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Spatiotemporal Graph Guided Multi-modal Network for
Livestreaming Product Retrieval

Anonymous Author(s)

ABSTRACT
With the rapid expansion of e-commerce, more consumers have
become accustomed to making purchases via livestreaming. Ac-
curately identifying the products being sold by salespeople, i.e.,
livestreaming product retrieval (LPR), poses a fundamental and
daunting challenge. The LPR task encompasses three primary dilem-
mas in real-world scenarios: 1) the recognition of intended products
from distractor products present in the background; 2) the video-
image heterogeneity that the appearance of products showcased in
live streams often deviates substantially from standardized prod-
uct images in stores; 3) there are numerous confusing products
with subtle visual nuances in the shop. To tackle these challenges,
we propose the Spatiotemporal Graphing Multi-modal Network
(SGMN). First, we employ a text-guided attention mechanism that
leverages the spoken content of salespeople to guide the model to
focus toward intended products, emphasizing their salience over
cluttered background products. Second, a long-range spatiotempo-
ral graph network is further designed to achieve both instance-level
interaction and frame-level matching, solving the misalignment
caused by video-image heterogeneity. Third, we propose a multi-
modal hard example mining, assisting the model in distinguishing
highly similar products with fine-grained features across the video-
image-text domain. Through extensive quantitative and qualitative
experiments, we demonstrate the superior performance of our pro-
posed SGMN model, surpassing the state-of-the-art methods by a
substantial margin. The code and models will be public soon.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies → Visual content-based
indexing and retrieval.

KEYWORDS
Livestreaming Product Retrieval, Multi-modality, Graph learning

1 INTRODUCTION
Benefiting from the convenience of e-commerce, shopping online
become increasingly popular in recent years. The livestreaming
product retrieval (LPR) plays a crucial role in accurately match-
ing products shown in live clips with those available in online
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(a) Cluttered and similar background products.
Live clip

Intend product

(b) Intended product retrieval with a large appearance variations.

Video-image graph

Te
mp
ora
l

Sp
at
ia
l

Video graph

Image graph

Video Spatiotemporal graph

Spatial

Spatial graphImage

Cross-domain graph

(c) Intra-domain and inter-domain spatiotemporal graphs.

Figure 1: Representative examples of cluttered and similar
background products (a) or large appearance variations such
as occlusion, motion, and illumination (b). The intra-domain
and inter-domain graphs (c) between videos and images to
enhance the spatiotemporal frame-level interaction.

shops, ensuring a seamless shopping experience and excellent mar-
keting ability [11, 13, 25]. Even though various customer-to-shop
retrieval methods have great progress [6, 12, 14], the cross-domain
livestreaming-to-shop problem in LPR has few studies yet. Some
unresolved challenges are still rooted in real-world applications.

First of all, accurately discerning the intended products offered
by salespersons during livestreaming is profoundly challenging. It
is common practice for salespersons to showcase multiple products
but focus on promoting a specific product at a given time, defined
as intended product. Some methods have attempted to incorporate
an additional product detection module [12, 46], but they will incur
high annotation costs and computational complexity, and also fail to
completely eliminate ambiguity of intent. Sometimes, the detection
of multiple foreground boxes introduces more uncertainty and
erroneous guidance, as shown in Fig. 1(a).

Secondly, the heterogeneity between realistic livestreaming videos
and product images further exacerbates the difficulty of cross-
domain retrieval. As depicted in Fig. 1(b), livestreaming introduces
variations in viewpoint, illumination, and occlusions, resulting in
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significant appearance disparities between products in livestream-
ing and in online store. It is very common in live scenarios, where
methods focused on the instance-level matching of entire clips will
fail [6, 12, 44]. Coarse-grained instance-level matching makes it
hard to track spatial structural deformations. The inevitable motion
and occlusions will render products visually obscured or degraded
during specific time slots, making frame-level sequential matching
with temporal consistency necessary. Moreover, Large domain dis-
crepancy leads to misalignment of intra-domain features. Existing
cross-domain retrieval methods [6, 8, 24, 30, 41] often treat different
domains equally while ignoring spatiotemporal relations within
and between domains, further reducing retrieval accuracy.

Another dilemma in real-world applications lies in the abun-
dance of highly similar products in online stores, necessitating
that models excel at learning fine-grained representations and dis-
criminating subtle distinctions among similar-looking products.
As shown in Fig. 1(a), there exists a plethora of indistinguishable
bracelets. Some methods based on pre-trained CLIP attempt to
learn classifiable visual embeddings from large-scale video-text
embeddings [4, 8, 21, 35]. However, generic features often fail to
capture subtle product characteristics. This deficiency contributes
to the suboptimal performance of the latest method, RICE [44],
particularly in the crucial first-ranking metric (R@1).

