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A PROOF OF LEMMA 1

We can write the conditional probability as

P
(
Yx0

S
= 1 | X = x

)
=

P
(
Yx0

S
= 1,X = x

)
P (X = x)

.

We first show the identifiability of the numerator.

P
(
Yx0

S
= 1,X = x

)
=P

(
Yx0

S
= 1,Ak = ak, Xk = xk,Dk+1 = dk+1

)
=

∑
ck≤xk

P
(
Yx0

S
= 1,Ak = ak, (Xk)ak

= xk, (Xk)ak,x0
S
= ck,Dk+1 = dk+1

)
=

∑
ck≤xk

P
(
Yx0

S
= 1,Ak = ak, Ck = ck,Dk+1 = dk+1

)
=

∑
(ck,ck+1)⪯(xk,xk+1)

P
(
Yx0

S
= 1,Ak = ak, Ck = ck, (Xk+1)ak+1

= xk+1,

(Xk+1)ak,ck,x0
S
= ck+1,Dk+2 = dk+2

)
=

∑
ck:k+1⪯xk:k+1

P
(
Yx0

S
= 1,Ak = ak, Ck = ck, Ck+1 = ck+1,Dk+2 = dk+2

)
,

where for ease of presentation we use Cl = cl to denote ((Xl)al
, (Xl)ak,ck:l−1,x0

S
) = (xl, cl) for k ≤ l ≤ p and xl ≥ cl,

and cl = x0
l if l ∈ S. The second equality holds because of the consistency and the monotonicity assumptions.
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Recursively, by the consistency and the composition, we have

P
(
Yx0

S
= 1,X = x

)
=P

(
Yx0

S
= 1,Ak = ak,Dk = dk

)
=

∑
ck:p⪯dk

P
(
Yx0

S
= 1,Ak = ak, Ck = ck, · · · , Cp = cp

)
=

∑
ck:p⪯dk

P
(
Yak,ck:p

= 1,Ak = ak, Ck = ck, · · · , Cp = cp
)

=
∑

ck:p⪯dk

P
(
Yak,ck:p

= 1, Ck = ck, · · · , Cp = cp | Ak = ak
)
× P(Ak = ak),

=
∑

ck:p⪯dk

P
(
Yak,ck:p

= 1 | Ak = ak
)
×

p∏
l=k

P (Cl = cl | Ak = ak)× P(Ak = ak),

where the last equality holds as the potential outcomes Ck:p = (Ck, · · · , Cp) are conditionally independent given Ak. By
the no confounding assumption, the first factor can be identified by

P
(
Yak,ck:p

= 1 | Ak = ak
)
= P(Y = 1 | Ak = ak, Xk = ck, · · · , Xp = cp).

Next, we consider the identifiability of P(Cl = cl | Ak = ak) for l = k + 1, . . . , p. For l ∈ S, we have

P (Cl = cl | Ak = ak)

=P
(
(Xl)al

= xl, (Xl)ak,ck:l−1,x1
S
= cl | Ak = ak

)
=1cl=xl

· P
(
(Xl)al

= xl, (Xl)ak,ck:l−1,x1
l
= x1

l | Ak = ak

)
=1cl=xl

· P ((Xl)al
= xl | Ak = ak)

=1cl=xl
· P (Xl = xl | Ak = ak) ,

where the second equality holds by the definition of cl and the third equality holds by the consistency.

For l /∈ S, we have the following three cases according to the values of (xl, cl):

• (xl, cl) = (0, 0): for this case, we have

P (Cl = cl | Ak = ak)

=P
(
(Xl)al

= 0, (Xl)ak,ck:l−1,x0
S
= 0 | Ak = ak

)
=P((Xl)al

= 0 | Ak = ak)

=P (Xl = 0 | Al = al) ,

where the second and the third equalities hold because of the monotonicity and no confounding assumptions, respec-
tively;

• For the case of (xl, cl) = (1, 1), we have

P (Cl = cl | Ak = ak)

=P
(
(Xl)al

= 1, (Xl)ak,ck:l−1,x0
S
= 1 | Ak = ak

)
=P

(
(Xl)ak,ck:l−1,x0

S
= 1 | Ak = ak

)
=P(Xl = 1 | Ak = ak,Xk:l−1 = ck+l−1) ;
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• For the case of (xl, cl) = (1, 0), we have

P (Cl = cl | Ak = ak)

=P
(
(Xl)al

= 1, (Xl)ak,ck:l−1,x0
S
= 0 | Ak = ak

)
=P((Xl)al

= 1 | Ak = ak)− P
(
(Xl)al

= 1, (Xl)ak,ck:l−1,x0
S
= 1 | Ak = ak

)
=P(Xl = 1 | Al = al)− P (Xl = 1 | Ak = ak,Xk:l−1 = ck+l−1) .

