Conditional Causal Effect for Individual Attribution
(Supplementary Material)

A  PROOF OF LEMMA

We can write the conditional probability as

We first show the identifiability of the numerator.

P (ng - 1,X:x)

=P (ng =1,Ay = ay, Xy = 2%, D1 = dk+1>

= p (ng =1,Ar = ay, (Xi)a, = Tk, (Xk)ay x8 =k Dry1 = dk+1)
cp <z}

= p (ng =1,Ap =ay, Cr = ¢, Dry1 = dk+1)
cp ST

= Z p (ng =1,Ay = a;, Cr = ¢k, (Xit1)ap s = Thils

(ckrCht1) 2Tk, Tht1)
(Xt 1)ay,crxt = Cht1, Drya = dk+2)

= Z p (ng =1,Ar = ay,Cy = ¢, Cry1 = Cpt1, Dpg2 = dk+2> ;

Chik+13Xk:k+1

where for ease of presentation we use C; = ¢; to denote ((X)a,; (Xi)a, ¢, x2) = (@1, ¢) fork <l < pandz; > ¢,
and ¢; = z if | € S. The second equality holds because of the consistency and the monotonicity assumptions.
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Recursively, by the consistency and the composition, we have
P (ng -1,X :x)
=P (ng =1,Ap=a; Dy = dk)

= Z P(ngzl,Ak:ak7Ck:Cka"‘ an:Cp>

Cr:p=dg
= Z P (Yak,ck:p =1, A, =a;,Cp=cp, - 7Op = Cp)
Cr:p=dyg
= Z P (Yak’ck:p = I,Ok = Ck,y " ,Op =Cp | Ak = ak) X P(Ak = ak),
Cr.p=dg
P
= Z P (Yakyck:p =1 | Ak = ak) X HP(C[ = | Ak = ak) X P(Ak = ak),
Ck:pjdk =k
where the last equality holds as the potential outcomes Cy.,, = (Cy, - - - , Cp) are conditionally independent given Aj. By

the no confounding assumption, the first factor can be identified by

P(Yak,ck:p :1|Ak:ak) :P(Y:1|Ak:ak7Xk:ck,--- ,Xp:Cp).

Next, we consider the identifiability of P(C; = ¢; | Ay = ay) forl =k +1,...,p. Forl € S, we have

P(Ci=c¢| Ay =ay)
=P ((X1)ay = @0 (XDaens st = o | Ak =)
Loz P (X0a = 70, (Xay 1t = 71 | Ar = ar)
=lo=a; - P ((X0)a, = 1 | Ap = ar)
=lg=s P(Xi=o | Ay =ay),
where the second equality holds by the definition of ¢; and the third equality holds by the consistency.

For | ¢ S, we have the following three cases according to the values of (z;, ¢;):
* (x1,¢;) = (0,0): for this case, we have

P (Cl Cy | Ak = ak)
((Xl (Xl)ak Ck:1—1 XS O | Ak = ak)
=P ((Xi)a, = 0| Ay = ay)
=P(Xi=0]A;=a),
where the second and the third equalities hold because of the monotonicity and no confounding assumptions, respec-
tively;

* For the case of (z,¢;) = (1, 1), we have

P (Cl | Ak = ak)

:P ((Xl a; — ]. Xl)akyck:l_l’xg =1 | Ak = ak>
P(( Ak ,Cl:l— 1,xs 1 |Ak_ak)
P(X;=1|Ar=ar,Xpi1 =Cryi-1);



* For the case of (z;,¢;) = (1,0), we have
(Cl a | Ay =ay)
( l)ak Ck:l—1, xS O | Ak = ak)

P (X0 = 1| A = a0) = P (X0)a = 1 (Xag.epa g = 11 Ak = ac)
=P(X;=1|A;=a;) -P(X;=1]| Ay = ay, Xgy-1 = Cpp1-1) -

Summarizing the identification equations for the three cases, we get
P
HP(C; =] | Ak :ak)
1=k

