
Appendix for Regularized Softmax
Deep Multi-Agent Q-Learning

Ling Pan1, Tabish Rashid2, Bei Peng3∗, Longbo Huang1, Shimon Whiteson2

1Institute for Interdisciplinary Information Sciences, Tsinghua University
pl17@mails.tsinghua.edu.cn, longbohuang@tsinghua.edu.cn

2University of Oxford
tabish.rashid@cs.ox.ac.uk, shimon.whiteson@cs.ox.ac.uk

3University of Liverpool
bei.peng@liverpool.ac.uk

A Details of Results in Section 3 and Additional Results

A.1 Description of Figure 3(d) in the Main Text

Figure 3(d) in the main text shows the learned weights in the monotonic mixing network fs of QMIX
during learning, where the details of the network structure can be found in Section E.1. The weights
of the monotonic mixing network are obtained from hypernetworks [5], whose outputs are reshaped
into a matrix with appropriate size. Specifically, the outputs of the first and second layers are reshaped
to (num_agents, embed_dim) and (embed_dim, 1) respectively, which corresponds to the first three
rows (as there are three agents in the environment) and the final row in Figure 3(d) in the main text
with embed_dim = 32 corresponding to the columns. A darker color represents a larger value.

A.2 Additional Results of QMIX (CDQ)

In QMIX (CDQ), we apply CDQ on agent-wise utility functions Qa in QMIX by
min

(
Q̄a(s′, u′a), Qa(s′, u′a)

)
, where u′a = arg maxu′a Qa(s′, u′a). Comparison results between

applying CDQ onQa and the joint-actionQ-functionQtot (QMIX (CDQ-joint)) are shown in Figures
1(a)-(b). As demonstrated, QMIX (CDQ-joint) underperforms QMIX (CDQ), which also results in
larger value estimates.

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

5

0

5

10

15

20

25

30

Re
tu

rn

QMIX
QMIX (CDQ)
QMIX (CDQ-joint)

(a)

0.0 0.5 1.0 1.5 2.0
Episode (×105)

100

101

102

103

104

105

Va
lu

e
es

tim
at

es
 (l

og
 sc

al
e)

QMIX
QMIX (CDQ)
QMIX (CDQ-joint)

(b)

0.0 0.5 1.0 1.5 2.0
Episode (×105)

100

101

102

Va
lu

e
es

tim
at

es
 (l

og
 sc

al
e)

RE-QMIX
RE + -QMIX
RES-QMIX

(c)

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

5

0

5

10

15

20

Re
tu

rn

QMIX
QMIX (L2 Regularization)

(d)

Figure 1: (a) and (b) Comparison of performance and value estimates of QMIX (CDQ) and QMIX
(CDQ-joint). (c) Value estimates (in log scale) of RE-QMIX, RE+-QMIX, and RES-QMIX.(d)
Performance comparison of QMIX and QMIX (L2 Regularization).

∗Work done while at University of Oxford.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

A.3 Additional Results of a Clipped Version of RE-QMIX

Figure 1(c) shows comparison results for value estimates of RE-QMIX, RE+-QMIX, and RES-
QMIX. Specifically, RE+ uses a clipped version of the regularizer in RE-QMIX by λ((Qtot(s,u)−
Rt(s,u))+)2, where λ denotes the coefficient and (·)+ = max(·, 0). As a result, RE+-QMIX only
penalizes joint-action Q-values when Qtot(s,u) > Rt(s,u). As shown in Figure 1(c), the value
estimates for RE+-QMIX are very close to those of RE-QMIX. This is because the regularizer is
active in most cases (94.4% on average during training).

A.4 Additional Results of QMIX (L2 Regularization)

Figure 1(d) shows the performance comparison of QMIX and QMIX (L2 Regularization) with
best regularization coefficient. The loss function of QMIX (L2 Regularization) is obtained by
adding λ||θ||22 to the original loss function [8], where λ is the coefficient. As shown, applying L2

regularization fails to avoid performance degradation.

B Our Approximate Softmax Operator

B.1 Proof of Theorem 1

Theorem 1. Let u∗ and u′ denote the optimal joint actions in U and U − Û with respect to
Qtot, respectively. The difference between our approximate softmax operator and its direct com-
putation in the whole action space satisfies: ∀s ∈ S, |smβ,Û (Qtot(s, ·)) − smβ,U (Qtot(s, ·))| ≤
2Rmax

1−γ
|U−Û |

|U−Û |+exp(β(Qtot(s,u∗)−Qtot(s,u′)))
, where |U − Û | denotes the size of the set U − Û .