Summarizing the identification equations for the three cases, we get
p∏

l=k

P (Cl = cl | Ak = ak)

=
∏

i∈{k,...,p}\S

{
(1− xi)× P(Xi = 0 | Ai = ai) + xi(1− ci)× P(Xi = 1 | Ai = ai)

+ xi(−1)1−ci × P (Xi = 1 | Ak = ak,Xk:i−1 = ck:i−1)
}
×

∏
i∈S

P(Xi = xi | Ai = ai)

× 1xS=cS
.

From the above results, the identification formula of P
(
Yx0

S
= 1 | X = x

)
can be derived as follows

P
(
Yx0

S
= 1 | X = x

)
=

P(Yx0
S
= 1,X = x)

P(X = x)

=
∑

ck:p⪯dk

[
P
(
Yak,ck:p

= 1 | Ak = ak
)

P(Dk = dk | Ak = ak)
×

p∏
l=k

P (Cl = cl | Ak = ak)

]

=
∑

ck:p⪯dk

{
1xS=cS

× P (Y = 1 | Ak = ak,Dk = ck:p)

P(Dk = dk | Ak = ak)
×

∏
i∈S

P(Xi = xi | Ai = ai)

×
∏

i∈{k,...,p}\S

[
(1− xi)× P(Xi = 0 | Ai = ai) + xi(1− ci)× P(Xi = 1 | Ai = ai)

+ xi(−1)1−ci × P (Xi = 1 | Ak = ak,Xk:i−1 = ck:i−1)
]}

=
∑

ck:p⪯dk

{
1xS=cS

× P(Y = 1 | Ak = ak,Dk = ck:p)

×
∏

i∈{k,...,p}\S

[
1− xici + xi(−1)1−ci × P(Xi = 1 | Ak = ak,Xk:i−1 = ck:i−1)

P(Xi = xi | Ai = ai)

]}
,

where the last equality holds because

(1− xi)×
P(Xi = 0 | Ai = ai)

P(Xi = xi | Ai = ai)
=

{
0, if xi = 1;

1− xi, if xi = 0;

and

xi(1− ci)×
P(Xi = 1 | Ai = ai)

P(Xi = xi | Ai = ai)
=

{
xi(1− ci), if xi = 1;

0, if xi = 0.

B PROOF OF LEMMA 2

We write the conditional probability as

P
(
Yx1

S
= 1 | X = x

)
=

P
(
Yx1

S
= 1,X = x

)
P (X = x)

,
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and we first show the identifiability of the numerator above.

P
(
Yx1

S
= 1,X = x

)
=P

(
Yx1

S
= 1,Ak = ak, Xk = xk,Dk+1 = dk+1

)
=

∑
ck≥xk

P
(
Yx1

S
= 1,Ak = ak, (Xk)ak

= xk, (Xk)ak,x1
S
= ck,Dk+1 = dk+1

)
=

∑
ck≥xk

P
(
Yx1

S
= 1,Ak = ak, Ck = ck,Dk+1 = dk+1

)
=

∑
(ck,ck+1)⪰(xk,xk+1)

P
(
Yx1

S
= 1,Ak = ak, Ck = ck, (Xk+1)ak+1

= xk+1,

(Xk+1)ak,ck,x1
S
= ck+1,Dk+2 = dk+2

)
=

∑
ck:k+1⪰xk:k+1

P
(
Yx1

S
= 1,Ak = ak, Ck = ck, Ck+1 = ck+1,Dk+2 = dk+2

)
,

where Cl = cl denotes ((Xl)al
, (Xl)ak,ck:l−1,x1

S
) = (xl, cl) for any k ≤ l ≤ p satisfying xl ≤ cl and cl = x1

l if l ∈ S. The
second equality holds because of the consistency and Assumption 2(a).

