥22, (23)

=⇒ ∥y∥22 ≤ (

F∑
f=1

∥Ψf∥22)(
S∑

p=1

∥xp[s]∥22), (24)

=⇒ ∥y∥22 ≤ ∥Ψ∥22 ×

(
S∑

p=1

∥xp[s]∥22

)
. (25)

The quantity of interest is
∑S

p=1 ∥xp[s]∥22 whose squared norm is the squared norm of all the patches
used in the computation. With zero or circular padding, the norm of the patches cannot exceed those
of input image. Note that each pixel belongs to atmost s patches, and even exactly s patches when
circular padding is used:

S∑
p=1

∥xp[s]∥22 ≤ s

S∑
p=1

∥xp∥22 = s∥x∥22.

Note that when strides>1 the leading multiplicative constant is typically smaller than s, so this
analysis can be improved in future work to take into account strided convolutions. Since Ψ is a linear
operator, its Lipschitz constant is exactly its spectral radius:

∥(Ψ ∗ x)− (Ψ′ ∗ x)∥2
∥Ψ−Ψ′∥2

=
∥(Ψ−Ψ′) ∗ x∥2
∥Ψ−Ψ′∥2

≤
√
s∥Ψ−Ψ′∥2∥x∥2
∥Ψ−Ψ′∥2

=
√
s∥x∥2.

Finally, observe that the convolution operation Ψ ∗ x is differentiable, hence the spectral norm of its
Jacobian is equal to its Lipschitz constant with respect to l2 norm:

∥∂(Ψ ∗ x)
∂Ψ

∥2 ≤
√
s∥x∥2.

An important case of interest are the convolutions based on Reshaped Kernel Orthogonalization
(RKO) method introduced by Li et al. (2019a). The kernel Ψ is reshaped into 2D matrix of dimensions
(sC×F ) and this matrix is orthogonalised. This is not sufficient to ensure that the operation x 7→ Ψ∗x
is orthogonal - however it is 1-Lipschitz and only approximately orthogonal under suitable re-scaling
by N > 0.
Corollary 1 (Loss gradient for RKO convolutions.). For RKO methods in 2D used in Serrurier et al.
(2021), the convolution kernel is given by Φ = NΨ where Ψ is an orthogonal matrix (under RKO)
and N > 0 a factor ensuring that x 7→ Φ ∗ x is a 1-Lipschitz operation. Then, for RKO convolutions
without strides we have:

∥∂(Ψ ∗ x)
∂Ψ

∥2 ≤
√

1

(1− (h−1)
2H )(1− (w−1)

2W )
∥x∥2. (26)

where (H,W ) are image dimensions and (h,w) the window dimensions. For large images with small
receptive field (as it is often the case), the Taylor expansion in h≪ H and w ≪W yields a factor of
magnitude 1 + (h−1)

4H + (w−1)
4W +O( (w−1)(h−1)

8HW ) ≈ 1.

C.2.3 LAYER NORMALIZATIONS

Property 4. Bounded loss gradient for layer centering. Layer centering is defined as f(x) =
x− ( 1n

∑n
i=1 xi)1 where 1 is a vector full of ones, and acts as a “centering” operation along some

channels (or all channels). Then the singular values of this linear operation are:

σ1 = 0, and σ2 = σ3 = . . . = σn = 1. (27)

In particular ∥∂f∂x∥2 ≤ 1.
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Proof. It is clear that layer normalization is an affine layer. Hence the spectral norm of its Jacobian
coincides with its Lipschitz constant with respect to the input, which itself coincides with the
spectral norm of f . The matrice M associated to f is symmetric and diagonally dominant since
|n−1

n | ≥
∑n−1

i=1 |
−1
n |. It follows that M is semi-definite positive. In particular all its eigenvalues

λ1 ≤ . . . ≤ λn are non negative. Furthermore they coincide with its singular values: σi = λi.
Observe that for all r ∈ R we have f(r1) = 0, i.e the operation is null on constant vectors. Hence
λ1 = 0. Consider the matrix M − I: its kernel is the eigenspace associated to eigenvalue 1. But the
matrix M − I = −1

n 11T is a rank-one matrix. Hence its kernel is of dimension n− 1, from which it
follows that λ2 = . . . = λn = σ2 . . . = σn = 1.