- 11 {(1—xz)><P( (=0 A =a) +ai(l—c)xP(X; =1] A; = a))

i€{k,...,p}\S

—|—.13i(— )1 i XP(X _1|A;€_ak,X;“ 1 = Ck:i—1 } X HP(Xz:xl \Ai:ai)
i€S

X lxg=cg-

From the above results, the identification formula of P (ng =1|X= x) can be derived as follows

P(Yyo = 1,X = x)
S
P(X =x)

P (Yak Ckip — 1 | Ak = ak) p
= yCk:p P _ A |
Z |: P(Dk = dk | Ak: — ak;) X H (Cl (&} | k ak>:|

P(Yxo:1|X:x):
S

Ck:pjdk =k
P(Y:1|Ak:aka k_ckp
= Z 1Xs:Cs X HP =T; ‘ Ai = ai)
Cr.p=dg { P(Dk = di | Ap = ak i€S
< 11 [(1_%)@( (=0 Ai=a) +zi(l—c)xP(X; =1] A; =a)
i€{k,...,p}\S

+l‘i(71)1 chP(X 71|Ak7ak,X;“ 1 = Ck:j— 1)}}

= Z {1xs:cs xP(Y =1| Ay = ag, Dy, = cip)

Clip 3dg

X H |:1 — x;C + xi(—l)l_c” X

P(X; =1]| A, =ap, Xpi—1 = Ck:i—l)}

and

1'1(1 — C’i) % P(Xz 1 | Az az) {gl(l CZ)’ if T; :

B PROOF OF LEMMA

We write the conditional probability as

P(Y1:1|X:x):



and we first show the identifiability of the numerator above.
P(né:LX:x)
=P (ng =1, A = ap, Xp = 2k, Digr = dk+1>

- > P (ng =1 Ay =ay, (Xi)a, = Th, (Xp)ay xt = ¢k Dig1 = dk+1>

CKk>Tk
= Z P(Ye =1,A,=ay, Cp =cp,Dygr = dk+1)
CL>T
= Z P (Yxé = 1>A-k = ak7Ck = Ck, (Xk+1)ak+1 = mk+la

(ckrCh+1)=(Th,Th41)
(Xkt1)ag,enxt = Cht1, Diy2 = dk+2>

= P (Yxé =1,A; =ay,Cy = ck, Crq1 = Chy1,Dpqo = dk+2> ,

Chik+127 Xkik+1

where C; = ¢; denotes ((X})a,, (Xl)almck;l—lyxé) = (@, ¢) forany k < | < psatisfying z; < ¢; and ¢; = =} if | € S. The
second equality holds because of the consistency and Assumption [2{a).

Recursively, by the consistency and the composition, we have

:szx)
=1,Ap =a;, Dy = dk)

= P(Yxé:].,Ak:ak?Ck‘:Ckv...’CP:CP>

|
g

(Yakack:p = I,Ak = ak,Ck = C," " 7Cp — Cp)

= P (Yak’ck:p = I,Ok = Ck,y " ,Op =Cp | Ak = ak) X P(Ak = ak),

p
= P (Yakyck:p =1 | Ak = ak) X HP(C[ = | Ak = ak) X P(Ak = ak),
Ck:ptdk =k

where the last equality holds because of the conditional independencies between the potential outcomes Cy., =

(Ck,---,Cp) given Ay. By the no confounding assumption, the first factor above can be identified by
P (Yak’ck:p =1 | Ak = ak.)
:P(Y =1 ‘ Ak :ak,Xk = Ck,""" ,Xp = Cp).

Next, we consider the identifiability of P(C; = ¢; | Ay = a) forl =k +1,...,p.
For ! € S, we have
P(Ci=¢ | Ar=ay)
=P ((X0)ar = 71, (XDay.o 1t = 0 | Ar = ar)
=lo—g, P ((Xl)al = 21, (X)apcpn 2t = 1 | A = ak)

=lej=z, - P ((Xl>az =T | A, = ak)
:10115131 -P (Xl = | Ay = ak) y



where the second equality holds by the definition of ¢; and the third equality holds by the consistency.

For [ ¢ S, according to the value of (z;, ¢;) we discuss it for three cases.