To tackle the real-world challenges mentioned above, we propose
the Spatiotemporal Graphing Multi-modal Network (SGMN) for
LPR. Our model consists of three key components: 1) We leverage
the verbal explanations provided by salespersons in livestreams,
which often contain explicit information about the intended prod-
ucts. The texts from Automatic Speech Recognition (ASR) transcrip-
tions and image titles guide the model to focus on products highly
relevant to the verbal context, mitigating distractions from back-
ground clutter items. 2) We design a Graph-based Cross-domain
Interaction (GCI) module to capture spatiotemporal correlations
between videos and images. It is the first exploration of using
sequence-to-sequence graph learning to model and enhance cross-
domain temporal consistency and spatial correlation. As shown in
Fig. 1(c), we establish the intra-domain and inter-domain connec-
tion graphs between video and image synchronously. Benefiting
from the frame-level connectivity, the model can still accurately
localize regions of intended products that encounter appearance
distortion due to occlusion, motion, and brightness changes in
Fig. 1(b). 3) The Selective Multi-modal Fusion (SMF) module is pro-
posed to assist the model in distinguishing highly similar products.
This mechanism selects the top-K hard examples in global ranking,
and then fuses their visual and textual representations for implic-
itly recalibrating ranking and discerning semantic heterogeneity.
The fine-grained alignment across the video-image-text domain
demonstrates robust potential. Notably, our method adheres to the
principle of independently encoding multi-modal inputs during
inference, striking a balance between efficiency and accuracy.
Our contributions can be summarized as follows:

• We introduce the textual information in the detector-free
retrieval framework to guide model attention on the in-
tended product. The comprehensive yet unified represen-
tation learned from the cross-modal alignment space of
video-image-text solves the practical dilemma of LPR.

• The spatiotemporal graph learning is first explored for cap-
turing sequential relations, alleviating inter-domain mis-
alignments in both spatial and temporal dimensions.

• We selectively fuse multi-modal features to enhance fine-
grained representations of hard samples, distinguishing
products with subtle visual differences.

• Our method achieves the best performance on the large-
scale benchmark dataset. Extensive quantitative and quali-
tative experiments prove the superiority of SGMN.

2 RELATEDWORKS
2.1 Livestreaming Product Retrieval
Before the livestreaming became popular, researchers paid more
attention to the customer-to-shop clothes retrieval tasks, such as
fashion retrieval [10, 11, 13, 15, 25]. Motivated by video-to-shop
retrieval, some works are dedicated to providing pair-matching
solutions between image and video features, such as DPRNet [46]
and SEAM [12]. Such methods adopt a two-stage framework com-
bining detection and retrieval, localizing the products in the video
before performing the global similarity match. AsymNet [6] uses a
single-stage network that removes object detection to reduce model
complexity. RICE [44] proposes a single-stage network without ob-
ject detection to reduce model complexity. However, these methods
have yet to effectively leverage the textual modality to identify
the intended products. In our work, we make the first attempt at
enhancing visual representations of intended products using the
textual features in a one-stage framework.

2.2 Cross-domain Retrieval and Interaction
Existing cross-domain retrieval methods usually learn unified rep-
resentations across different domains. Some methods feed concate-
nated visual and textual features into classifiers to predict image-to-
text matching performance [4, 21, 34, 35]. CLIP2Video [8] transfers
knowledge from pretrained CLIP to learn video-to-text features.
Recent methods with high inference performance use independent
encoders to extract global features and compute cross-domain sim-
ilarity [28, 30, 32, 36, 48]. Methods for cross-domain interaction
are also explored. SCAN [19] uses an attention mechanism to fuse
across domains, and IMRAM [2] applies an iterative network for
interaction. The multi-grained matching mechanism[30] shows
limited performance in capturing long-range temporal dependency.
Our work employs a spatiotemporal graph to enhance the cross-
domain consistency across the video-image-text domain.

2.3 Reason Graph Learning
The graph reasoning network (GCN) has proven effective due to
the powerful expressive capability of graph structures[3, 38]. In
cross-domain retrieval tasks, using graph reasoning networks [16,
18, 47] to learn the relationship between different domains is a
common practice. VSRN [20] models the local visual features of key
objects semantically. CGMN [5] and GSMN [22] learn image-text
matching using a cross-domain graph matching network. DSRAN
[40] adopts the graph attention. Wang et al. used a coarse-to-Fine
graph network for video-text retrieval [39]. The HREM [9] learns
semantic relationships among image and text via a hierarchical
graph relation model. These methods have shown the advantages
of graph learning in modeling spatial correlation, but its potential
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Figure 2: The architecture of the proposed SGMN. The inputs are live video clips, text from video ASR, product images, and
product titles. Paired image-video and ASR-title representations in GRA module are independently encoded and weighted for
global similarity. The GCI module (Top right) constructs the video graph, image graph, and video-image graph for cross-domain
spatiotemporal relation learning. The SMF module (Bottom Right) selects hard examples and fuses multi-modal features for
distinguishing mining. Only the GRA module is used for inference, while the GCI and SMF modules are applied for training.

in capturing temporal information within video sequences has
yet to be explored. Our work has made preliminary attempts and
validations in spatiotemporal sequence-level graphing.

3 METHOD
Our SGMN consists of three parts: the Global Representation Align-
ment (GRA), the Graph-based Cross-domain Interaction (GCI), and
the Selective Multi-modal Fusion (SMF), as illustrated in Fig. 2. Fur-
ther implementation details are elucidated in subsequent sections.