C.2.4 MLP MIXER ARCHITECTURE

The MLP-mixer architecture introduced in Tolstikhin et al. (2021) consists of operations named
Token mixing and Channel mixing respectively. For token mixing, the input feature is split in disjoint
patches on which the same linear opration is applied. It corresponds to a convolution with a stride
equal to the kernel size. convolutions on a reshaped input, where patches of pixels are “collapsed”
in channel dimensions. Since the same linear transformation is applied on each patch, this can be
interpreted as a block diagonal matrix whose diagonal consists of W repeated multiple times. More
formally the output of Token mixing takes the form of f(x) := [WTx1,W

Tx2, . . .W
Txn] where

x = [x1, x2, . . . , xn] is the input, and the xi’s are the patches (composed of multiple pixels). Note
that ∥f(x)∥22 ≤

∑n
i=1 ∥W∥22∥xi∥22 = ∥W∥22

∑n
i=1 ∥xi∥22 = ∥W∥22∥x∥22. If ∥W∥2 = 1 then the

layer is 1-Lipschitz - it is even norm preserving. Same reasoning apply for Channel mixing. Therefore
the MLP_Mixer architecture is 1-Lipchitz and the weight sensitivity is proportional to ∥x∥.

Lipschitz MLP mixer: We adapted the original architecture in order to have an efficient 1-Lipschitz
version with the following changes:

• Relu activations were replaced with GroupSort, allowing a better gradient norm preservation,

• Dense layers were replaced with their GNP equivalent,

• Skip connections are available (adding a 0.5 factor to the output in order to ensure 1-lipschitz
condition) but architecture perform as well without these.

Finally the architecture parameters were selected as following:

1. The number of layer is reduced to a small value (between 1 and 4) to take advantage of the
theoretical sensitivity bound.

2. The patch size and hidden dimension are selected to achieve a sufficiently expressive network
(a patch size between 2 and 4 achieves sufficient accuracy without over-fitting, and a hidden
dimension of 128-512 unlocks allows batch size).

3. The channel dim and token dimensions are chosen such that weight matrices are square
matrices (exact gradient norm preservation property requires square matrices).

C.3 TIGHTNESS IN PRACTICE

In our experiments on Cifar-10 the best performing architecture was a MLP Mixer with a single block
of mixing. We measure the theoretical bounds with our framework at the start of training in Fig. 11,
and at the end of training in Fig. 12.

We see that the last layer benefits from bounds that are quite tight (around 30% to 50%) whereas
the tightness drops for the deeper layers in MLP blocks (less than 10%). The explanation is that the
bound ∥∥∥∥∂fd(θd, x)∂θd

∥∥∥∥
2

≤ K(fd, θd)Xd−1, (28)

might be overly pessimistic, because of the Xd−1 term, especially since Cauchy-Schwartz inequality
is a “best-case bound” (i.e assuming that all vector involved in the inner product are co-linear), and
do not account for the possible orthogonality between xd and the cotangent vector. Nonetheless,
with a ratio of 4% we see that the noise and the gradient norm are of similar amplitude as soon as
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Figure 11: MLP Mixer on Cifar-10, first epoch.

Figure 12: MLP Mixer on Cifar-10, last epoch.
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Dataset Samples Features δ
Validation AUROC ↑ Wallclock Runtime (s) ↓
DP-SGD Clipless

DP-SGD DP-SGD Clipless
DP-SGD

ALOI 39,627 27 10−5 56.5 56.2 159.1 11.3
campaign 32,950 62 10−5 90.0 82.2 155.6 11.8
celeba 162,079 39 10−6 96.6 96.5 41.1 34.6
census 239,428 500 10−6 93.3 92.5 820.0 79.8
donors 495,460 10 10−6 100.0 100.0 257.9 90.2
magic 15,216 10 10−5 90.7 89.7 89.9 56.0
shuttle 39,277 9 10−5 98.3 99.4 11.1 6.8
skin 196,045 3 10−6 100.0 99.8 54.2 40.2
yeast 1,187 8 10−4 66.8 75.1 22.1 5.6

Table 7: Best validation AUROC values (in %) for models trained under (ϵ, δ)-DP privacy with ϵ = 1,
with DP-SGD and Clipless DP-SGD, on binary classification tasks of tabular data from Adbench
datasets Han et al. (2022). We use a random 80/20% stratified split into train/val.

Figure 13: Pareto front of AUROC values on tabular data.

the batch size exceed 1/0.04 = 25 examples, which is clearly our case with batch sizes that easily
exceed 2, 500 on Cifar-10.

D EXPERIMENTAL SETUP

D.1 TABULAR DATA

Instead of monitoring the median result, we can also look for the best one in each sweep, along with
the average runtime. The results are also report graphically in Fig. 13. The hyper-parameters are
reported in Table 8.
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Hyper-Parameter Minimum Value Maximum Value

Input Clipping None
Batch Size 512 104

Loss Gradient Clipping automatic (90%-th percentile)
τ (BCE) 10−2 100

Learning Rate 0.00001 1.0

Table 8: Hyper-parameters of Clipless DP-SGD for the Tabular experiment.

