
A Implementation details

A.1 Encoder network architecture

We adopt a similar encoder network (Figure S1) as RDE to transform the structural context of
mutations in the interface to a conditional vector used by the generative process of side-chain
conformations. We define the structural context as the 128 residues in closest proximity to the
mutation sites. The input features can be grouped into single node features and pair edge features.
The node features include amino acid types, backbone torsion angles, and local atom coordinates for
each amino acid, while the edge features include pair distance and relative sequence position between
two amino acids. The input features are first fed into MLP layers (denoted as Transition layer in
Figure S1) and then combined with the spatial backbone frames to pass through the Invariant Point
Attention Module (IPA), an SE(3)-invariant network proposed in AlphaFold2 [Jumper et al., 2021].
We use 6 IPA blocks, and the sizes of hidden representations for node features and pair features are
128 and 64, respectively.

�������

���

�		��	
����

���

�������

�		��	
����
�
�������

���������	��
�����
�

�
�������
��

�������������

�

�������

�������

��

���

���	
�����


�������
��������

����� �����

��	����

�����

�����
���

���
�����������

����������
���

������
���

�����������	
���	� �����
���	
���	�


�
�������


�
�������


�
�������

����

��
���������	�

������

��
���������	�

��������� ����

�		��	
����

����
�		��	
����

��
��
�
�		��	
����


�
�������

��
��	��

�����

������
����

������

 �
���������	�

������������	��
�����
�

����� �	
��

������
�������

���������
�����
���������
������


Figure S1: The architecture of the conditional encoder in SidechainDiff

A.2 DiffAffinity network architecture

Given a wild-type W , a mutant M, and their structural contexts of mutations, we first obtain the
hidden representations from the pre-trained SidechainDiff, denoted as hwt and hmt, respectively.
We set wild-type and mutant sequences as single features concated with hidden representations
from SidechainDiff, distance matrix from wild-type protein structure as pair features, and frames of
wild-type protein structure. Then, we input them into IPA transformer encoder [Jumper et al., 2021]
to update these hidden representations. A max-pooling layer and an MLP layer follow to predict the
final ��G. We use the mean squared error (MSE) loss in training.

A.3 Training details for SidechainDiff

For SidechainDiff, we adopt a similar hyperparameter setting of the score-based generative model
as used in [Song et al., 2021, De Bortoli et al., 2022]. The diffusion coefficient is parameterized
as g(t) =

p
�(t) with � : t 7! �min + (�max � �min) · t, where �min = 0.001 and �max = 2. To

parameterize the vector field on T4, we use a single field per dimension pointing in a consistent
direction around the ith component in the product, with the unit norm. Sinusoidal activation functions
are utilized.

For the ISM losses limt , we adopt the setting of �t = g(t)2 = �t. All models are trained using the
stochastic optimizer Adam with the setting of �1 = 0.9 and �2 = 0.999 and a batch size of M . The
learning rate is annealed with a linear ramp from 0 to 1000 and thereafter with a cosine schedule.
The total number of iterations, denoted as Niter, is set to 200,000, and we define the batch size M as

13



32. The reverse diffusion model is configured with 100 steps. The Algorithm 2 illustrates the entire
training algorithm.

To sample mutations in training, we mask the rotamers of 10% of the amino acids and introduce
noises to the rotamers of amino acids within a C� � C� distance of 8.0Å from the closest masked
amino acids, simulating the impact of mutations on adjacent amino acids. Following the strategy in
RDE [Luo et al., 2023], we add Gaussian noises centered at 0 and its standard deviation depending
on the C� � C� distances.

Algorithm 2 Training Process of SidechainDiff

Require: ✏, T,N, {Xm
0 }Mm=1, ✓0,�0, Niter, P, {ai,Ri,xi,�i}127i=1

1: ///TRAINING///
2: for n 2 {0, . . . , Niter � 1} do
3: X0 ⇠ (1/M)

PM
m=1 �Xm

0
. Random mini-batch from dataset

4: t ⇠ U([✏, T ]) . Uinform samping between ✏ and T
5: Zt = Enc�n({ai,Ri,xi,�i}127i=1) . Encode the structural context into hidden representation
6: � = t/N
7: for k 2 {0, . . . , N} do . Approximate forward diffusion with Algorithm 1
8: Wk+1 ⇠ N (0, Id)
9: Wk+1 =

p
�Wk+1 . the drift coefficient of Algorithm 1 is set as 0 here

10: Xk+1 = expX0
(Wk+1)