3.1 Global Representation Alignment
Image Encoder.Weuse the pretrained ViT-B/32model fromCLIP [29]
as the image encoder.We define a batch of𝑁 images as 𝐼 ∈ R𝑁×𝐻×𝑊 ,
and the encoders extract non-overlapping image patches with the
size of 𝑝 × 𝑝 . Then we perform a linear projection to project these
flattened patches into 1D markers as shown in Fig. 2. We then
use the Multi-Head Attention (MHA) mechanism to interact with
each patch of the image for the global aggregated features 𝐼𝑐𝑙𝑠 and
patch-level hidden embedding 𝐼ℎ𝑖𝑑 :

{𝐼𝑐𝑙𝑠 , 𝐼ℎ𝑖𝑑 } = FMHA (Q𝐼 ,K𝐼 ,V𝐼 ), (1)
where Q, K , and V represent the query, key, and value. The 𝐼𝑐𝑙𝑠 ∈
R𝑁×𝐷 and 𝐷 is the embedding dimension.
VideoEncoder.The live streams are divided into clips𝑉 ∈ R𝑁×𝐿×𝐻×𝑊 ,
where 𝐿 is the length of video frames. We share parameters between
the image encoder and the video encoder for global representation
alignment, so the sequential features of video clips are encoded as:

{𝑉𝑐𝑙𝑠 ,𝑉ℎ𝑖𝑑 } = FMHA (Q𝑉 ,K𝑉 ,V𝑉 ). (2)
We also adopt the cls token𝑉𝑐𝑙𝑠 ∈ R𝑁×𝐿×𝐷 as the global representa-
tion of video clips. To enhance inter-frame alignment inside videos

and extract correlations within each frame, we use a Temporal
Motion Compensation (TMC) module. TMC adds the displacement
of inter-frame actions to the video sequence to simulate motion
changes as Δ𝑓𝑡 = 𝑓 𝑡 − 𝑓 𝑡−1, where 𝑓 𝑡−1 and 𝑓 𝑡 represent two
adjacent frames. We then encode the motion of consecutive frames
and insert them as a motion compensation token for enhancing
differential-level attention. The global video representation after
motion-compensated enhancement is:

𝑉𝑣𝑖𝑠𝑢𝑎𝑙 = FTMC (𝑉𝑐𝑙𝑠 | {Δ𝑓1,Δ𝑓2, . . . ,Δ𝑓𝑡 }). (3)

Text Encoder. ChineseCLIP [43] is used to extract initial textual
representations for video automatic speech recognition (ASR) 𝑇𝑎𝑠𝑟
and image titles 𝑇𝑖𝑡𝑒𝑚 . To keep the model lightweight, we pre-
trained the ChineseCLIP model and fixed the parameters in model
training. Since the speech information from the salesperson al-
ways contains redundant product-independent information in the
real-world livestreaming, we add a filter layer Ffilter to eliminate
irrelevant units while retaining key information.

𝑉𝑡𝑒𝑥𝑡 = Ffilter (Fclip (𝑇𝑎𝑠𝑟 )),
𝐼𝑡𝑒𝑥𝑡 = Ffilter (Fclip (𝑇𝑖𝑡𝑒𝑚)), (4)

where the Fclip (·) is the function of ChineseCLIP.
Similarity Loss. We use the triplet loss T (·) [7] to measure the
similarity of visual and textual embedding. The detailed imple-
mentation can be found in the supplementary. Therefore, the opti-
mization goal of GRA is defined as the similarity loss L𝑠 between
video-to-image and text-to-text representations, and 𝜆 is defined as
the loss weighting factor.

L𝑠 = T (𝑉𝑣𝑖𝑠𝑢𝑎𝑙 , 𝐼𝑣𝑖𝑠𝑢𝑎𝑙 ) + 𝜆T (𝑉𝑡𝑒𝑥𝑡 , 𝐼𝑡𝑒𝑥𝑡 ). (5)
3
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3.2 Graph-based Cross-domain Interaction
GraphsReconstruction.Webuild a video graph, image graph, and
video-image graph using global representations, as shown in Fig. 2.
These spatiotemporal graphs can capture temporal consistency and
spatial relations synchronously.

First, for a batch with 𝑁 video-image pairs, the sequence length
of the video is 𝐿, so we can obtain the global video features as 𝑆𝑉 =

𝑉𝑣𝑖𝑠𝑢𝑎𝑙 ∈ R𝑁×𝐿×𝐷 . Then we stack images into sequences of the
same length as video clips for the sequence-to-sequence alignment,
and the stacked global image features as 𝑆𝐼 = 𝑆𝑡𝑎𝑐𝑘 (𝐼𝑣𝑖𝑠𝑢𝑎𝑙 ) ∈
R𝑁×𝐿×𝐷 . The construction of the inter-domain spatiotemporal
graph is shown in Fig. 3. The video-to-image similarity matrix
H𝑉 2𝐼 ∈ R𝑁×𝐿×𝐿 is represented as:

H𝑉 2𝐼 = 𝑆𝑉 𝑆
𝑇
𝐼 . (6)