(a) MNIST. (b) F-MNIST. (c) CIFAR-10.

Figure 14: Our framework paints a clearer picture of the privacy/utility trade-off. We trained
models in an "out of the box setting" (no pre-training, no data augmentation and no handcrafted
features) on multiple tasks. Each green dot corresponds to an (accuracy, ϵ) pair from an epoch of one
of the runs, while the blue line is the Pareto front (convex hull of all the dots). While our results align
with the baselines presented in other frameworks, we recognize the importance of domain-specific
engineering. In this regard, we find the innovations introduced in Papernot et al. (2021); Tramer
& Boneh (2021); De et al. (2022) and references therein highly relevant. These advancements
demonstrate compatibility with our framework and hold potential for future integration.

D.2 PARETO FRONTS

We rely on Bayesian optimization Snoek et al. (2012) with Hyper-band Li et al. (2017) heuristic for
early stopping. The influence of some hyperparameters has to be highlighted to facilitate training
with our framework, therefore we provide a table that provides insights into the effects of principal
hyperparameters in Figure 15. Most hyper-parameters extend over different scales (such as the
learning rate), so they are sampled according to log-uniform distribution, to ensure fair covering of
the search space. Additionnaly, the importance of the softmax cross-entropy temperature τ has been
demonstrated in previous work Béthune et al. (2022).

Hyperparameter
Tuning

Influence on utility Influence on privacy
leakage per step

Increasing Batch Size Beneficial: decreases the sensitivity. Detrimental: reduces the privacy
amplification by subsampling.

Loss Gradient Clipping Beneficial: tighter sensitivity bounds.
Detrimental: biases the direction of the
gradient.

No influence

Clipping Input Norms Detrimental: destroy information, but
may increases generalization

No influence

Figure 15: Hyperparameter table: Here, we give insights on the influence of some hyper-parameters
on utility and privacy.
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D.2.1 HYPERPARAMETERS CONFIGURATION FOR MNIST

Experiments are run on NVIDIA GeForce RTX 3080 GPUs. The losses we optimize are either the
Multiclass Hinge Kantorovich Rubinstein loss or the τ − CCE.

Hyper-Parameter Minimum Value Maximum Value

Input Clipping 10−1 1
Batch Size 512 104

Loss Gradient Clipping automatic (90%-th percentile)
α (HKR) 10−2 2, 0× 103

τ (CCE) 10−2 1, 8× 101

The sweeps were run with MLP or ConvNet architectures yielding the results presented in Figure 14a.

D.2.2 HYPERPARAMETERS CONFIGURATION FOR FASHION-MNIST

Experiments are run on NVIDIA GeForce RTX 3080 GPUs. The losses we optimize are the Multiclass
Hinge Kantorovich Rubinstein loss, the τ − CCE or the K-CosineSimilarity custom loss function.

Hyper-Parameter Minimum Value Maximum Value

Input Clipping 10−1 1
Batch Size 5.0× 103 104

Loss Gradient Clipping automatic (90%-th percentile)
α (HKR) 10−2 2.0× 103

τ (CCE) 10−2 4.0× 101

K (K-CS) 10−2 1.0

A simple ConvNet architecture, in the spirit of VGG (but with Lipschitz constraints), was chosen to
run all sweeps yielding the results we present in Figure 14b.

D.2.3 HYPERPARAMETERS CONFIGURATION FOR CIFAR-10

Experiments are run on NVIDIA GeForce RTX 3080 or 3090 GPUs. The losses we optimize are the
Multiclass Hinge Kantorovich Rubinstein loss, the τ − CCE or the K-CosineSimilarity custom loss
function. They yield the results of Figure 14c.

Hyper-Parameter Minimum Value Maximum Value

Input Clipping 10−2 1
Batch Size 512 104

Loss Gradient Clipping automatic (90%-th percentile)
α (HKR) 10−2 2.0× 103

τ (CCE) 10−3 3.2× 101

K (K-CS) 10−2 1.0

The sweeps have been done on various architectures such as Lipschitz VGGs, Lipschitz ResNets
and Lipschitz MLP_Mixer. We can also break down the results per architecture, in figure 16. The
MLP_Mixer architecture seems to yield the best results. This architecture is exactly GNP since the
orthogonal linear transformations are applied on disjoint patches. To the contrary, VGG and Resnets
are based on RKO convolutions which are not exactly GNP. Hence those preliminary results are
compatible with our hypothesis that GNP layers should improve performance. Note that these results
are expected to change as the architectures are further improved. It is also dependant of the range
chosen for hyper-parameters. We do not advocate for the use of an architecture over another, and we
believe many other innovations found in literature should be included before settling the question
definitively.