Proof. By definition, we have that

|smβ,Û (Qtot(s, ·))− smβ,U (Qtot(s, ·))| (1)

=

∣∣∣∣∑u∈U exp(βQtot(s,u))Qtot(s,u)∑
ū∈U exp(βQtot(s, ū))

−
∑

u∈Û exp(βQtot(s,u))Qtot(s,u)∑
ū∈Û exp(βQtot(s, ū))

∣∣∣∣ (2)

For simplicity, we denote a =
∑

ū∈Û exp(βQtot(s, ū)), b =
∑

ū∈U−Û exp(βQtot(s, ū)), c =∑
u∈Û exp(βQtot(s,u))Qtot(s,u), and d =

∑
u∈U−Û exp(βQtot(s,u))Qtot(s,u). Then, Eq.

(2) = b
a+b

∣∣ c
a −

d
b

∣∣.
We have that

∣∣∣∣ ca − d

b

∣∣∣∣ = |smβ,Û (Qtot(s, ·))− smβ,U−Û (Qtot(s, ·))| (3)

≤ |max
u∈U

Qtot(s,u)− min
u∈U

Qtot(s,u)| (4)

≤ |max
u∈U

Qtot(s,u)|+ |min
u∈U

Qtot(s,u)| (5)

≤ 2 max
u∈U
|Qtot(s,u)| (6)

≤ 2Rmax

1− γ
. (7)

2

We also have that

b

a+ b
=

∑
ū∈U−Û exp(βQtot(s, ū))∑
ū∈U exp(βQtot(s, ū))

(8)

≤ |U − Û | exp(βQtot(s,u
′))

|U − Û | exp(βQtot(s,u′)) +
∑

ū∈Û exp(βQtot(s, ū))
(9)

≤ |U − Û | exp(βQtot(s,u
′))

|U − Û | exp(βQtot(s,u′)) + exp(βQtot(s,u∗))
(10)

=
|U − Û |

|U − Û |+ exp(β(Qtot(s,u∗)−Qtot(s,u′)))
. (11)

Therefore, we obtain that

|smβ,Û (Qtot(s, ·))−smβ,U (Qtot(s, ·))| ≤
2Rmax

1− γ
|U − Û |

|U − Û |+ exp(β(Qtot(s,u∗)−Qtot(s,u′)))
.

(12)

As a result, the gap converges to 0 in an exponential rate with respect to the inverse temperature
parameter β.

B.2 Algorithm and More Details for Computing the Approximate Softmax Operator

The full algorithm for computing the approximate softmax operator is in Algorithm 1.

Algorithm 1 Approximate softmax operator

1: Obtain the maximal joint action w.r.t. Qtot: û = arg maxuQtot(s,u)
2: Construct Ua: Ua = {(ua, û−a)|ua ∈ U}
3: Construct the joint action subspace: Û = U1 ∪ · · · ∪ Un
4: Compute the approximate softmax operator:

smβ,Û (Qtot(s, ·)) =
∑
u∈Û

eβQtot(s,u)∑
u′∈Û eβQtot(s,u′)

Qtot(s,u)

Figure 2 also illustrates the computation of our approximate softmax operator in the joint action
subspace Û . The left part in Figure 2 corresponds to the maximal joint action w.r.t. Qtot. The middle
part demonstrates the joint action subspace Û (whose size is nK) for computing our approximate
softmax operator, where the yellow block means that the corresponding action can be one of the
actions in U . The right part shows the joint action space U (whose size is Kn), with the orange
block showing that the action can be one of the actions in U except for the local greedy action. As
discussed in the main text, the action space in the multi-agent setting is much larger than that in
the single-agent case, and some joint-action Q-value estimates Qtot(s,u) can be unreliable due to
a lack of sufficient training. As a result, directly taking them all into consideration for computing
the softmax operator as in the single-agent case [20, 14] can result in inaccurate value estimates.
As shown in Figure 2, according to the individual-global-max (IGM) property discussed in Section
2 in the main text, Û consists of joint actions that are close to the maximal joint action û, which
is more likely to contain joint actions with more accurate and reliable value estimates. As a result,
our softmax operator provides an efficient and reliable approximation. Theorem 1 in the main text
provides a theoretical guarantee for Û , and Section 5.1.4 in the main text validates its effectiveness
by comparing it with other choices.

B.3 Discussion of the Softmax Operator on Agent-Wise Utilities

As discussed in the main text, we propose to employ the softmax operator to further mitigate the
overestimation bias in the joint-action Q-function by smβ,Û (Qtot(s, ·)). One may be interested

3

𝒖 = argmax𝒖𝑄)*) (𝑠,𝒖)

𝑢0

𝑢1

...

𝑼3 : 𝒪(𝑛𝐾) 𝑈: 	𝒪(𝐾:)

𝑢:

...

𝑢0

𝑢1

...

𝑢:

. . .

𝑢0

𝑢1

...

𝑢:

. . .

...

...

𝑢0

𝑢1

...

𝑢:

. . .

𝑢0

𝑢1

...

𝑢:

. . .

...

...

𝑢0

𝑢1

...

𝑢:

. . .

...

𝑢0

𝑢1

...
𝑢:

. . .

𝑢0

𝑢1
...

𝑢:

. . .