However, fully connecting each <frame, image> pair while ig-
noring the relative importance is suboptimal [33]. Thus we define
two intra-domain relation matrices and two inter-domain relation
matrices, which are video spatiotemporal graph 𝑮𝑉 2𝑉 , image spa-
tial graph𝑮𝐼2𝐼 and video-image cross-domain graph𝑮𝑉 2𝐼 and𝑮𝐼2𝑉 .
Then we build the entire spatiotemporal graph with intra-domain
relations and cross-domain association as follows:

𝑮 =

[
𝑮𝐼2𝐼 𝑮𝐼2𝑉
𝑮𝑉 2𝐼 𝑮𝑉 2𝑉

]
(7)

Given 𝑁 image-video pairs, the size of four relation matrices are
{𝑮𝑉 2𝑉 , 𝑮𝑉 2𝐼 , 𝑮𝐼2𝐼 , 𝑮𝐼2𝑉 } ∈ R𝑁×𝐿×𝐿 . The matrices 𝑮𝑉 2𝑉 and 𝑮𝐼2𝐼
represent the instance-level correlation of images or videos, while
the matrices 𝑮𝑉 2𝐼 and 𝑮𝐼2𝑉 represents the frame-level correlation
between each image and each video frame. All nodes and edges in
graphs independently and jointly represent objects and relations of
multiple domains. Then we refer to the frame-by-frame matched
scores to filter out irrelevant connectivity and define two semantic
properties: Connection and Relevance.

i) Connection. To build an efficient correlation graph and pre-
serve useful spatiotemporal connections, we follow an advanced
fine-grained matching scheme [19]. The connection relationships
between each video frame and the image depend on the matching
relationships of multiple nodes.

As shown in Fig. 3, given the frame-image similarity matrix, each
column vector represents the matching relationships between each
video frame and a certain image. We first compute the mean of the
similarity and then measure the top-K matching pairs. We calculate
the difference between the mean value and top-K values as:

C𝑖 = Mean(H 𝑖
𝑉 2𝐼 ) − topK(H 𝑖

𝑉 2𝐼 , 𝐾), (8)

where 𝑖 ∈ [0, 𝐿) and H 𝑖
𝑉 2𝐼 is the 𝑖-th column vector and 𝐾 is set

as 𝐿/2. Finally, the connection property between the frame and
the image is determined based on the logical values of C. The
M ∈ R𝑁×𝐿×𝐿 is the connection mask:

M𝑖, 𝑗 = 1 𝑖 𝑓 C𝑖, 𝑗 >= 0,
M𝑖, 𝑗 = 0 𝑖 𝑓 C𝑖, 𝑗 < 0,

(9)

ii) Relevance.Due to the heterogeneity between videos and images,
simply using global embeddings for cross-modal relevance learning
is insufficient. So we continue to employ fine-grained matching
based on multiple nodes to narrow the cross-domain differences.

Video Image

…

N Pairs

…

Connection

…

Relevance

…

V2I

Mask

…

Mean TopK

MLP

Mean TopK

…

Batch Linear Layer

… … …… … … ……

Figure 3: Graph construction of a cross-domain connection
between video and image sequences within a batch.

For the video-to-image associations, we first extract the column
vectors of H 𝑖

𝑉 2𝐼 and then simultaneously compute the mean value
and remap the top-K matching scores:

A𝑖 = Mean(H 𝑖
𝑉 2𝐼 ) + FMLP (topK(H 𝑖

𝑉 2𝐼 , 𝐾)), (10)

where 𝑖 ∈ [0, 𝐿) is the column index and 𝐾 = 𝐿. Since the relevance
learning for different samples within a batch is independent, we use
an additional batch linear layer to encourage interactions between
different samples and further expand the matching receptive field.

R𝑖 = FBLL (A𝑖 ), (11)

where the FBLL (·) includes an ReLU activation layer and two linear
layers. Then we obtain the relevance matrix R for all pairs of video-
to-image instances.

Therefore, the cross-domain graph can be constructed from the
connection matrix C and relevance matrix R as:

𝑮𝑉 2𝐼 = R ⊗ C. (12)

Cross-domain Interaction. As shown in Fig. 4, we design two
attention branches to enhance the visual representation. The cross-
domain connections in GCI represent the interaction of intra-domain
and inter-domain features. We use the constructed graph 𝑮𝐼2𝑉 and
𝑮𝑉 2𝐼 to replace the mask in the MHA function to guide the model
attention to local areas with high relevance as:

𝐼𝑚 = FLN (FMHA (Q𝐼 ,K𝑉 ,V𝑉 | 𝑮𝐼2𝑉 )),
𝑉𝑚 = FLN ((FMHA (Q𝑉 ,K𝐼 ,V𝐼 | 𝑮𝑉 2𝐼 )),

(13)

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Spatiotemporal Graph Guided Multi-modal Network for Livestreaming Product Retrieval MM ’24, 28 October - 1 November 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

L
ay

er
n
o
rm

L
ay

er
n
o
rm

M
u
lti-h

ead

atten
tio

n

F
F

N

L
ay

er
n
o
rm

M
u
lti-h

ead

atten
tio

n

M
u
lti-h

ead

atten
tio

n

F
F

N

Q

K

V

Q

K

V

L
ay

er
n
o
rm

L
ay

er
n
o
rm

L
ay

er
n
o
rm

L
ay

er
n
o
rm

M
u
lti-h

ead

atten
tio

n

Figure 4: Details of the cross-domain interaction module.

where FLN (·) is the layer norm function. Then we take the graph-
enhanced feature 𝐼𝑚 and 𝑉𝑚 through the MHA module under the
guidance of the intra-modal graphs 𝑮𝐼2𝐼 and 𝑮𝑉 2𝑉 to obtain the
graph-enhanced visual representation 𝐼𝑔 and 𝑉𝑔 , and FFFN (·) is the
function of a feed-forward network.