For the vanilla implementation of DP-SGD we rely on Opacus library. We use the default configuration
from the official tutorial on Cifar-10, and we define the hyper-parameters for the grid search below:
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Figure 16: Accuracy/Privacy tradeoff on Cifar-10, split down per architecture used. While some
architectures seems to perform better than others, we don’t advocate for the use of one over another.
The results may not translate to all datasets, and may be highly dependant on the range chosen for
hyper-parameters. While this figure provides valuable insights, identifying the best architecture is left
for future works.

Hyper-Parameter Minimum Value Maximum Value

Input RGB standardized
Batch Size 500 5000

Noise Multiplier Automatic
Epochs 1 400

Maximum
Gradient norm 0.01 100

Learning rate 0.00001 1

D.3 CONFIGURATION OF THE “SPEED” EXPERIMENT

We detail below the environment version of each experiment, together with Cuda and Cudnn versions.
We rely on a machine with 32GB RAM and a NVIDIA Quadro GTX 8000 graphic card with 48GB
memory. The GPU uses driver version 495.29.05, cuda 11.5 (October 2021) and cudnn 8.2 (June 7,
2021). We use Python 3.8 environment.

• For Jax, we used jax 0.3.17 (Aug 31, 2022) with jaxlib 0.3.15 (July 23, 2022), flax 0.6.0
(Aug 17, 2022) and optax 1.4.0 (Nov 21, 2022).

• For Tensorflow, we used tensorflow 2.12 (March 22, 2023) with tensorflow_privacy 0.7.3
(September 1, 2021).

• For Pytorch, we used Opacus 1.4.0 (March 24, 2023) with Pytorch (March 15, 2023).
• For lip-dp we used deel-lip 1.4.0 (January 10, 2023) on Tensorflow 2.8 (May 23, 2022).

For this benchmark, we used among the most recent packages on pypi. However the latest version of
tensorflow privacy could not be forced with pip due to broken dependencies. This issue arise in clean
environments such as the one available in google colaboratory.

D.4 COMPATIBILITY WITH LITERATURE IMPROVEMENTS

Many method from the state of the art are based on improvement over the DP-SGD baseline. In this
section we will review these improvements and check the compatibility with our approach.

Adaptive clipping. As discussed in 3.1, or approach can benefit from adaptive clipping. Similarly
this can be done in a more efficient way.
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Figure 17: Pareto front on Cifar-10 with the multiple augmentations trick of De et al. (2022).

Multiple augmentations We tested adding “multiple augmentation” introduced by De et al. (2022)
on our approach but it did not yield improvements (see Appendix 17). This is probably due to the
fact that we train our architecture from scratch: doing so require an architecture that requires a
minimum amount of steps to converge. Such architecture are too small and not able to learn an
augmented dataset as those are more prone to under-fitting. Another reason is that in vanilla DP-SGD
the elementwise gradients of each augmentation can be averaged before the clipping operation, which
has no consequences on the overall sensitivity of the gradient step. Whereas in our case, the average
is computed after the loss gradient clipping.

Fine tuning a pretrained backbone: Clipless DP-SGD can work with a pre-trained backbone,
however, the fine-tuned layers must be 1-lipschitz. This can yield 2 approaches:

• Using a 1-lipschitz backbone: We can then fine tune the whole network and benefits from
pre-training. Unfortunately there is no 1-lipschitz backbone available for the moment.

• Using an unconstrained backbone: Our approach can work with an unconstrained feature
extractor using the following protocol: 1. the n last layers are dropped and replaced with a
1-Lipschitz classification network. 2. An input clipping layer is added at the beginning of
the classification head to ensure that the inputs are bounded. This approach was tested using
a MobilenetV2 backbone. Results are reported in Figure 18.

D.5 DROP-IN REPLACEMENT WITH LIPSCHITZ NETWORKS IN VANILLA DPSGD

To highlight the importance of the tight sensitivity bounds ∆d obtained by our framework, we perform
an ablation study by optimizing GNP networks using “vanilla” DP-SGD (with clipping), in Figure 19a
and 19b.

Thanks to the gradient clipping of DP-SGD (see Algorithm 4), Lipschitz networks can be readily
integrated in traditional DP-SGD algorithm with gradient clipping. The PGD algorithm is not
mandatory: the back-propagation can be performed within the computation graph through iterations
of Björck algorithm (used in RKO convolutions). This does not benefit from any particular speed-up
over conventional networks - quite to the contrary there is an additional cost incurred by enforcing
Lipschitz constraints in the graph. Some layers of deel-lip library have been recoded in Jax/Flax, and
the experiment was run in Jax, since Tensorflow was too slow.