...

...

𝑢0

𝑢1

...

𝑢:

...

. . .

𝑢0

𝑢1

...

𝑢:

...

𝑢0

𝑢1

...

𝑢:

. . .

...

𝑢0

𝑢1

...

𝑢:

...

Figure 2: Left: The maximal joint action w.r.t. Qtot. Middle: Illustration of the joint action subspace
Û for computing our approximate softmax operator. Right: Illustration of the joint action space U .

in its application on the agent-wise utility functions by fs
(
smβ,U (Q1(s, ·)), · · · , smβ,U (Qn(s, ·))

)
.

The results are shown in Figure 3, where we refer to the method as RE-QMIX (softmax on Qa).
From Figure 3(b), we can see that this results in overly pessimistic value estimates and a larger
underestimation bias shown in Figure 3(c). In addition, as shown in Figure 3(a), it also significantly
underperforms RES-QMIX, demonstrating the necessity of a careful design of the softmax operator
in deep multi-agent Q-learning methods in MARL.

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

0

10

20

30

40

Re
tu

rn

RES-QMIX
RE-QMIX (softmax on Qa)

(a)

0.0 0.5 1.0 1.5 2.0
Episode (×105)

5

0

5

10

15

20

25

Va
lu

e
es

tim
at

es

RES-QMIX
RE-QMIX (softmax on Qa)

(b)

0.0 0.5 1.0 1.5 2.0
Episode (×105)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

No
rm

al
ize

d
bi

as
 o

f v
al

ue
 e

st
im

at
es

RES-QMIX
RE-QMIX (softmax on Qa)

(c)

Figure 3: Comparison between RES-QMIX and RE-QMIX with the softmax operator on agent-wise
utilities. (a) Performance. (b) Value estimates. (c) Normalized bias of value estimates.

C Proof of Theorem 2

Theorem 2. Given the same sample distribution, the update of the RES method is equivalent to the
update using L(θ) = E(s,u,r,s′)∼B

[
(y −Qtot(s,u))2

]
with learning rate (λ+ 1)α, which estimates

the target value according to y =
r+γsmβ,Û (Q̄tot(s

′,·))
λ+1 + λRt(s,u)

λ+1 .

Proof. Let θ and θ̄ denote parameters of Qtot and the target network Q̄tot respectively. The gradient
for the learning objective of the RES method is

∇θLRES(θ) =− 2(r + γsmβ,Û (Q̄tot(s
′, ·|θ̄))−Qtot(s,u|θ))∇θQtot(s,u|θ)

+ 2λ(Qtot(s,u|θ)−Rt(s,u))∇θQtot(s,u|θ).
(13)

Then, we have

θ′ = θ + 2α(λ+ 1)

(
r + γsmβ,Û (Q̄tot(s

′, ·|θ̄))
λ+ 1

+
λRt(s,u)

λ+ 1
−Qtot(s,u|θ)

)
∇θQtot(s,u|θ),

(14)
where α is the learning rate. Therefore, it is equivalent to using a learning rate α′ = (λ+ 1)α, and

estimating the target value y by
r+γsmβ,Û (Q̄tot(s

′,·))
λ+1 + λRt(s,u)

λ+1 .

C.1 Additional Results

Figure 4 shows the comparison results for QMIX, RES-QMIX, and QMIX with learning rate (lr)
(λ+ 1)α. We see that solely using a larger learning rate still fails to tackle the problem and cannot
avoid performance degradation.

4

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

0

10

20

30

40

Re
tu

rn

QMIX
QMIX (lr=(+ 1))
RES-QMIX

Figure 4: Comparison results of QMIX, QMIX (lr=(λ+ 1)α), and RES-QMIX.

D Proof of Theorem 3

Theorem 3 Let B(T) = E[T (s′)] − maxu′ Q
∗
tot(s

′,u′) be the bias of value estimates of T and
the true optimal joint-action Q-function Q∗tot. Given the same assumptions as in [21] for the joint-
action Q-function, where there exists some V ∗tot(s

′) such that V ∗tot(s
′) = Q∗tot(s

′,u′) for different
joint actions,

∑
u′

(
Q̄tot(s

′,u′)− V ∗tot(s′)
)

= 0, and 1
|U |
∑

u′

(
Q̄tot(s

′,u′)− V ∗tot(s′)
)2

= C

(C > 0) with Q̄tot an arbitrary joint-action Q-function, then B(TRES-QMIX) ≤ B(TRE-QMIX) ≤
B(TQMIX).

Proof. For the left-hand-side, by definition, we have that

smβ,Û

(
Q̄tot(s

′, ·)
)
≤ max

u′∈Û
Q̄tot(s

′,u′) = max
u′∈U

Q̄tot(s
′,u′). (15)

Therefore, TRES-QMIX ≤ TRE-QMIX, and B(TRES-QMIX) ≤ B(TRE-QMIX).