11: end for
12: Xt = XN

13: limt (st) = limt (s✓n(Xt, t,Zt)) . Compute implicit score matching loss
14: ✓n+1,�n+1 = optimizer_update(✓n,�n, l

im
t (st)) . ADAM optimizer step

15: end for
16: ✓⇤ = ✓Niter ,�

⇤ = �Niter

17: return ✓⇤,�⇤

A.4 Baseline models

To benchmark the performance, we train RDE and the two variants of our DiffAffinity (i.e. DiffAffin-
ity* and DiffAffinity-Linear) using the same splits of training and test set with the SKEMPI2 dataset.
The implementation details of baseline methods are described below.

DiffAffinity-Linear DiffAffinity-Linear model represents a simple linear projection of the learned
representations from SidechainDiff for the prediction of ��G.

DiffAffinity* In contrast to the original DiffAffinity, no learned representations from SidechainDiff
are used in DiffAffinity*. Other settings including model architecture and training procedure are the
same with DiffAffinity.

RDE [Luo et al., 2023] We use the training and testing script in the RDE GitHub repository (https:
//github.com/luost26/RDE-PPI). And for downstream tasks, we average the predictions from 3
models as the final scores.

Rosetta [Alford et al., 2017] We use Rosetta version 2023.35 downloaded from the official site
(https://www.rosettacommons.org).For a mutated structure, we build its structure using the
CARTESIAN_DDG command. ��G is determined by subtracting the energy of the wild-type from
that of the mutant predicted by INTERFACE_ENERGY.

FoldX [Schymkowitz et al., 2005] We use FoldX-v5 downloaded from the official site (https:
//foldxsuite.crg.eu/).For a mutated sequence, we build its structure using the BUILDMODEL
command. ��G is determined by subtracting the energy of the wild-type from that of the mutant.

flex ddG [Barlow et al., 2018] We employed the flex ddG from the GitHub repository found at
https://github.com/Kortemme-Lab/flex_ddG_tutorial. The binding affinity was derived
using the DEFAULT setting as outlined in the tutorial.

ESM-1v [Meier et al., 2021] We use the testing script of ESM-1v in the ESM GitHub repos-
itory (https://github.com/facebookresearch/esm). We derive the scores using MASKED-
MARGINAL mode to serve as the metric for ��G.

14

https://github.com/luost26/RDE-PPI
https://github.com/luost26/RDE-PPI
https://www.rosettacommons.org
https://foldxsuite.crg.eu/
https://foldxsuite.crg.eu/
https://github.com/Kortemme-Lab/flex_ddG_tutorial
https://github.com/facebookresearch/esm


ESM-IF [Hsu et al., 2022] We failed in running the ESM-IF for the very large complex struc-
tures. And in Table 1, we just use results obtained from the published work which benchmarks the
performance in the same testing set [Luo et al., 2023].

ESM2 [Lin et al., 2023] We employ a test script available in the ESM GitHub repository (https:
//github.com/facebookresearch/esm). The model takes mutant and wild-type sequences as
input and produces hidden representations of these sequences using ESM2. The difference between
these hidden representations is then passed through a two-layer MLP (Multilayer Perceptron) to
predict the change in free energy (��G). Here, we have employed the ESM2 (3B) language model,
with the network parameters of the MLP set at 2560⇥ 64⇥ 1. The training was conducted using the
Adam optimizer with a learning rate of 5e-4, completing 30,000 training steps.

ESM2* [Lin et al., 2023] We also utilize the hidden representations from ESM2, similar to the
ESM2 model. However, in this case, the hidden representations from the SidechainDiff model are
replaced with the hidden representations from ESM2. These modified hidden representations, along
with the ESM2 hidden representations, are fed into the DiffAffinity model, which predicts the change
in free energy (��G).

DDGPred [Shan et al., 2022] It’s very challenging to reproduce the training and testing process
of DDGPred. First, no training scripts are provided in the DDGPred GitHub repository (https://
github.com/HeliXonProtein/binding-ddg-predictor). Second, the model weights provided
in the open-source repository are trained on a set that overlaps with the testing set in our work. Thus
in Table 1, we just use results obtained from the published work which benchmarks the performance
in the same testing set [Luo et al., 2023] and we have not benchmarked the performance of DDGPred
in the downstream tasks.