Recursively, by the consistency and the composition, we have

P
(
Yx1

S
= 1,X = x

)
=P

(
Yx1

S
= 1,Ak = ak,Dk = dk

)
=

∑
ck:p⪰dk

P
(
Yx1

S
= 1,Ak = ak, Ck = ck, · · · , Cp = cp

)
=

∑
ck:p⪰dk

P
(
Yak,ck:p

= 1,Ak = ak, Ck = ck, · · · , Cp = cp
)

=
∑

ck:p⪰dk

P
(
Yak,ck:p

= 1, Ck = ck, · · · , Cp = cp | Ak = ak
)
× P(Ak = ak),

=
∑

ck:p⪰dk

P
(
Yak,ck:p

= 1 | Ak = ak
)
×

p∏
l=k

P (Cl = cl | Ak = ak)× P(Ak = ak),

where the last equality holds because of the conditional independencies between the potential outcomes Ck:p =
(Ck, · · · , Cp) given Ak. By the no confounding assumption, the first factor above can be identified by

P
(
Yak,ck:p

= 1 | Ak = ak
)

=P(Y = 1 | Ak = ak, Xk = ck, · · · , Xp = cp).

Next, we consider the identifiability of P(Cl = cl | Ak = ak) for l = k + 1, . . . , p.

For l ∈ S, we have

P (Cl = cl | Ak = ak)

=P
(
(Xl)al

= xl, (Xl)ak,ck:l−1,x1
S
= cl | Ak = ak

)
=1cl=xl

· P
(
(Xl)al

= xl, (Xl)ak,ck:l−1,x1
l
= x1

l | Ak = ak

)
=1cl=xl

· P ((Xl)al
= xl | Ak = ak)

=1cl=xl
· P (Xl = xl | Ak = ak) ,
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where the second equality holds by the definition of cl and the third equality holds by the consistency.

For l /∈ S, according to the value of (xl, cl) we discuss it for three cases.

• For the case of (xl, cl) = (0, 0), we have

P (Cl = cl | Ak = ak)

=P
(
(Xl)al

= 0, (Xl)ak,ck:l−1,x1
S
= 0 | Ak = ak

)
=P

(
(Xl)ak,ck:l−1,x1

S
= 0 | Ak = ak

)
=P(Xl = 0 | Ak = ak,Xk:l−1 = ck:l−1) ,

where the second and the third equalities hold bacause of the monotonicity and no confounding assumptions, respec-
tively;

• For the case of (xl, cl) = (1, 1), we have

P (Cl = cl | Ak = ak)

=P
(
(Xl)al

= 1, (Xl)ak,ck:l−1,x1
S
= 1 | Ak = ak

)
=P((Xl)al

= 1 | Ak = ak)

=P (Xl = 1 | Al = al) ;

• For the case of (xl, cl) = (0, 1), we have

P (Cl = cl | Ak = ak)

=P
(
(Xl)al

= 0, (Xl)ak,ck:l−1,x1
S
= 1 | Ak = ak

)
=P((Xl)al

= 0 | Ak = ak)− P
(
(Xl)al

= 0, (Xl)ak,ck:l−1,x1
S
= 0 | Ak = ak

)
=P(Xl = 0 | Al = al)− P (Xl = 0 | Ak = ak,Xk:l−1 = ck+l−1) .

Summarizing the identification equations for the three cases, we get

p∏
l=k

P (Cl = cl | Ak = ak)

=1xS=cS
×

∏
i∈{k,...,p}\S

{
(1− xi)ci × P(Xi = 0 | Ai = ai) + xi × P(Xi = 1 | Ai = ai)

+ (1− xi)(−1)ci × P (Xi = 0 | Ak = ak,Xk:i−1 = ck:i−1)
}
×

∏
i∈S

P(Xi = xi | Ai = ai).
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From the above results, the identification formula of P
(
Yx1

S
= 1 | X = x

)
can be derived as follows

P
(
Yx1

S
= 1 | X = x

)
=

P(Yx1
S
= 1,X = x)

P(X = x)

=
∑

ck:p⪰dk

[
P
(
Yak,ck:p

= 1 | Ak = ak
)