* For the case of (x;,¢;) = (0,0), we have

P(Cl =] | Ak —ak)
((Xl a;, — 0 Xl)a;,;,ck:l_l,xé = 0 | Ak = ak)

( akckll,xs_0|Ak_ak)
=P(X;=0|Ap = a, Xpi—1 = Cru_1),

where the second and the third equalities hold bacause of the monotonicity and no confounding assumptions, respec-
tively;

* For the case of (z,¢;) = (1, 1), we have
P (Cl (&)} | Ak = ak)

((Xl = ]‘7 (Xl)ak Ck:l—1 XS 1 | Ak - ak)

((Xl)al =1]A =ay)
(Xl:].‘Al—al)

* For the case of (z,¢;) = (0, 1), we have
P (Cl (&)} | Ak = ak)

=P ((X0)a = 0, (X agseps 1o = 11 Ar = ac)

=P ((Xi)a, =0 Ay =a;) — P ((Xz)al =0, (XD)ay,cru 1t =0 Ap = ak)
P(Xl 0 ‘ Al = al) P (Xl =0 | Ak = ak,Xk:l_l = Ck+l—1) .

Summarizing the identification equations for the three cases, we get

14
HP(CZ = (] ‘ Ak :ak)
=k

“lmes x [ {(1-wei x P(Xi = 0] Ay = a) + 2 x P(X; = 1] A = ay)
i€{k,...,p}\S
+ (1 - Qii)(—l)ci x P (Xz =0 | Ak = ak,an;l = Ck:ifl) } X HP(Xz =T; | Az = ai).
€S



From the above results, the identification formula of P (Yxé =1|X= x) can be derived as follows

P (Yo 11X P(Y, =1,X =x)
(xé_ _X)_ P(X = x)
P Yahckp 1|Ak7ak P
Z XHP(Cl:Cl|Ak:ak)
el { P(Dy, = dy \ Ap=ay)
—1|Ak—ak,Dk—Ckp

= - x [TP(X; =z | A; = a

Ck; { S=Cs (Dk—dk:|Ak:—ak: g l| T )

< I [(1 2)e X P(Xi=0 | Aj=a) + 2 x P(X; = 1| A; = &)
i€{k,....p}\S

+(1—2)(-1)"xP(X; =0]| Ap = ag, Xpiio1 = Ck:ifl)} }

= Z {1Xs—cs X P(Y =1 | Ak = ak,Dk = Ck:p)

Cr:p=dg

X H {xi—kci —azici—&—(l—xi)(—l)c"' X

P(X;=0]Ap =ay, Xpi1 = Ck:i—l)}}
i€{k,....p}\S

where the last equality holds because

(1 — CCZ')CZ' X

PXi=0]Ai=a) 0, ifz; = 1;
P(Xi =z [ A = &) a (1 —m;)e;, ifa; =0;

and

xT; X

C PROOF OF THEOREM

The conclusion follows directly from Lemma|[I] Lemma[2]and the definition of CCE.

D PROOF OF COROLLARY

For any subset X’ C X, we have

CCE(Xs = Y | X' =¥
:P(Yx§:1|X’:x’)fP(ngzl\X’:x’)
-y [P(Yxé=1\sz)—P(ng:uX:x” X P(X =x | X =x)

x:xDx/

= ) CCE(Xs=Y|[X=x)xPX=x|X =x).

x:xDx/

Hence, CCE (Xg = Y | X’ = x/) is identifiable if and only if CCE (Xg = Y | X = x) is identifiable, and its identifica-
tion formula can be obtained by Theorem|T}



E PROOF OF THEOREM
El CCEXs=Y |X=xY =1)

ForY = 1, we have
CCE(Xs:>Y\X:x,Yzl):E(Yxé—ng | X=x,Y =1)
P(ng =1,X=x,Y=1)

“1-P(Y =1|X=x,Y =1)=1—
(Vg =1] X =x, ) PX=x,Y =1)

By consistency, composition and Assumption [2[a), we have

P(ng :1,X:x,Y:1)