We use use the Total Amount of Noise (TAN) heuristic introduced in Sander et al. (2022) to heuristi-
cally tune hyper-parameters jointly. This ensures fair covering of the Pareto front.

D.6 EXTENDED LIMITATIONS

The main weakness of our approach is that it crucially rely on accurate computation of the sen-
sitivity ∆. This task faces many challenges in the context of differential privacy: floating point
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Figure 18: Finetuning of a MobilenetV2 with Clipless DP-SGD. A Lipschitz MLP (1 or 2 layers,
and GroupSort activation) is trained using the backbone as a feature extractor. The backbone is not
fine-tuned as it is not Lipschitz. Therefore a plateau exists, depending on the quality of the feature
extractor.

Algorithm 4 Differentially Private Stochastic Gradient Descent : DP-SGD
Input: Neural network architecture f(·, ·)
Input: Initial weights θ0, learning rate scheduling ηt, number of steps N , noise multiplier σ, L2
clipping value C .

1: repeat
2: for all 1 ≤ t ≤ N − 1 do
3: Sample a batch

Bt = (x1, y1), (x2, y2), . . . , (xb, yb).

4: Create microbatches, compute and clip the per-sample gradient of cost function:

g̃t,i := min(C, ∥∇θtL(ŷi, yi)∥)
∇θtL(ŷi, yi)
∥∇θtL(ŷi, yi)∥

.

5: Perturb each microbatch with carefully chosen noise distribution b ∼ N (0, σC) :

ĝt,i ← g̃t,i + bi.

6: Perform projected gradient step:

θt+1 ← Π(θt − ηtĝt,i).

7: end for
8: until privacy budget (ϵ, δ) has been reached.
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(a) (b)

Figure 19: Privacy/utility trade-off for Gradient Norm Preserving networks trained under “vanilla”
DP-SGD (with gradient clipping). Each green dot corresponds to a single epoch of one of the runs.
Trajectories that end abruptly are due to the automatic early stopping of unpromising runs. Note that
clipping + orthogonalization have a high runtime cost, which severely limits the number of epochs
reported.

arithmetic is not associative, and summation order can a have dramatic consequences regarding
numerical stability Goldberg (1991). This is further amplified on the GPUs, where some operations
are intrinsically non deterministic Jooybar et al. (2013). This well known issue is already present in
vanilla DP-SGD algorithm. Our framework adds an additional point of failure: the upper bound of
spectral Jacobian must be computed accurately. Hence Power Iteration must be run with sufficiently
high number of iterations to ensure that the projection operator Π works properly. The (ϵ, δ)-DP
certificates only hold under the hypothesis that all computations are correct, as numerical errors can
induce privacy leakages. Hence we check empirically the effective norm of the gradient in the training
loop at the end of each epoch. No certificate violations were reported during ours experiments, which
suggests that the numerical errors can be kept under control.

E PROOFS OF GENERAL RESULTS

This section contains the proofs of results that are either informally presented in the main paper,
either formally defined in section A.5.

E.1 VARIANCE OF THE GRADIENT

The result mentionned in section 3.1 is based on the following result, directly adapted from a classical
result on concentration inequalities.
Corollary 2. Concentration of stochastic gradient around its mean. Assume the samples (x, y)
are i.i.d and sampled from an arbitrary distribution D. We introduce the R.V g = ∇θL(x, y) which is
a function of the sample (x, y), and its expectation ḡ = E(x,y)∼D[∇θL(x, y)]. Then for all u ≥ 2√

b
the following inequality hold:

P(∥1
b

b∑
i=1

gi − ḡ∥ > uK) ≤ exp

(
−
√
b

8
(u− 2√

b
)2

)
. (29)

Proof. The result is an immediate consequence of Example 6.3 p167 in Boucheron et al. (2013). We
apply the theorem with the centered variable Xi =

1
b (gi − ḡ) that fulfills condition ∥Xi∥ ≤ ci

2 with
ci =

4K
b since ∥gi∥ ≤ K. Then for every t ≥ 2K√

b
we have:

P(∥1
b

b∑
i=1

gi − ḡ∥ > t) ≤ exp

(
−
√
b

8K2
(t− 2K√

b
)2

)
. (30)

We conclude with the change of variables u = t
K .
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E.2 BACKGROUND FOR MAIN RESULT

The informal Theorem 1 requires some tools that we introduce below.

Additionnal hypothesis for GNP networks. We introduce convenient assumptions for the purpose
of obtaining tight bounds in Algorithm 2.

