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ABSTRACT

We study goal-conditioned RL through the lens of generalization, but not in
the traditional sense of random augmentations and domain randomization.
Rather, we aim to learn goal-directed policies that generalize with respect to
the horizon: after training to reach nearby goals (which are easy to learn),
these policies should succeed in reaching distant goals (which are quite
challenging to learn). In the same way that invariance is closely linked with
generalization is other areas of machine learning (e.g., normalization layers
make a network invariant to scale, and therefore generalize to inputs of
varying scales), we show that this notion of horizon generalization is closely
linked with invariance to planning: a policy navigating towards a goal will
select the same actions as if it were navigating to a waypoint en route to that
goal. Thus, such a policy trained to reach nearby goals should succeed at
reaching arbitrarily-distant goals. Our theoretical analysis proves that both
horizon generalization and planning invariance are possible, under some
assumptions. We present new experimental results and recall findings from
prior work in support of our theoretical results. Taken together, our results
open the door to studying how techniques for invariance and generalization
developed in other areas of machine learning might be adapted to achieve

this alluring property.

1 INTRODUCTION

Reinforcement learning (RL) is appealing
for its potential to use data to solve long-
horizon reasoning problems. However, it
is precisely this horizon that makes solving
the RL problem difficult — the number of
possible solutions to a control problem often
grows exponentially in the horizon (Kakade,
2003). Indeed, the requirement of collecting
long horizon data precludes several potential
applications of RL (e.g., health care, robotic
manipulation). Thus, a desirable property
of an RL algorithm is the ability to learn
from short-horizon tasks and generalize to
long-horizon tasks. We call this property
horizon generalization.

Horizon Generalization (informal state-
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Figure 1: Horizon generalization. A policy
generalizes over the horizon if performance for
start-goal pairs (s, g) separated by a small tem-
poral distance d(s, g) < c yields improved perfor-
mance over more distant start-goal pairs (s’,g’)
with d(s,g") > c.

ment, see Definition 4): A goal-conditioned policy generalizes over the horizon if, after
training to reach nearby goals, the policy is more successful at reaching distant goals.

Prior work on generalization in RL almost exclusively focuses on either (i) perceptual changes
(e.g., changes in lighting conditions), (%) simple randomizations of simulator parameters, or
(#4i) mapping together states and actions with the same reward or value function. While
these methods show improved performance on perturbed datasets over the same horizon,
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they do not generalize over horizon. In this paper, we formalize horizon generalization
as a potential property of goal-conditioned RL (GCRL) algorithms, prove that policies
with horizon generalization exist, and empirically demonstrate that certain algorithms
enable horizon generalization in high-dimensional settings. We do so in the context of
goal-conditioned RL, where agents navigate towards a specific goal in a reward-free setting.

A key mathematical tool for understanding horizon generalization is a form of temporal
invariance obeyed by optimal policies. In the same way that an image classification model
that is invariant to rotations will generalize to images of different orientations (Cohen and
Welling, 2016; LeCun et al., 2004), we prove that a policy invariant to planning, under
certain assumptions, will exhibit horizon generalization.

Planning Invariance (informal statement, see Definition 3): A goal-conditioned policy
18 invariant to planning if it can reach distant goals with similar success when conditioned
directly on the goal compared to when conditioned on a series of intermediate waypoints. In
other words, breaking up a complex task into a series of simpler tasks confers no advantage.

The main takeaway from this paper is that there are rich notions of generalization over
the horizon unique to the goal-conditioned RL (GCRL) setting. We show that existing
quasimetric methods (Wang et al., 2023; Myers et al., 2024a) already exhibit this form of
generalization in high-dimensional settings. By theoretically and empirically linking planning
with this form of generalization, our work suggests practical ways (i.e. quasimetric methods)
to achieve powerful notions of generalization from short to long horizons.

2 RELATED WORK

Our work builds upon prior work in goal-conditioned RL and generalization in RL. Section 5.5
returns to the discussion of prior work in light of our analysis.