P(Dk = dk | Ak = ak)
×

p∏
l=k

P (Cl = cl | Ak = ak)

]

=
∑

ck:p⪰dk

{
1xS=cS

× P (Y = 1 | Ak = ak,Dk = ck:p)

P(Dk = dk | Ak = ak)
×

∏
i∈S

P(Xi = xi | Ai = ai)

×
∏

i∈{k,...,p}\S

[
(1− xi)ci × P(Xi = 0 | Ai = ai) + xi × P(Xi = 1 | Ai = ai)

+ (1− xi)(−1)ci × P (Xi = 0 | Ak = ak,Xk:i−1 = ck:i−1)
]}

=
∑

ck:p⪰dk

{
1xS=cS

× P(Y = 1 | Ak = ak,Dk = ck:p)

×
∏

i∈{k,...,p}\S

[
xi + ci − xici + (1− xi)(−1)ci × P(Xi = 0 | Ak = ak,Xk:i−1 = ck:i−1)

P(Xi = xi | Ai = ai)

]}
,

where the last equality holds because

(1− xi)ci ×
P(Xi = 0 | Ai = ai)

P(Xi = xi | Ai = ai)
=

{
0, if xi = 1;

(1− xi)ci, if xi = 0;

and

xi ×
P(Xi = 1 | Ai = ai)

P(Xi = xi | Ai = ai)
=

{
xi, if xi = 1;

0, if xi = 0.

C PROOF OF THEOREM 1

The conclusion follows directly from Lemma 1, Lemma 2 and the definition of CCE.

D PROOF OF COROLLARY 1

For any subset X′ ⊂ X, we have

CCE (XS ⇒ Y | X′ = x′)

=P
(
Yx1

S
= 1 | X′ = x′

)
− P

(
Yx0

S
= 1 | X′ = x′

)
=

∑
x:x⊃x′

[
P
(
Yx1

S
= 1 | X = x

)
− P

(
Yx0

S
= 1 | X = x

) ]
× P(X = x | X′ = x′)

=
∑

x:x⊃x′

CCE (XS ⇒ Y | X = x)× P(X = x | X′ = x′).

Hence, CCE (XS ⇒ Y | X′ = x′) is identifiable if and only if CCE (XS ⇒ Y | X = x) is identifiable, and its identifica-
tion formula can be obtained by Theorem 1.
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E PROOF OF THEOREM 2

E.1 CCE(XS ⇒ Y | X = x, Y = 1)

For Y = 1, we have

CCE(XS ⇒ Y | X = x, Y = 1) = E(Yx1
S
− Yx0

S
| X = x, Y = 1)

=1− P(Yx0
S
= 1 | X = x, Y = 1) = 1−

P(Yx0
S
= 1,X = x, Y = 1)

P(X = x, Y = 1)
.

By consistency, composition and Assumption 2(a), we have

P
(
Yx0

S
= 1,X = x, Y = 1

)
=

∑
ck⪯dk

P
(
Yx0

S
= 1, Yx = 1, (Ak)x0

S
= ak, (Dk)ak,x0

S
= ck,X = x

)
=

∑
ck⪯dk

P
(
Yak,x0

S,ck
= 1, Yx = 1, (Ak)x0

S
= ak, (Dk)ak,x0

S
= ck,X = x

)
=

∑
ck⪯dk

P
(
Yak,x0

S,ck
= 1, (Ak)x0

S
= ak, (Dk)ak,x0

S
= ck,X = x

)
=

∑
ck⪯dk

P
(
Yx0

S
= 1, (Dk)ak,x0

S
= ck,X = x

)
=P

(
Yx0

S
= 1,X = x

)
,

where k = minS. Hence, we have

CCE(XS ⇒ Y | X = x, Y = 1) = 1−
P(Yx0

S
= 1,X = x, Y = 1)

P(X = x, Y = 1)

=1−
P(Yx0

S
= 1,X = x)

P(X = x, Y = 1)
= 1−

P(Yx0
S
= 1 | X = x)

P(Y = 1 | X = x)
.

E.2 CCE(XS ⇒ Y | X = x, Y = 0)

For Y = 0, we have

CCE(XS ⇒ Y | X = x, Y = 0) = E(Yx1
S
− Yx0

S
| X = x, Y = 0)

=P(Yx1
S
= 1 | X = x, Y = 0)− 0 = 1− P(Yx1

S
= 0 | X = x, Y = 0)

=1−
P(Yx1

S
= 0,X = x, Y = 0)

P(X = x, Y = 0)
.