A.5 Dataset of SARS-CoV-2 RBD binding affinity

In the previous study [Starr et al., 2022], 15 crucial mutational sites have been identified that greatly
influence SARS-CoV-2 RBD binding affinity. The sites include NE501, SE477, GE339, NE440,
TE478, SE373, QE498, EE484, SE371, QE493, GE496, YE505, GE446, SE375, and KE417. We use
all 285 possible single-point mutations on these sites to benchmark the performance.

B Source code

Code and data are available at https://github.com/EureKaZhu/DiffAffinity/

C Additional results of DiffAffinity on the SKEMPI2 dataset

C.1 Performance of DiffAffinity on the SKEMPI2 dataset under different Per-Structure
threshold

To analyze the robustness and accuracy of our performance across different per-structure thresholds,
we show the Pearson and Spearman correlation under various per-structure thresholds from 1 to 20
(Figure S2a-S2b). DiffAffinity achieves state-of-the-art results compared with other methods under
all thresholds.

C.2 Analysis of different pre-training representations

To demonstrate the efficacy of the representations learned by SidechainDiff, we performed PCA
(Principal Component Analysis) to reduce the dimensions of the obtained representations from
SidechainDiff on the SKEMPI2 dataset and visualized the distribution of the representations (Figure
S3a).

Furthermore, we have compared several representative methods, including RDE’s representations
based on flow models (Figure S3b) and ESM2’s representations based on protein language models
(Figure S3c). It can be observed that the representations obtained by SidechainDiff are capable
of more effectively distinguishing data under different ��G values. Although ESM2 exhibits
outstanding performance in tasks such as protein secondary structure prediction and protein contact

15

https://github.com/facebookresearch/esm
https://github.com/facebookresearch/esm
https://github.com/HeliXonProtein/binding-ddg-predictor
https://github.com/HeliXonProtein/binding-ddg-predictor
https://github.com/EureKaZhu/DiffAffinity/


(a) (b)

Figure S2: The performance of Pearson and Spearman correlations across different per-structure
filtering thresholds.

(a) (b) (c)

Figure S3: Visulization of pre-training hidden representations on the SKEMPI2 dataset. We utilize
the different colors to represent different ��G obtained by experiment.

recognition, it is insensitive in predicting the effects of mutations on the binding affinity of protein
complexes.

C.3 Figures on the performance with the SKEMPI2 dataset

To visually demonstrate the predictive capability of DiffAffinity on the SKEMPI2 dataset, we
employed scatter plots and histograms to showcase the statistical properties of results derived from
our model DiffAffinity. It is evident that DiffAffinity precisely captures the statistical distribution
across the entire SKEMPI2 dataset, including both its single-mutation and multi-mutations subsets
(Figure S4).

D Additional results of SidechainDiff

D.1 Prediction side-chain conformation error with types of amino acids

We show the error of side-chain conformations’ prediction for each amino acid side-chain confor-
mations in the test dataset of PDB-REDO in Table S1. In the majority of amino acids as shown,
SidechainDiff surpasses energy-based methods (SCWRL4, Rosseta) and exhibits performance com-
parable to that of RDE.

16



(a) (b) (c)

Figure S4: Results on SKEMPI2 dataset. (a) Correlation between experimental ��Gs and DiffAffin-
ity predictions on the whole SKEMPI2 dataset. (b) Correlation between experimental ��Gs and
DiffAffinity predictions on the single-mutation subset of SKEMPI2 dataset. (c) Correlation between
experimental ��Gs and DiffAffinity predictions on the multi-mutations subset of SKEMPI2 dataset.

Table S1: Mean absolute error of the predicted side-chain torsion angle
Type � SCWRL4 Rosetta RDE SidechainDiff

ARG

1 29.30 30.50 18.92 18.60
2 28.68 36.12 27.36 33.55
3 57.89 60.73 51.40 51.73
4 60.35 63.62 62.76 61.82