For the right-hand-side, we have that

B(TRE-QMIX)−B(TQMIX) = E
[

λ

λ+ 1

(
Rt+1(s′)− max

u′∈U
Q̄tot(s

′,u′)

)]
(16)

=
λ

λ+ 1

(
V πtot(s

′)− E
[

max
u′∈U

Q̄tot(s
′,u′)

])
(17)

≤ λ

λ+ 1

(
max
u′∈U

Q∗tot(s
′,u′)− E

[
max
u′∈U

Q̄tot(s
′,u′)

])
, (18)

where V πtot(s
′) is the expected discounted return starting from state s′ under the current behavior

policy π, and Eq. (18) follows from the fact that its value is no larger than that of the optimal policy.

Then, it suffices to prove that E
[
maxu′∈U Q̄tot(s

′,u′)
]
≥ maxu′∈U Q∗tot(s

′,u′).

Assume that the joint-action Q-function follows the same assumptions of Theorem 1 in [21],
i.e., there exists some V ∗tot(s

′) such that V ∗tot(s
′) = Q∗tot(s

′,u′) for different joint actions,∑
u′

(
Q̄tot(s

′,u′)− V ∗tot(s′)
)

= 0, and 1
|U |
∑

u′

(
Q̄tot(s

′,u′)− V ∗tot(s′)
)2

= C for some C > 0.
The assumption means that value estimates are correct on average, but there exists estimation error in
the joint-action Q-value estimates for some joint actions. Then, following the analysis in [21], we
have that maxu′∈U Q̄tot(s

′,u′)−maxu′∈U Q∗tot(s
′,u′) ≥ 0.

Therefore, RE-QMIX can reduce the overestimation bias of QMIX, and we have thatB(TRE-QMIX) ≤
B(TQMIX).

E Experimental Details

E.1 Experimental Setup

Tasks. The multi-agent particle environments [9] are based on an open-source implementation,2
where the global state is the concatenation of observations of all agents. For StarCraft Multi-Agent

2https://github.com/shariqiqbal2810/multiagent-particle-envs

5

https://github.com/shariqiqbal2810/multiagent-particle-envs

Challenge (SMAC),3 we use the latest version 4.10. Note that the results reported in [18] use
SC2.4.6.2.69232, and performance is not always comparable across versions.

Baselines. Value factorization methods including VDN, QMIX, and QTRAN are implemented
using the PyMARL [18] framework,4 while we use authors’ open-source implementations for
Weighted QMIX5 and QPLEX.6 The actor-critic method MADDPG is based on an open-source
implementation,7 which uses the Gumbel-Softmax trick to tackle discrete action spaces [9]. We
use default hyperparameters and setup as in [18], where we list as in Table 1. The only exception
is that we tune the target-update-interval for value factorization methods in multi-agent particle
environments, as these algorithms fail to learn in these environments with default hyperparameters
that are originally fine-tuned for SMAC environments. Specifically, the target-update-interval is 800
for QMIX, QTRAN, Weighted QMIX and QPLEX (which updates the target network every 800
episodes), while it remains 200 for VDN as the default value works well. Each agent network is
a deep recurrent Q-network (DRQN) consisting of 3 layers: a fully-connected layer, a GRU layer
with a 64-dimensional hidden state, and a fully connected layer with ReLU activation. The mixing
network consists of a 32-dimensional hidden layer using ELU activation, and the hypernetwork [5]
consists of two layers with 64-dimensional hidden state using ReLU activation. Note that QPLEX
uses a different architecture for the mixing network with more parameters, which consists of two
modules (with default hyperparameters as in [23]): a transformation network and a dueling mixing
network with a multi-head attention module [22]. By default, all Q-learning based MARL algorithms
(including VDN, QMIX, QTRAN, Weighted QMIX, QPLEX and our RES method) use double
estimators as in Double DQN [21] to estimate the target value as pointed out in Appendix D.3 in [16].
All experiments are run on P100 GPU.

Table 1: Hyperparameters.
Hyperparameter Value
Discount factor 0.99
Replay buffer size 5000 episodes
Batch size 32 episodes
Warmup steps 50000
Optimizer RMSprop
Learning rate 5× 10−4

Initial ε 1.0
Final ε 0.05
Linearly annealing steps for ε 50k
Double DQN update True

RES. RES is also implemented based on the PyMARL [18] framework with the same network
structures and hyperparameters as discussed above. For our RES method, to estimate the target
joint-action Q-value using the softmax operator based on double estimators, the softmax weighting is
computed in the joint action subspace based on current joint-action Q-network Qtot in Eq. (19):

smβ,Û

(
Q̄tot(s, ·)

)
=
∑
u∈Û

eβQtot(s,u)∑
u′∈Û eβQtot(s,u′)

Q̄tot(s,u). (19)

As discussed in Section 5.1.3 in the main text, we only need to tune λ while keeping β fixed (whose
performance is competitive within a wide range of values).