Assumption 1 (Bounded biases). We assume there exists B > 0 such that that for all biases bd we
have ∥bd∥ ≤ B. Observe that the ball {∥b∥2 ≤ B} of radius B is a convex set.

Assumption 2 (Zero preserving activation). We assume that the activation fulfills σ(0) = 0. When σ
is S-Lipschitz this implies ∥σ(x)∥ ≤ S∥x∥ for all x. Examples of activations fulfilling this constraints
are ReLU, Groupsort, GeLU, ELU, tanh. However it does not work with sigmoid or softplus.

We also propose the assumption 3 for convenience and exhaustivity.

Assumption 3 (Bounded activation). We assume it exists G > 0 such that for every x ∈ X and every
1 ≤ d ≤ D + 1 we have:

∥hd∥ ≤ G and ∥zd∥ ≤ G. (31)

Note that this assumption is implied by requirement 2, assumption 1-2, as illustrated in proposition 3.

In practice assumption 3 can be fulfilled with the use of input clipping and bias clipping, bounded
activation functions, or layer normalization. This assumption can be used as a “shortcut” in the proof
of the main theorem, to avoid the “propagation of input bounds” step.

E.3 MAIN RESULT

We rephrase in a rigorous manner the informal theorem of section 3.1. The proofs are given in
section B. In order to simplify the notations, we use X := X0 in the following.

Proposition 3. Norm of intermediate activations. Under requirement 2, assumptions 1-2 we have:

∥ht∥ ≤ S∥zt∥ ≤

{
(US)t

(
X − SB

1−SU

)
+ SB

1−SU if US ̸= 1,

SX + tSB otherwise.
(32)

In particular if there are no biases, i.e if B = 0, then ∥ht∥ ≤ S∥zt∥ ≤ SX .

Proposition 3 can be used to replace assumption 3.

Proposition 4. Lipschitz constant of dense Lipschitz networks with respect to parameters. Let
f(·, ·) be a Lipschitz neural network. Under requirement 2, assumptions 1-2 we have for every
1 ≤ t ≤ T + 1:

∥∂f(θ, x)
∂bt

∥2 ≤ (SU)T+1−t, (33)

∥∂f(θ, x)
∂Wt

∥2 ≤ (SU)T+1−t∥ht−1∥. (34)

In particular, for every x ∈ X , the function θ 7→ f(θ, x) is Lipschitz bounded.

Proposition 4 suggests that the scale of the activation ∥ht∥ must be kept under control for the gradient
scales to distribute evenly along the computation graph. It can be easily extended to a general result
on the per sample gradient of the loss, in theorem 1.

Theorem 1. Bounded loss gradient for dense Lipschitz networks. Assume the predictions are
given by a Lipschitz neural network f :

ŷ := f(θ, x). (35)

Under requirements 1-2, assumptions 1-2, there exists a K > 0 for all (x, y, θ) ∈ X × Y ×Θ the
loss gradient is bounded:

∥∇θL(ŷ, y)∥2 ≤ K. (36)

Let α = SU be the maximum spectral norm of the Jacobian between two consecutive layers.
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If α = 1 then we have:

K = O
(
LX + L

√
T + LSX

√
T + L

√
BXST + LBST

3/2
)
. (37)

The case S = 1 is of particular interest since it covers most activation function (i.e ReLU, GroupSort):

K = O
(
L
√
T + LX

√
T + L

√
BXT + LBT

3/2
)
. (38)

Further simplification is possible if we assume B = 0, i.e a network without biases:

K = O
(
L
√
T (1 +X)

)
. (39)

If α > 1 then we have:

∥∇θL(ŷ, y)∥2 = O
(
L

αT

α− 1

(√
T (αX + SB) +

α(SB + α)√
α2 − 1

))
. (40)

Once again B = 0 (network with no bias) leads to useful simplifications:

∥∇θL(ŷ, y)∥2 = O
(
L
αT+1

α− 1

(√
TX +

α√
α2 − 1

))
. (41)

We notice that when α ≫ 1 there is an exploding gradient phenomenon where the upper bound
become vacuous.

If α < 1 then we have:

∥∇θL(ŷ, y)∥2 = O

(
LαT

(
X
√
T +

1

(1− α2)

(√
XSB

αT
+

SB√
(1− α)

))
+

L

(1− α)
√
1− α

)
.

(42)

For network without biases we get:

∥∇θL(ŷ, y)∥2 = O

(
LαTX

√
T +

L√
(1− α)3

)
. (43)

The case α≪ 1 is a vanishing gradient phenomenon where ∥∇θL(ŷ, y)∥2 is now independent of
the depth T and of the input scale X .