ASN 1 21.70 19.39 11.30 17.10
2 44.00 43.41 39.25 37.24

ASP 1 25.75 22.62 18.05 17.24
2 23.90 21.26 20.35 20.95

CYS 1 24.83 25.90 16.75 7.33

GLN
1 33.16 31.53 26.37 26.32
2 46.33 33.96 45.48 37.88
3 53.72 56.52 52.26 60.59

GLU
1 35.45 34.69 21.56 35.56
2 38.23 38.43 36.53 41.75
3 31.50 30.85 34.47 28.23

HIS 1 23.15 19.12 29.12 25.69
2 70.62 61.97 74.55 54.74

ILE 1 13.92 14.65 10.45 7.84
2 26.43 27.54 26.84 23.29

Type � SCWRL4 Rosetta RDE SidechainDiff

LEU 1 13.97 14.15 10.83 8.46
2 23.76 27.61 24.39 21.14

LYS

1 31.32 33.88 30.73 24.55
2 30.95 33.15 36.77 36.78
3 38.90 42.07 41.71 37.20
4 51.94 53.94 54.89 51.56

MET
1 26.36 26.07 16.95 25.33
2 38.52 36.09 29.24 30.15
3 55.11 58.77 46.33 58.43

PHE 1 12.30 13.08 9.64 12.39
2 12.40 12.35 10.02 11.14

SER 1 47.19 46.83 35.48 27.51

THR 1 28.05 22.67 13.26 21.09

TRP 1 14.52 18.64 14.69 17.29
2 31.74 31.44 31.39 26.01

TYR 1 11.39 14.56 6.83 10.33
2 11.37 14.45 7.96 8.34

VAL 1 21.31 19.41 12.89 15.69

17



D.2 Diversity of sampled side-chain conformations

The diversity and prediction accuracy of sampled side-chain conformations from SidechainDiff highly
correlates with the structural constraints presented in the protein-protein interface (Table S2). We
quantify the diversity using the entropy of the sampled side-chain conformations while utilizing
the contact number as a surrogate for the extent of structural constraints. The contact number of
an amino acid is defined as the count of neighboring residues within a C� � C� distance of 8Å.
Amino acids with higher contact numbers tend to exhibit greater structural constraints, indicating a
more constrained conformation. In highly constrained regions, the sampled side-chain conformations
exhibit lower entropy and higher prediction accuracy. These observations align consistently with
previous studies in the field [Jones and Thornton, 1996].

Table S2: The diversity of side-chain conformations with different structural constraints
Contact number Average contact numbers Average error of � Entropy

1 ⇠ 7 5.57 28.70 4.10
8 ⇠ 10 8.86 22.39 3.76
11 ⇠ 19 12.36 15.43 3.33

(a) (b)

(c) (d)

Figure S5: (a) The structural context of L302 on the chain A of the protein complex 6HBV. (b) The
structural context of T28 on the chain D of the protein complex 2P22. (c) The distribution of �(1) for
the sampled side-chain conformations of L302 on the chain A of the protein complex 6HBV. (d) The
distribution of �(1) for the sampled side-chain conformations of T28 on the chain D of the protein
complex 2P22.

We further present two illustrative cases that highlight the distinction between highly constrained
and less constrained regions (Figure S5). The first case involves L302 on the chain A of the protein
complex 6HBV (Figure S5a). In this instance, the structural context is characterized by a high degree
of constraint, resulting in sampled side-chain conformations with an entropy of 1.67 (Figure S5c). In

18



contrast, the second case focuses on T28, located in the loop region of chain D of the complex 2P22
(Figure S5b). In this scenario, the sampled side-chain conformations display much more flexibility,
as indicated by an entropy value of 6.54 (Figure S5d).

Here, we then specify the details that how to calculate the entropy and average error of � in Table S2.
The entropy S is defined by the Boltzmann expression:

S = �kB

Z
p(x) log p(x)dx = �kBEx⇠p log p(x),

where p(x) refers to the distribution of conformation x and kB denotes the Boltzmann constant. We
assign a value of 1 to kB just for simplicity. The entropy S is then calculated as the mean of the log
probabilities over 100 samplings.

We calculate the weighted average error of all side-chain torsion angles as follows:

Average error of torsion angles =
1

N

NX

i=1

4P
j=1

p(�(j))Ii(�(j))ei(�(j))

4P
j=1

p(�(j))Ii(�(j))

,

where

p(�(j)) =
1

N

NX

i=1

Ii(�(j)), j = 1, 2, 3, 4;

Ii(�(j)) =

⇢
1 if �(j) exists in the ith amino acid
0 otherwise

.

Here, ei(�(1)), ei(�(2)), ei(�(3)), and ei(�(4)) respectively denote the errors of the predicted �
(1) to

�
(4) in the i-th sampling, while N represents the total number of amino acids.

19