In multi-agent particle environments, for RES-QMIX, the inverse temperature β of the softmax
operator is fixed to be 0.05, where the regularization coefficient λ is selected based on a grid search
over {1e−2, 5e−2, 1e−1, 5e−1}. Specifically, λ is 1e−2 for covert communication (CC), 5e−2
for predator-prey (PP) and world (W), and 5e− 1 for physical deception (PD). As for RES-Weighted-
QMIX, it is based on OW-QMIX [15] with an optimistic weighting, as it outperforms its counterpart

3https://github.com/oxwhirl/smac
4https://github.com/oxwhirl/pymarl
5https://github.com/oxwhirl/wqmix
6https://github.com/wjh720/QPLEX
7https://github.com/shariqiqbal2810/maddpg-pytorch

6

https://github.com/oxwhirl/smac
https://github.com/oxwhirl/pymarl
https://github.com/oxwhirl/wqmix
https://github.com/wjh720/QPLEX
https://github.com/shariqiqbal2810/maddpg-pytorch

CW-QMIX as shown in Figure 5 in the main text. The parameter β is 0.1 while λ is 5e− 2 for PP
and W, and 5e − 1 for PD and CC. As for RES-QPLEX, we set β = 0.1 and λ = 5e − 2 for all
environments. For RES-QMIX in SMAC, the regularization coefficient λ is 1e− 2 for 3m and the
super hard map MMM2 while being 5e − 2 for the remaining maps. The hyperparameter β for the
softmax operator is fixed to be 5.0 for all maps.

E.1.1 Multi-agent Particle Environments

Table 2 summarizes detailed information for our tested environments based on the multi-agent particle
framework with discrete action space, where observation dim and action dim correspond to dimension
of observation space and action space for the agents respectively. The world environment is a variant
of simple_world_comm, where we modify the environment to allow for Discrete action space instead
of MultiDiscrete action space. In world, unmovable entities also include forests (which are accessible)
and foods besides the inaccessible landmarks. Figure 5 shows the illustration of the multi-agent
particle tasks.

Table 2: Information of environments in the multi-agent particle framework.

Name #Agents #Adver- #Land- State Observation Action
saries marks dim dim dim

Predator-prey (PP) 3 1 2 16 62 5
Physical deception (PD) 2 1 2 10 28 5
World (W) 4 2 1 34 200 5
Covert communication (CC) 2 1 2 8 20 4

(a) Predator-prey. (b) Physical deception. (c) World. (d) Covert communication.

Figure 5: Illustration of the multi-agent particle tasks.

E.1.2 StarCraft Multi-Agent Challenge (SMAC)

Table 3 describes the tested maps in SMAC, and Figure 6 shows the illustration for the maps.

Table 3: Information about agents, enemies and difficulty of tested maps in SMAC.
Name Agents Enemies Difficulty

3m 3 Marines 3 Marines Easy
2s3z 2 Stalkers and 3 Zealots 2 Stalkers and 3 Zealots Easy
3s5z 3 Stalkers and 5 Zealots 3 Stalkers and 5 Zealots Easy
2c_vs_64zg 2 Colossi 64 Zerglings Hard

MMM2
1 Medivac, 2 Marauders, 1 Medivac, 3 Marauders, Super hardand 7 Marines and 8 Marines

E.2 Mean Normalized Return in Multi-Agent Particle Environments

Figure 7 shows the mean normalized return of different algorithms averaged over all multi-agent
particle environments. As shown, RES-QMIX significantly outperforms state-of-the-art methods in
performance and efficiency.

7

Figure 6: Illustration of the StarCraft II micromanagement tasks.

Figure 7: Mean normalized return averaged over all multi-agent particle environments.

E.3 Performance of RES-QMIX in Stochastic Environments

In this section, we investigate the robustness of RES-QMIX in the stochastic environment. To support
stochasticity in the environment, we conduct evaluation in a variant of the predator-prey task based
on sticky actions [10], which has been widely used in Atari games [1] to inject stochasticity to the
environments. Specifically, at each timestep, the action selected by the agent will be executed with
probability 1− p, and with probability p the last action taken by the agent will be executed (where
the stickiness p is typically set to be 0.25 in [10]).

Figure 8 shows the performance of RES-QMIX in predator-prey with sticky actions in different levels.
As shown, RES-QMIX is robust to different levels of stochasticity and significantly outperforms
QMIX in all cases.

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

5

0

5

10

15

20

25

30

Re
tu

rn

RES-QMIX
QMIX

(a) p = 0.05

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

5

0

5

10

15

20

Re
tu

rn

RES-QMIX
QMIX

(b) p = 0.15

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

5

0

5

10

15

Re
tu

rn

RES-QMIX
QMIX

(c) p = 0.25

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

5

0

5

10

Re
tu

rn

RES-QMIX
QMIX

(d) p = 0.35

Figure 8: Performance comparison of RES-QMIX and QMIX in stochastic variants of the predator-
prey task.