Proof. The control of gradient implicitly depend on the scale of the output of the network at every
layer, hence it is crucial to control the norm of each activation.

Lemma 1 (Bounded activations). If US ̸= 1 for every 1 ≤ t ≤ T + 1 we have:

∥zt∥ ≤ U tSt−1

(
X − SB

1− SU

)
+

B

1− SU
. (44)

If US = 1 we have:
∥zt∥ ≤ X + tB. (45)

In every case we have ∥ht∥ ≤ S∥zt∥.

Lemma proof. From assumption 2, if we assume that σ is S-Lipschitz, we have:

∥ht∥ = ∥σ(zt)∥ = ∥σ(zt)− σ(0)∥ ≤ S∥zt∥. (46)

Now, observe that:

∥zt+1∥ = ∥Wt+1ht + bt+1∥ ≤ ∥Wt+1∥∥ht∥+ ∥bt+1∥ ≤ US∥zt∥+B. (47)

Let u1 = UX +B and ut+1 = SUut +B be a linear recurrence relation. The translated sequence
ut− B

1−SU is a geometric progression of ratio SU , hence ut = (SU)t−1(UX+B− B
1−SU )+ B

1−SU .
Finally we conclude that by construction ∥zt∥ ≤ ut. ■
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The activation jacobians can be bounded by applying the chainrule. The recurrence relation obtained
is the one automatically computed with back-propagation.

Lemma 2 (Bounded activation derivatives). For every T + 1 ≥ s ≥ t ≥ 1 we have:

∥∂zs
∂zt
∥ ≤ (SU)s−t. (48)

Lemma proof. The chain rule expands as:

∂zs
∂zt

=
∂zs

∂hs−1

∂hs−1

∂zs−1

∂zs−1

∂zt
. (49)

From Cauchy-Schwartz inequality we get:

∥∂zs
∂zt
∥ ≤ ∥ ∂zs

∂hs−1
∥ · ∥∂hs−1

∂zs−1
∥ · ∥∂zs−1

∂zt
∥. (50)

Since σ is S-Lipschitz, and ∥Ws∥ ≤ U , and by observing that ∥∂zt∂zt
∥ = 1 we obtain by induction

that:

∥∂hs

∂ht
∥ ≤ (SU)s−t. (51)

■

The derivatives of the biases are a textbook application of the chainrule.

Lemma 3 (Bounded bias derivatives). For every t we have:

∥∇btL(ŷ, y)∥ ≤ L(SU)T+1−t. (52)

Lemma proof. The chain rule yields:

∇btL(ŷ, y) = (∇ŷL(ŷ, y))
∂zT+1

∂zt

∂zt
∂bt

. (53)

Hence we have:

∥∇btL(ŷ, y)∥ = ∥∇ŷL(ŷ, y)∥ · ∥
∂zT+1

∂zt
∥ · ∥∂zt

∂bt
∥. (54)

We conclude with Lemma 2 that states ∥∂zT+1

∂zt
∥ ≤ (US)T+1−t, with requirement 1 that states

∥∇ŷL(ŷ, y)∥ ≤ L and by observaing that ∥∂zt∂bt
∥ = 1. ■

We can now bound the derivative of the affine weights:

Lemma 4 (Bounded weight derivatives). For every T + 1 ≥ t ≥ 2 we have:

∥∇Wt
L(ŷ, y)∥ ≤ L(SU)T

(
X − SB

1− SU

)
+ L(SU)T+1−t SB

1− SU
when SU ̸= 1, (55)

∥∇Wt
L(ŷ, y)∥ ≤ LS (X + (t− 1)B) when SU = 1. (56)

(57)

In every case:
∥∇W1

L(ŷ, y)∥ ≤ L(SU)TX. (58)

Lemma proof. We proceed like in the proof of Lemma 3 and we get:

∥∇Wt
L(ŷ, y)∥ ≤ ∥∇ŷL(ŷ, y)∥ · ∥

∂zT+1

∂zt
∥ · ∥ ∂zt

∂Wt
∥. (59)

Which then yields:

∥∇WtL(ŷ, y)∥ ≤ L(SU)T+1−t · ∥ ∂zt
∂Wt

∥. (60)
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Now, for T + 1 ≥ t ≥ 1, according to Lemma 1 we either have:

∥ ∂zt
∂Wt

∥ ≤ ∥ht−1∥ ≤ S∥zt−1∥ = (SU)t−1

(
X − SB

1− SU

)
+

SB

1− SU
, (61)

or, when US = 1:

∥ ∂zt
∂Wt

∥ ≤ ∥ht−1∥ = S∥zt−1∥ = SX + (t− 1)SB if t ≥ 2, (62)

∥ ∂zt
∂Wt

∥ ≤ X otherwise. (63)

■

Now, the derivatives of the loss with respect to each type of parameter (i.e Wt or bt) are know, and
they can be combined to retrieve the overall gradient vector.