𝐼𝑔 = FFFN (FMHA (Q𝐼𝑚 ,K𝐼𝑚 ,V𝐼𝑚 | 𝑮𝐼2𝐼 )),
𝑉𝑔 = FFFN (FMHA (Q𝑉𝑚 ,K𝑉𝑚 ,V𝑉𝑚 | 𝑮𝑉 2𝑉 )) .

(14)

Graph Loss. We first use the triplet loss T (·) to compute the
cosine similarity of features augmented by spatiotemporal graphs,
jointly optimizing the parameters of the image, video, and video-
image graphs. In addition, the cross loss between the enhanced
embedding and the original embedding is additionally calculated
to narrow the feature domain difference, and the graph loss is:

L𝑔𝑟 = T (𝑉𝑔, 𝐼𝑔) + T (𝑉𝑣𝑖𝑠𝑢𝑎𝑙 , 𝐼𝑔) + T (𝑉𝑔, 𝐼𝑣𝑖𝑠𝑢𝑎𝑙 ) . (15)

We use the KL-divergence loss [37] function K(·) to minimize
the difference between the distribution of calibrated cross-domain
correlations and the global embedding.

L𝑘𝑙 = K(𝑮𝑉 2𝐼 ,H𝑉 2𝐼 ) + K(𝑮𝐼2𝑉 ,H𝐼2𝑉 ) . (16)
And the total loss in GCI is defined as L𝑔 = L𝑔𝑟 + L𝑘𝑙 .

3.3 Selective Multi-modal Fusion
To improve the discrimination of semantically related and visually
similar products, we further perform the hard negative mining oper-
ation using the multi-modal features. First, we compute a similarity
matrix with visual and textual representations in the GRA module
to select hard examples as follows:

𝑀𝑠𝑖𝑚 = 𝑉𝑣𝑖𝑠𝑢𝑎𝑙 · 𝐼T𝑣𝑖𝑠𝑢𝑎𝑙 + 𝛼𝑉𝑡𝑒𝑥𝑡 · 𝐼
T
𝑡𝑒𝑥𝑡 , (17)

thenwe select top𝐾 samples ranked in𝑀𝑠𝑖𝑚 as the hard samples for
further matching. The 𝐾 is set to 4. The visual and textual features
of these samples are selected as:

𝑖𝑛𝑑 = topK(𝑀𝑠𝑖𝑚, 𝐾),
𝑉𝑣𝑖𝑠𝑢𝑎𝑙 , 𝐼𝑣𝑖𝑠𝑢𝑎𝑙 = 𝑉𝑣𝑖𝑠𝑢𝑎𝑙 [𝑖𝑛𝑑], 𝐼𝑣𝑖𝑠𝑢𝑎𝑙 [𝑖𝑛𝑑],

𝑉𝑡𝑒𝑥𝑡 , 𝐼𝑡𝑒𝑥𝑡 = 𝑉𝑡𝑒𝑥𝑡 [𝑖𝑛𝑑], 𝐼𝑡𝑒𝑥𝑡 [𝑖𝑛𝑑] .
(18)

Besides, we fuse the textual feature and visual representations of
selected samples using a fusion layer Ffusion (·). The multi-modal
features of video and image are learned.

𝑉 = Ffusion (𝑉𝑣𝑖𝑠𝑢𝑎𝑙 ,𝑉𝑡𝑒𝑥𝑡 ), 𝐼 = Ffusion (𝐼𝑣𝑖𝑠𝑢𝑎𝑙 , 𝐼𝑡𝑒𝑥𝑡 ) . (19)

The fused features 𝑉 and 𝐼 will pass through a perceptual module
consisting of a self-attention layer and a cross-attention layer F𝑐𝑟𝑜𝑠𝑠

to obtain cross-domain features:

𝑉𝑐𝑟𝑜𝑠𝑠 = Fcross (Q𝐼
,K

�̂�
,V

�̂�
), (20)

Then we use the symmetric cross-entropy loss E(·) [8] to calculate
the matching loss in hard negative mining.

L𝑚 = E(AvgPool(𝑉𝑐𝑟𝑜𝑠𝑠 )) . (21)

3.4 Optimization Target
To learn a comprehensive representation from the video-image-text
alignment space, the total loss is optimized as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑠 + 𝛽1L𝑔 + 𝛽2L𝑚 . (22)

Mentioned that the model only uses the independent embedding in
GRA to calculate the global similarity in the inference stage, having
high matching accuracy and efficiency.

3.5 Model Inference
During the inference stage, only the GRA module is utilized to
independently encode the global visual and textual representations
of the input video and the product gallery images. The matching
scores S are calculated as a weighted similarity of the embeddings
from the visual and text domain.