By consistency, composition and Assumption 2(a), we have

P
(
Yx1

S
= 0,X = x, Y = 0

)
=

∑
ck⪰dk

P
(
Yx1

S
= 0, Yx = 0, (Ak)x1

S
= ak, (Dk)ak,x1

S
= ck,X = x

)
=

∑
ck⪰dk

P
(
Yak,x1

S,ck
= 0, Yx = 0, (Ak)x1

S
= ak, (Dk)ak,x1

S
= ck,X = x

)
=

∑
ck⪰dk

P
(
Yak,x1

S,ck
= 0, (Ak)x1

S
= ak, (Dk)ak,x1

S
= ck,X = x

)
=

∑
ck⪰dk

P
(
Yx1

S
= 0, (Dk)ak,x1

S
= ck,X = x

)
=P

(
Yx1

S
= 0,X = x

)
,

7



where k = minS. Hence, we have

CCE(XS ⇒ Y | X = x, Y = 0) = 1−
P(Yx1

S
= 0,X = x, Y = 0)

P(X = x, Y = 0)

=1−
P(Yx1

S
= 0,X = x)

P(X = x, Y = 0)
= 1−

P(Yx1
S
= 0 | X = x)

P(Y = 0 | X = x)
.

F PROOF OF LEMMA 3

Using the notations in this lemma, we have

P
(
Yx∗

S
= 1,X = x, Y = y,Z = z

)
=
∑
x∗

P
(
Yx∗

S
= 1,Xx∗

S
= x∗,X = x, Y = y,Z = z

)
=
∑
x∗

P
(
Yx∗ = 1,Xx∗

S
= x∗,X = x, Y = y,Z = z

)
=
∑
x∗

P
(
Yx∗ = 1,Xx∗

S
= x∗,Z = z | X = x, Y = y

)
× P(X = x, Y = y)

=
∑
x∗

P
(
Yx∗ = 1,Xx∗

S
= x∗ | X = x, Y = y

)
× P(Z = z | X = x, Y = y)× P(X = x, Y = y)

=
∑
x∗

P
(
Yx∗ = 1,Xx∗

S
= x∗ | X = x, Y = y

)
× P(X = x, Y = y,Z = z),

where the second and the fourth equalities hold because of the composition and Assumption 1(c), respectively. Hence, we
have

P
(
Yx∗

S
= 1 | X = x, Y = y,Z = z

)
=

P
(
Yx∗

S
= 1,X = x, Y = y,Z = z

)
P(X = x, Y = y,Z = z)

=
∑
x∗

P
(
Yx∗ = 1,Xx∗

S
= x∗ | X = x, Y = y

)
=P

(
Yx∗

S
= 1 | X = x, Y = y

)
.

G PROOF OF COROLLARY 3

The conclusion follows directly from Lemma 3 and the definition of CCE.

H PROOF OF THEOREM 3

For any subset W ⊂ (X, Y,Z), we have

CCE(XS ⇒ Y | W = w)

=P
(
Yx1

S
= 1 | W = w

)
− P

(
Yx0

S
= 1 | W = w

)
=

∑
(x,y,z):(x,y,z)⊃w

P(X = x, Y = y,Z = z | W)×
[
P
(
Yx1

S
= 1 | X = x, Y = y,Z = z

)
− P

(
Yx0

S
= 1 | X = x, Y = y,Z = z

) ]
=

∑
(x,y,z):(x,y,z)⊃w

CCE(XS ⇒ Y | X = x, Y = y,Z = z)× P(X = x, Y = y,Z = z | W)

=
∑

(x,y,z):(x,y,z)⊃w

CCE(XS ⇒ Y | X = x, Y = y)× P(X = x, Y = y,Z = z | W),

where the last equality holds because of Corollary 3. Hence, CCE(XS ⇒ Y | W = w) is identifiable if and only if
CCE(XS ⇒ Y | X = x, Y = y) is identifiable for any (x, y, z) ⊃ w, and under Assumption 1 and Assumption 2, the
identification equations are given by Theorem 2.
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