8

E.4 Comparison of Value Estimates in Predator-Prey

Figure 9 shows comparison of true values and estimated values (which are obtained in the same way
as in Section 4 in the main text) of different algorithms in predator-prey. As discussed in the main text,
value estimates for QMIX and Weighted QMIX increase rapidly, which leads to large overestimation
bias (Figure 6 in the main text) and severe performance degradation (Figure 5(a) in the main text).
Value estimates of VDN (which is based on a linear decomposition of the joint-action Q-function)
increase more slowly at the end of training, but still incurs large overestimation bias as in QTRAN
and QPLEX. Unlike all other value factorization methods, MADDPG learns an unfactored critic that
directly conditions on the full state and joint action. It is less sample efficient, which indicates that
value factorization is important in these tasks. Thus, MADDPG results in a lower return (Figure
5(a) in the main text) and value estimates compared to all other value factorization methods, but still
overestimates. RES-QMIX achieves the smallest bias and fully mitigates the overestimation bias of
QMIX, resulting in stable performance and outperforming all other methods (as shown in Figure 5(a)
in the main text).

0.0 0.5 1.0 1.5 2.0
Episode (×105)

0

50

100

150

200

250

300

350

Va
lu

e
es

tim
at

es

RES-QMIX
True RES-QMIX
MADDPG
True MADDPG
VDN
True VDN
QTRAN
True QTRAN
QMIX
True QMIX
CW-QMIX
True CW-QMIX
OW-QMIX
True OW-QMIX
QPLEX
True QPLEX

Figure 9: Comparison of true values and estimated values of different algorithms in predator-prey.

E.5 Full Ablation Study

Figures 10 shows the ablation study of the effect of each component in our approach in different
environments by comparing RES-QMIX, RE-QMIX, S-QMIX, and QMIX. As shown, the regulariza-
tion component is critical for stability, while combining with our softmax operator further improves
learning efficiency (or avoids performance oscillation).

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

0

10

20

30

40

Re
tu

rn

RES-QMIX
RE-QMIX
S-QMIX
QMIX

(a) Predator-prey.

0.0 0.5 1.0 1.5 2.0
Episode (×105)

0

10

20

30

40

50

60

70

Re
tu

rn

RES-QMIX
RE-QMIX
S-QMIX
QMIX

(b) Physical deception.

0.0 0.5 1.0 1.5 2.0
Episode (×105)

0

20

40

60

80

100

Re
tu

rn

RES-QMIX
RE-QMIX
S-QMIX
QMIX

(c) World.

0.0 0.5 1.0
Episode (×105)

46.6

46.8

47.0

47.2

47.4

47.6

47.8

Re
tu

rn

RES-QMIX
RE-QMIX
S-QMIX
QMIX

(d) Covert communication.

Figure 10: Ablation study of the effect of each component.

E.6 Full Learning Curves of RES-QMIX/Weighted QMIX/QPLEX

Our RES method is general and can be readily applied to differentQ-learning based MARL algorithms.
To demonstrate its versatility, we apply it to three different deep multi-agent Q-learning algorithms:
QMIX, Weighted QMIX, and QPLEX. Full comparison of learning curves of RES over QMIX,
Weighted QMIX, and QPLEX in the multi-agent particle environments are shown in Figure 11, 12,
and 13, respectively. As shown, our RES-based methods significantly outperform corresponding
baseline methods.

9

0.0 0.5 1.0 1.5 2.0
Episode (×105)

10

0

10

20

30

40

Re
tu

rn

QMIX
RES-QMIX

(a) Predator-prey.

0.0 0.5 1.0 1.5 2.0
Episode (×105)

0

10

20

30

40

50

60

70

Re
tu

rn

QMIX
RES-QMIX

(b) Physical deception.

0.0 0.5 1.0 1.5 2.0
Episode (×105)

0

20

40

60

80

100

Re
tu

rn

QMIX
RES-QMIX

(c) World.

0.0 0.5 1.0
Episode (×105)

43

44

45

46

47

48

Re
tu

rn

QMIX
RES-QMIX

(d) Covert communication.

Figure 11: Performance comparison of QMIX and RES-QMIX.

RES-OW-QMIX
OW-QMIX

(a) Predator-prey.

RES-OW-QMIX
OW-QMIX

(b) Physical deception.

RES-OW-QMIX
OW-QMIX

(c) World.

RES-OW-QMIX
OW-QMIX

(d) Covert communication.

Figure 12: Performance comparison of Weighted QMIX and RES-Weighted QMIX.

RES-QPLEX
QPLEX

(a) Predator-prey.

RES-QPLEX
QPLEX

(b) Physical deception.

RES-QPLEX
QPLEX

(c) World.

RES-QPLEX
QPLEX

(d) Covert communication.

Figure 13: Performance comparison of QPLEX and RES-QPLEX.