S = 𝑉𝑣𝑖𝑠𝑢𝑎𝑙 𝐼
𝑇
𝑣𝑖𝑠𝑢𝑎𝑙

+ 𝜆𝑉𝑡𝑒𝑥𝑡 𝐼𝑇𝑡𝑒𝑥𝑡 . (23)

4 EXPERIMENTS
4.1 Experimental Setup
Datasets.We conduct experiments on the publicly available dataset
LPR4M [44] and MovingFashion (MF) [12]. The LPR4M dataset is
the largest publicly available multi-modal dataset that covers 34
categories and comprises three modalities (image, video, and text).
It includes 3,955,181 pairs of video-images for training and 20,079
pairs for testing, encompassing a diverse range of scenes. The MF
dataset contains only one category of fashion clothing with two
modalities (image, video), comprising 15,045 pairs in the training
set and 1,341 pairs in the test set. These well-stocked commerce
datasets facilitate a fair evaluation of our method in real-world
scenarios. More dataset analyses are available in the supplements.
Implementation Details. We initialize image and video encoders
using the pretrained ViT-B/32 model from CLIP [29] with a feature
dimension of 512. The text encoder is initialized by the pretrained
RoBERTa-wwm-Base model from ChineseCLIP [43]. For video pre-
processing, we extract 10 evenly spaced frames from each clip. Each
frame in videos has a probability of 0.5 to be randomly masked
for data augmentation, and the masking percentage ranges from
0 to 0.9. We set the weight factor 𝜆 = 0.5 in Eq. 5 and Eq. 23. The
margin in triplet loss is set to 0.2 for proper discrimination. In
Eq. 8, top-K scores serve as the relevance threshold, set to 𝐿/2 to
balance performance and complexity. In Eq. 17, higher 𝐾 implies
more memory (M) costs, so we set 𝐾=4. The weight factors are
𝛽1 = 0.7 and 𝛽2 = 0.3 in Eq. 22. In model optimization, we use the
Adam [17] optimizer with a batch size of 256. The learning rate
is 3 × 10−4, which decays following the cosine schedule [27]. Our
models are trained on 8 NVIDIA Tesla V100 GPUs. Following the
standard retrieval task [31, 45], recall at rank K (R@K) is adopted
as the metric to evaluate the performance quantitatively.
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Table 1: Performance comparison on the LPR4M dataset.

Methods R@1 R@5 R@10 R@mean
FashionNet [25] 13.4 33.8 50.4 32.5
AsymNet [6] 22.0 46.7 63.8 44.2
SEAM [12] 23.3 49.5 61.4 44.7
TimeSFormer [1] 28.6 56.8 69.0 51.5
NVAN [23] 21.4 45.2 62.7 43.1
SwinB [26] 29.1 60.1 73.9 54.4
RICE [44] 33.0 65.5 77.3 58.6
SGMN (w/o TE) 38.7 66.5 76.2 60.5
SGMN (Ours) 43.4 68.9 79.2 63.8

Table 2: Performance comparison on the MF dataset.

Methods R@1 R@5 R@10 R@mean
NVAN [23] 38.0 62.0 70.0 56.7
MGH [42] 40.0 59.0 66.0 55.0
AsymNet [6] 42.0 73.0 86.0 67.0
SEAM [12] 49.0 80.0 89.0 72.7
RICE [44] 76.1 89.7 92.6 86.1
SGMN (w/o Finetune) 43.1 63.5 70.7 59.1
SGMN (Ours) 77.8 90.3 92.7 86.9

4.2 Comparison with Other Methods
We quantitatively compare the proposed SGMN with the existing
methods on the LPR4M dataset and MF dataset, and the results are
shown in Tab. 1 and Tab. 2. On the large-scale dataset LPR4M, the
retrieval performance of our method outperforms the state-of-the-
art RICE [44] by 10.4% in R@1, 3.4% in R@5, and 1.9% in R@10.
Existing methods exhibit limited performance on LPR4M with rich
categories and diverse scenes. We also verified the performance of
SGMN without using textual features (w/o TE). Our SGMN can still
achieve a performance gain of 5.7% on R@1 without the textual
guidance to the salient regions (38.7% vs 33.0%).

Since the MF dataset does not have text modality, we do not fuse
the textual information in training. Efficient global cross-domain
alignment still allows SGMN to maintain the best performance with
significant gains. Compared with the official method of MF dataset
SEAM, our method improves R@1 by 28.8% in R@1. Although the
MF testset contains only 1,342 videos, our approach still gains a 1.7%
advantage over the highest RICE method in the crucial R@1 metric,
signifying our superiority in extracting fine-grained discriminative
features. We also verified the model trained on LPR4M without
finetuning on MF, and the results show that even if the model
has not seen the MF data, it can still surpass most trained models,
demonstrating robust zero-shot fitting and generalization capability.
To summarize, our method benefits from cross-domain connections
and fine-grained matching, showing greater superiority on both
simple and diverse datasets, particularly in the crucial R@1 metric.

4.3 Qualitative Results
Retrieval Results.We randomly select several video sequences
from MF dataset and LPR4M dataset, and the top-3 shop images are
shown in Fig. 5. It can be seen that even if the live scene is filled
with numerous products of the same type, our SGMN can still find

Video sequence Ranking

(a) LPR4M dataset

(b) MF dataset
Figure 5: Ranking results of representative products in LPR.
Table 3: Comparison of inference time of different methods.