3 P(ng =1, = 1, (Ap)yg = ar, (Di)ay xg = e X = x)

cp3dy
-y P(Yakx e = LY =1, (Ap)yg = ag, (Di)ay xg :ck,X:x)
cp=di
= (Yak ,xs,ck - (Ak) = ag, (Dk)ak?xg = Cg, X = X)
cp=3dy
= 3 P(Yag = 1, (Di)a, xg = o X = %)
Ck'<dk

—p (ng :1,X:x),

where k¥ = min S. Hence, we have
P(Yeo =1,X=x%x,Y =1)
S
PX=x,Y=1)
P(Yeo =1,X =x) P(Yeo =1 X =x)
S S

=1— =1- .
PX=xY =1) PY=1|X=x)

CCEXs =Y |X=xY=1)=1-

E2 CCEXg=Y|X=xY =0)

For Y = 0, we have

CCE(Xs = Y | X =xY =0) = E(Y,y — Yo | X =x,Y =0)
=P(Y, =1|X=x,Y=0)—0=1-P(Y,u =0| X =x,Y =0)
S S
P(Y,y =0,X =x,Y =0)
PX=x,Y =0)

By consistency, composition and Assumption [2[(a), we have

=1 —

P(Yxé :O,X:x,Y:O)

= P(ng =0,Yx =0, (Ag)xy = ar, (Di)ay x} =k X = X)
crrdp

= P(Yak,xs en = 0.Y5 = 0, (Ak)ys = ag, (Di)ay s = €4, X = x)
cprd

= Z P(Ya)c xLcp = (Ak) L= ag, (Dk)ak x§ = cp, X = X)
crp=dg

= Z P(Yx ak,xé :Ck,X:X>
crrdi

_p (Yxé :o,X:x),



where £k = min S. Hence, we have

P(Yxé =0,X=x,Y =0)
P(X=x,Y=0)

P(Yxé:O,X:x) P(Yxé:O\X:x)

PX=x,Y=0) = PY=0[X=x)
F PROOF OF LEMMA

CCEXgs=Y |X=x,Y=0)=1-

Using the notations in this lemma, we have
P(ng =1,X=x,Y=y,Z :z)
=Y P(Yig =1Xy =x"X=x,Y =y, Z=2)

:ZP (Yx* =1,Xyx; = x\ X=x,Y =y, Z= z)
—XZP(YX* =1,Xy =x"Z=z|X=x,Y :y) xP(X=x,Y =y)
XZP(YX* =1, Xy =x" \X:X,Y:y) xP(Z=2z|X=x,Y =y xPX=x,Y =y)
XZP(YX* =1L, Xy =x" | X=x,Y :y) xPX=x,Y=y,Z=1z),
where the seco};d and the fourth equalities hold because of the composition and Assumption [Ic), respectively. Hence, we
have

P(ngzl,X:x,Y:y,Z:z)
PX=x,Y=y,Z=12)

P(Yey =1|X=xY=yZ=2z)=
=D P (Ve =1, Xy =x" | X =x,Y =)
:PX(Yxé =1|X=xY=y).
G PROOF OF COROLLARY J3|

The conclusion follows directly from Lemma [3|and the definition of CCE.

H PROOF OF THEOREM

For any subset W C (X, Y, Z), we have
CCE(Xs =Y | W = w)
:P(Yxé:1\W:w)—P(ng:1|W:w)
- ¥ P(X:X,Y:y,zzz|W)x[P(Yx

(x,y,2):(x,y,2) DW

—P(Yx%:1|X:x7Y:y7Z:z)}

:1|X:x,Y:y,Z:z>

1
S

= > CCEXs=Y |X=x,Y=y,Z=2)xPX=x,Y=y,Z=2|W)
(x,y,2):(x,y,2) DW
= > CCEXs =Y |X=x,Y=y)xPX=x,Y =y, Z=2|W),
(x,y,2):(x,y,2) OW
where the last equality holds because of Corollary [3| Hence, CCE(Xgs = Y | W = w) is identifiable if and only if

CCE(Xs = Y | X = x,Y = y) is identifiable for any (x,y,z) O w, and under Assumption [I]and Assumption 2} the
identification equations are given by Theorem 2]
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