E.7 Performance Comparison with SM2

Gan et al. [3] propose the soft Mellowmax (SM2) operator to tackle overestimation in reinforcement
learning. Figures 14 (a)-(d) show the comparison results of RES-QMIX, SM2-QMIX (with fine-tuned
hyperparameters) and QMIX in each environment, and Figure 14(e) summarizes the mean normalized
return. As shown, SM2-QMIX fails to tackle the severe overestimation problem, and also significantly
underperforms RES-QMIX.

E.8 Performance Comparison of RES-QMIX with Other Baseline Method in SMAC

In the main text, we analyze how much of a performance improvement RES-QMIX achieves over
QMIX in StarCraft II micromanagement tasks in Figure 9. We also compare RES-QMIX in StarCraft
II micromanagement tasks against QPLEX, which is the most competitive algorithm in multi-agent
particle environments. Experimental settings are the same as in Section E.1.

Figure 15 shows the test win rate, where RES-QMIX significantly outperforms QPLEX in final test
win rate and sample efficiency in all but one environments. The only exception is the easy map
3m, where QPLEX is more sample efficient but underperforms RES-QMIX at the end of training.
Specifically, the final test win rate is 98.4% and 97.1% for RES-QMIX and QPLEX in 3m respectively.
It is also worth noting that QPLEX uses more parameters due to the multi-head attention module for
the hypernetwork compared with RES-QMIX and QMIX.

10

(a) (b)

(c) (d) (e)

Figure 14: Performance comparison of RES-QMIX, SM2-QMIX and QMIX. (a) Predator-prey. (b)
Physical deception. (c) World. (d) Covert communication. (e) Mean normalized return.

QMIX
QPLEX
RES-QMIX

(a) 3m.

QMIX
QPLEX
RES-QMIX

(b) 2s3z.

QMIX
QPLEX
RES-QMIX

(c) 3s5z.

QMIX
QPLEX
RES-QMIX

(d) 2c_vs_64zg.

QMIX
QPLEX
RES-QMIX

(e) MMM2.

Figure 15: Comparison of test win rate of QMIX, RES-QMIX and QPLEX.

E.9 Performance of RES-QMIX with Single Estimator in SMAC

Comparison of test win rate of RES-QMIX (single), QMIX (single), and QMIX is shown in Figure
16. Experimental setup is the same as in Section E.1, with the only exception of removing double
estimators, i.e., it does not estimate the target value using double estimators as in Double DQN [21].
Environment-specific hyperparameters for RES-QMIX (single) in StarCraft II micromanagement
tasks include λ and β. For the super hard map MMM2, λ is 1e− 1 while being 5e− 2 for the remaining
maps. The parameter β is 0.5 for 3m, 5 for 2s3z, 3s5z and MMM2, and 50 for 2c_vs_64zg. For
RES-QMIX (single), the computation of the softmax operator is smβ,Û (Q̄tot(s

′, ·)) following Eq.
(1) in the main text.

From Figure 16, we can see that RES-QMIX (single) significantly outperforms QMIX and QMIX
(single), demonstrating that our RES method is still effective even without double estimators.

F Discussion of the SM2 Operator in [3]

A recent work [3] proposes the soft Mellowmax (SM2) operator to tackle overestimation in reinforce-
ment learning, and show that it can be applied to cooperative MARL under the CTDE paradigm.

11

0.0 0.2 0.4 0.6 0.8 1.0
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

RES-QMIX (single)
QMIX (single)
QMIX

(a) 3m.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

RES-QMIX (single)
QMIX (single)
QMIX

(b) 2s3z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

RES-QMIX (single)
QMIX (single)
QMIX

(c) 3s5z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

RES-QMIX (single)
QMIX (single)
QMIX

(d) 2c_vs_64zg.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

RES-QMIX (single)
QMIX (single)
QMIX

(e) MMM2

Figure 16: Performance comparison of RES-QMIX (single), QMIX (single), and QMIX.

However, its theoretical analysis relies on a key assumption (Assumption 4.1 in [3]) that the gradients
of the monotonic mixing network fs over agent-wise utilitiesQa are bounded, i.e., 0 ≤ l ≤ ∂fs

∂Qa
≤ L,

∀a ∈ [1, n]. As shown in Figure 3 in the main text, the gradients ∂fs
∂Qa

can increase rapidly and
continuously during training, this assumption thus may not hold in practice. In addition, the analysis
in Theorems 4.1 and 4.2 in [3] also relies on the assumption that “all the true optimal agent-wise
utilities are equal at Q∗a(s, u) = V ∗a (s)”. However, the optimal agent-wise utilities Q∗a are not
well-defined in [3]. Please note that there can be an infinite number of possible combinations for
Q∗a and f∗s to obtain Q∗tot. In Figure 14 in Section E.7, we can also see that the SM2 operator is not
sufficient and ineffective to solve the severe overestimation problem, and RES-QMIX significantly
outperforms SM2-QMIX.