Method AsymNet SEAM TimeSFormer RICE SGMN
Time (ms) 910.4 622.6 163.2 24.0 24.3
Params (M) 295 52 185 158 174
R@1 (%) 22.0 23.3 28.6 33.0 43.4

the best matched product. Besids, our model performs excellently
in distinguishing highly similar clothes in the MF dataset. Even
though the intended products encounter appearance distortion due
to occlusion, motion, scaling, or illumination variations, our method
can still accurately retrieve the correct products.
Inference Time.We show the model inference time in Tab. 3 to
verify the efficiency of our one-stage strategy. Experiments for
different methods were conducted following their open-source set-
ting and replicated on the Tesla T4 GPU. Compared to two-stage
methods like AsymNet and SEAM, which require additional object
detection, our SGMN achieves over 30 times faster speed. Even with
the TE module, our SGMN demonstrates nearly identical runtime
to RICE using the same CLIP model. Benefiting from globally inde-
pendent encoding and parameter sharing, our SGMN balances well
between model complexity and performance.
Generalization and Robustness. We carried out experiments
on different video variations of the LPR4M dataset and the results
are in Tab. 4. RICE𝑝𝑎𝑡𝑐ℎ is a one-stage algorithm, while RICE𝑏𝑜𝑥
is a two-stage algorithm manually incorporating detected boxes.
Data is divided into small, medium, and large subsets with different
product scales, visible durations, and product numbers. Our SGMN
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Table 4: The R@1 performance of various methods is evaluated on the LPR4M dataset across subsets categorized by video varia-
tions, including product scale, visible duration, and number of products. The best performance for each subset is highlighted.

Methods overall scale visible duration number of product
small medium large short medium long abundant medium few

RICE𝑝𝑎𝑡𝑐ℎ 31.2 28.9 37.0 32.7 28.1 32.9 39.6 21.0 34.6 31.5
RICE𝑏𝑜𝑥 33.0 32.7 39.0 33.8 29.6 34.8 42.0 17.6 31.9 33.4
SGMN (Ours) 41.5 38.3 43.0 54.9 36.6 43.6 54.5 24.7 32.3 42.9

Figure 6: Attention visualization with and without (w/o)
TE modules. Benefiting from the embedding and guidance
of text information, the model tends to focus on keyword-
related products in the cluttered background. The keywords
‘butterfly’ and ‘Pixiu necklace’ that co-exist in the video text
and product items correct the model attention efficiently.

consistently outperforms RICE by a significant margin across vari-
ous subsets, demonstrating robustness in real-world scenarios.

4.4 Ablation Study
Text Attention Analysis. Embedding text from video ASR and
product items can guide the model to focus on the intended item
in the cluttered background at a low cost. Therefore, we visualized
the attention of the video encoder in GRA equipped with or with-
out (w/o) the TE module. As shown in Fig. 6, the method with TE
is superior to that w/o TE in accurately retrieving the intended
product. For example, in the live clip of selling hairpins, multiple
similar hairpins appear in view simultaneously, interfering with
the identification of intended products. In this case, the keyword
‘butterfly’ mentioned by the live salesperson played a key role,
significantly increasing the probability of matching products that
contain both ‘butterfly’ and ‘hairpin’ in the title. Similarly, there
are a large number of extremely similar products in the vermilion
necklace category gallery, and their visual differences are almost
negligible in the live domain, where the resolution is degraded. For-
tunately, the assistance of text information solves this dilemma very

Table 5: Hyperparameters analysis of loss function.

𝛽1 0 0.2 0.3 0.5 0.7 0.8 1
𝛽2 1 0.8 0.7 0.5 0.3 0.2 0
R@1 39.1 41.8 40.7 41.5 43.4 39.4 40.9

Table 6: Performance of combining different relation graphs,
including intra- and inter-domain graphs of video and image.

# 𝑮𝐼2𝐼 𝑮𝑉 2𝑉 𝑮𝐼2𝑉 +𝑉 2𝐼 R@1 R@5 R@10
A 38.6 65.7 76.5
B ✓ 38.8 65.9 77.0
C ✓ 39.7 66.7 77.3
D ✓ 40.1 67.0 77.8
E ✓ ✓ 39.9 67.2 77.6
F ✓ ✓ 40.5 67.5 78.1
G ✓ ✓ 40.8 67.9 78.6
H ✓ ✓ ✓ 43.4 68.9 79.2

Table 7: Model component ablation on the LPR4M dataset.