θ = {(W1, b1), (W2, b2), . . . (WT+1, bT+1)}. (64)

We introduce α = SU .

Case α = 1. The resulting norm is given by the series:

∥∇θL(ŷ, y)∥22 =

T+1∑
t=1

∥∇btL(ŷ, y)∥22 + ∥∇WtL(ŷ, y)∥22 (65)

≤ L2

(
(1 +X2) +

T+1∑
t=2

(1 + (SX + (t− 1)SB)2)

)
(66)

≤ L2

(
1 +X2 +

T∑
u=1

(1 + (SX + uSB)2)

)
(67)

≤ L2

(
1 +X2 +

T∑
u=1

(1 + S2(X2 ++2uBX + u2B2))

)
(68)

≤ L2

(
1 +X2 + T (1 + S2X2) + S2BXT (T + 1) + S2B2T (T + 1)(2T + 1)

6

)
.

(69)

Finally:

∥∇θL(ŷ, y)∥2 = O(L
√
X2 + T + TS2X2 +BS2XT 2 +B2S2T 3) (70)

= O
(
LX + L

√
T + LSX

√
T + L

√
BXST + LBST

3/2
)
. (71)

This upper bound depends (asymptotically) linearly of L,X, S,B, T
3/2, when other factors are kept

fixed to non zero value.
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Case α ̸= 1. We introduce β = SB
1−α .

∥∇θL(ŷ, y)∥22 =

T+1∑
t=1

∥∇btL(ŷ, y)∥22 + ∥∇Wt
L(ŷ, y)∥22 (72)

≤ L2

(
α2T

T+1∑
t=1

(((X − β) + α1−tβ)2 + α2−2t)

)
(73)

≤ L2α2T

(
T∑

u=0

(((X − β)2 + 2(X − β)α−uβ + α−2uβ2) + α−2u)

)
(74)

≤ L2α2T

(
(T + 1)(X − β)2 + 2(X − β)β

T∑
u=0

α−u + (β2 + 1)

T∑
u=0

α−2u

)
(75)

≤ L2α2T

(
(T + 1)(X − β)2 + 2(X − β)β

α− ( 1
α )

T

α− 1
+ (β2 + 1)

α2 − ( 1
α2 )

T

α2 − 1

)
.

(76)

Finally:

∥∇θL(ŷ, y)∥2 ≤ LαT

√
(T + 1)(X − β)2 + 2(X − β)β

α− ( 1
α )

T

α− 1
+ (β2 + 1)

α2 − ( 1
α2 )T

α2 − 1
.

(77)

Now, the situation is a bit different for α < 1 and α > 1. One case corresponds to exploding gradient,
and the other to vanishing gradient.

When α < 1 we necessarily have β > 0, hence we obtain a crude upper-bound:

∥∇θL(ŷ, y)∥2 = O

(
LαT

(
X
√
T +

1

(1− α2)

(√
XSB

αT
+

SB√
(1− α)

))
+

L

(1− α)
√
1− α

)
.

(78)

Once again B = 0 (network with no bias) leads to useful simplifications:

∥∇θL(ŷ, y)∥2 = O

(
LαTX

√
T +

L√
(1− α)3

)
. (79)

This is a typical case of vanishing gradient since when T ≫ 1 the upper bound does not depend on
the input scale X anymore.

Similarly, we can perform the analysis for α > 1, which implies β < 0, yielding another bound:

∥∇θL(ŷ, y)∥2 = O
(
L

αT

α− 1

(√
T (αX + SB) +

α(SB + α)√
α2 − 1

))
. (80)

Without biases we get:

∥∇θL(ŷ, y)∥2 = O
(
L
αT+1

α− 1

(√
TX +

α√
α2 − 1

))
. (81)

We recognize an exploding gradient phenomenon due to the αT term.

Propositions 3 and 4 were introduced for clarity. They are a simple consequence of the Lemmas 1-3-4
used in the proof of Theorem 1.

The informal theorem of section 3.1 is based on the bounds of theorem 1, that have been simplified.
Note that the definition of network differs slightly: in definition 3 the activations and the affines layers
are considered independent and indexed differently, while the theoretical framework merge them into
zt and ht respectively, sharing the same index t. This is without consequences once we realize that
if K = U = S and 2T = D then (US)2 = α2 = K2 leads to α2T = KD. The leading constant
factors based on α value have been replaced by 1 since they do not affect the asymptotic behavior.
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