G Societal Impacts

In multi-agent reinforcement learning (MARL), an agent interacts with an environment and other
learning agents. This is a powerful paradigm that can model many real-world systems, such as
autonomous driving [2] and multi-robot exploration [12]. Despite these successes, it is particular
important to guarantee the robustness of learning behavior or each agent in the multi-agent system
for deploying it in practical problems. Otherwise, the system can collapse. In this paper, we
find that the critical overestimation problem in reinforcement learning can be an even more severe
practical challenge in MARL than previously acknowledged, and solutions in the single-agent setting
fails to successfully tackle this problem. We propose RES to tackle the important and challenging
overestimation problem in deep multi-agent Q-learning. Our method has the potential to be applied to
real-world multi-agent applications, which provides robust value estimates and significantly reduces
overestimation bias which can lead to catastrophic performance degradation.

References

[1] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

12

[2] Y. Cao, W. Yu, W. Ren, and G. Chen. An overview of recent progress in the study of distributed
multi-agent coordination. IEEE Transactions on Industrial informatics, 9(1):427–438, 2012.

[3] Y. Gan, Z. Zhang, and X. Tan. Stabilizing q learning via soft mellowmax operator. arXiv
preprint arXiv:2012.09456, 2020.

[4] T. Gupta, A. Mahajan, B. Peng, W. Böhmer, and S. Whiteson. Uneven: Universal value
exploration for multi-agent reinforcement learning. arXiv preprint arXiv:2010.02974, 2020.

[5] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. In International Conference on Learning
Representations, 2017.

[6] L. Kraemer and B. Banerjee. Multi-agent reinforcement learning as a rehearsal for decentralized
planning. Neurocomputing, 190:82–94, 2016.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[8] Z. Liu, X. Li, B. Kang, and T. Darrell. Regularization matters in policy optimization–an
empirical study on continuous control. arXiv preprint arXiv:1910.09191, 2019.

[9] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in neural information processing
systems, pages 6379–6390, 2017.

[10] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling.
Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[11] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson. Maven: Multi-agent variational
exploration. In Advances in Neural Information Processing Systems, volume 32, 2019.

[12] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib. Coordinated multi-robot exploration under
communication constraints using decentralized markov decision processes. In AAAI 2012, pages
p2017–2023, 2012.

[13] F. A. Oliehoek, M. T. Spaan, and N. Vlassis. Optimal and approximate q-value functions for
decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

[14] L. Pan, Q. Cai, and L. Huang. Softmax deep double deterministic policy gradients. In Advances
in Neural Information Processing Systems, volume 33, pages 11767–11777, 2020.

[15] T. Rashid, G. Farquhar, B. Peng, and S. Whiteson. Weighted qmix: Expanding monotonic
value function factorisation for deep multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems, volume 33, pages 10199–10210, 2020.

[16] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson. Monotonic
value function factorisation for deep multi-agent reinforcement learning. Journal of Machine
Learning Research, 21(178):1–51, 2020.

[17] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson. Qmix: Mono-
tonic value function factorisation for deep multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 4295–4304, 2018.

[18] M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. Rudner, C.-M. Hung,
P. H. Torr, J. Foerster, and S. Whiteson. The starcraft multi-agent challenge. arXiv preprint
arXiv:1902.04043, 2019.

[19] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. Qtran: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning. In International Conference
on Machine Learning, pages 5887–5896, 2019.

[20] Z. Song, R. Parr, and L. Carin. Revisiting the softmax bellman operator: New benefits and
new perspective. In International Conference on Machine Learning, pages 5916–5925. PMLR,
2019.

13

[21] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

[23] J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang. Qplex: Duplex dueling multi-agent q-learning. In
International Conference on Learning Representations, 2021.

14

	Details of Results in Section 3 and Additional Results
	Description of Figure 3(d) in the Main Text
	Additional Results of QMIX (CDQ)
	Additional Results of a Clipped Version of RE-QMIX
	Additional Results of QMIX (L2 Regularization)

	Our Approximate Softmax Operator
	Proof of Theorem 1
	Algorithm and More Details for Computing the Approximate Softmax Operator
	Discussion of the Softmax Operator on Agent-Wise Utilities

	Proof of Theorem 2
	Additional Results

	Proof of Theorem 3
	Experimental Details
	Experimental Setup
	Multi-agent Particle Environments
	StarCraft Multi-Agent Challenge (SMAC)

	Mean Normalized Return in Multi-Agent Particle Environments
	Performance of RES-QMIX in Stochastic Environments
	Comparison of Value Estimates in Predator-Prey
	Full Ablation Study
	Full Learning Curves of RES-QMIX/Weighted QMIX/QPLEX
	Performance Comparison with SM2
	Performance Comparison of RES-QMIX with Other Baseline Method in SMAC
	Performance of RES-QMIX with Single Estimator in SMAC

	Discussion of the SM2 Operator in gan2020stabilizing
	Societal Impacts