# TE TMC GCI SMF R@1 R@5 R@10
A 32.8 58.7 72.7
B ✓ 37.3 63.8 74.4
C ✓ ✓ 38.2 65.2 76.1
D ✓ ✓ ✓ 40.9 67.3 77.8
E ✓ ✓ ✓ ✓ 43.4 68.9 79.2

well. The keywords ‘Pixiu’ and ‘necklace’ have endowed the prod-
uct with specificity, freeing the network from the interference of
redundant products irrelevant to the keywords. These results show
that our SMGN equipped with additional textual representations
alleviates the difficulty of product-heavy recognition.
Loss Function Analysis. As shown in the Tab. 5, we analyze
the weights of different components in the loss function. It can be
observed that not using graph loss or hard example loss is unwise.
A higher weight for the graph loss brings more performance gain,
but it needs to be balanced with the SMF module. The frame-level
temporal correlation complements high similarity discrimination,
so we set 𝛽1 and 𝛽2 in Eq. 22 as 0.7 and 0.3 respectively.
Different Spatiotemporal Graphs. To analyze the performance
of spatiotemporal graph learning in enhancing cross-domain inter-
action, we verified the performance using different relation graphs,
and the results are shown in Tab. 6. The baseline uses the self-
attention mechanism to interact with the initial features of videos
and images. It can be seen that using graph learning to enhance
intra-domain correlation is helpful because the methods using 𝑮𝐼2𝐼
or 𝑮𝑉 2𝑉 graphs both have performance gains. Besides, constructing
𝑮𝐼2𝑉 and 𝑮𝑉 2𝐼 graphs with cross-domain interactions has a higher
gain in R@1 (40.1% vs 38.6%), indicating that the spatiotemporal
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(a) Video sequences and product images of hard examples.
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Figure 7: Quantitative and qualitative comparison of our proposed SMF module in identifying multiple highly similar products.
(a). Three similar-looking liquor video sequences (A, B, and C) and corresponding intended product images (I, II, and III). (b).
Quantification of the global embedding similarity between the three videos and the corresponding product images using the
model with or without the SMFmodule. (c). Attention visualization of our SGMN on encoded features for three video sequences.

aligned domain is more conducive to learning efficient represen-
tations. Since products in the live domain often have appearance
deformations, capturing enough fine-grained and long-range fea-
tures to distinguish video-to-image pairs accurately is critical. The
jointly modelled temporal consistency and spatial correlation en-
hance the global embedding of images and videos, achieving a 2.9%
accuracy gain in R@1 (41.5% vs 38.6%).
Identification of Similar Products. In livestreaming e-commerce,
similar products have incredibly similar appearance and visual fea-
tures and often appear in the same field of view to facilitate sales,
further exacerbating recognition accuracy. Therefore, to illustrate
that our proposed SMFmodule strengthens themodel in distinguish-
ing hard negative samples, we selected several video sequences with
top scores in the ‘Liquor’ category retrieval for quantitative and
qualitative comparisons. As shown in Fig. 7(a), the product images
of the three liquors have extremely slight visual differences, and
their corresponding live video sequences are also easily confused.
We quantify the similarity scores of the three videos (A, B, and C)
and the corresponding product images (I, II, and III) with and with-
out (w/o) the SMF module, and the results are shown in Fig. 7(b). It
can be seen that the model without SMF has poor scoring discrimi-
nation for similar products, and the scores of the correct category
and the wrong category are very close, which increases the proba-
bility of misclassification. On the contrary, the model that further
performs hard example mining using SMF has higher discriminative
power for similar products. Furthermore, we visualize the visual
attention of our SGMN on three video sequences in Fig. 7(c). The
mining of hard samples incorporating multi-modal features cap-
tures sufficient fine-grained features to recalibrate model attention
on intended products accurately and efficiently.
Model Component Ablation. We analyze the performance of
each component in our method on the LPR4M dataset and present
the quantitative results in Tab. 7. The baseline is a GRA module
that independently encodes visual representations. It can be seen

that each component we designed is effective. Among them, the
TE introducing text attention and GCI learning spatiotemporal
cross-domain interaction achieved higher performance gains, which
are 4.5% and 2.7% in R@1, respectively. TMC enhances the intra-
frame correlation of the global embedding of the video, and SMF
further distinguishes similar samples, achieving R1 gains of 0.9%
and 0.6%. Overall, the GCI module emphasizes frame-level fine-
grained correlation over global coarse-grained alignment, while
the SMF module achieves highly similar semantic discrimination
at minimal cost. Our proposed solution aims to comprehensively
optimize spatiotemporal consistent multi-modal representations,
addressing the application dilemma of LPR step by step.

5 CONCLUSION
In this paper, we rethink the LPR task from a more macroscopic
and practical point of view and propose a one-stage spatiotempo-
ral graphing network to address the real-world dilemmas of LPR
tasks. To the best of our knowledge, this is the first exploration of
sequence-to-sequence graph learning in mitigating heterogeneity
between videos and images. Existing methods are limited by their
narrow focus on coarse-grained matches. But we progressively en-
hance the fine-grained discrimination by integrating modality-level
text embeddings, instance-level similarity mining, and frame-level
graph learning. Despite potential distortions in appearance within
the complex livestreaming domain, our method adeptly tracks spa-
tial deformations, ensuring precise location of the intended product.
Moreover, we have fully harnessed the accessible textual infor-
mation from live ASR transcripts and product titles, freeing the
network from interference over cluttered background products. The
further hard negative mining in video-image-text alignment do-
main improves the ability of our model to distinguish highly similar
products. Extensive quantitative experiments show that our method
well satisfies the demand for both local fine-grained attention and
global spatiotemporal awareness in real-world scenarios.
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