Learning to Reach Goals. The problem of learning goal-reaching behavior dates to the
early days of AI research (Newell, 1959; Laird et al., 1987). This problem has received
renewed attention in recent years through the study of deep goal-conditioned reinforcement
learning (GCRL) (Chen et al., 2021; Chane-Sane et al., 2021; Colas et al., 2022; Yang et al.,
2022; Ma et al., 2022; Schroecker and Isbell, 2020; Janner et al., 2021). Goal-conditioned
RL relieves the burden of specifying rewards, as any state in the environment can provide a
complete task specification when used as a goal. Some of the excitement in goal-conditioned
RL is a reflection of the recent success of self-supervised methods in computer vision (e.g.,
stable diffusion (Rombach et al., 2022)) and NLP (GPT-4 (OpenAl et al., 2024)): if these
methods can achieve intriguing emergent properties (Anil et al., 2022; Brohan et al., 2023),
might a self-supervised approach to RL unlock emergent properties for RL?

Generalization in RL. Prior work on generalization in RL mostly focuses on variations
in perception (Cobbe et al., 2019; Stone et al., 2021; Laskin et al., 2020) (or, similarly, e.g.,
across levels of a game (Nichol et al., 2018; Farebrother et al., 2018; Justesen et al., 2018;
Zhang et al., 2018)). Similarly, work on robust RL (which measures a worst-case notion
of generalization) usually randomly perturbs the physics parameters (Packer et al., 2018;
Eysenbach and Levine, 2022; Moos et al., 2022; Tessler et al., 2019; Igl et al., 2019)). We
study a different form of generalization: without changing the dynamics or the observations,
can a policy trained on nearby goals succeed in reaching distant goals?

State Abstractions for Decision-Making. Many approaches for learning improved state
abstractions for decision making have been proposed in recent years, including bisimulation
(Ferns et al., 2011; Zhang et al., 2021a; Hansen-Estruch et al., 2022), successor representa-
tions (Dayan, 1993; Barreto et al., 2017), and information-theoretic representation learning
objectives (Anand et al., 2019; Rakelly et al., 2021; Castro et al., 2021; Jain et al., 2023).
While prior work typically views generalization as a problem of handling shift between MDPs
with similar horizons, horizon generalization is about generalizing from short to long horizons.
Prior work that has investigated out-of-distribution, long-horizon tasks has required extra
assumptions about the setting, such as access to external planners (Singh et al., 2023; Shah
and Levine, 2022; Myers et al., 2024b) or human demonstrations (Mandlekar et al.; 2021).
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3 PLANNING INVARIANCE AND HORIZON GENERALIZATION

Our analysis will focus on the goal-conditioned setting. We first motivate our key formal defi-
nitions (planning invariance and horizon generalization), provide preliminaries on quasimetric
methods, and prove that these properties can be realized by quasimetric methods.

3.1 INTUITION

Many prior works have found that augmenting goal-conditioned policies with planning can
significantly boost performance (Savinov et al., 2018; Park et al., 2024): instead of aiming
for the final goal, these methods use planning to find a waypoint en route to that goal and
aim for that waypoint instead. In effect, the policy chooses a closer, easier waypoint that
will naturally bring the agent closer to the final goal.

Invariance to planning (see Fig. 2)
is an appealing property for sev-
eral reasons. First, it implies that
the policy realizes the benefits of
planning without the complex ma-
chinery typically associated with
hierarchical and model-based meth-
ods. Second, policies optimal over
a space of tasks are, by definition,
planning-invariant over the same
space with respect to an optimal
planner: invariance to planning is

a necessary but not sufficient, con- Figure 2: Visualizing planning invariance. Planning
dition for policy optimality, and ipvariance (Definition 3) means that a policy should take
can be used as an inductive bias to similar actions when directed towards a goal (purple arrow
achieve policy optimality. Third, and purple star) as when directed towards an intermediate
we show that planning invariance, waypoint (brown arrow and star). We visualize a policy with
combined with other assumptions, (Right ) and without ( Left) this property via the misalignment
implies that the policy will exhibit and ahgnment. of actlons.towards the waypomt.and fche goal,
where the optimal path is tan and the suboptimal is gray.

no planning invariance planning invariance

horizon generalization: given that
a policy successfully navigates short trajectories covering some state space S, it will succeed
at performing long-horizon tasks over the same state space S (Fig. 1).

How do we actually construct methods that are planning invariant and lead to horizon
generalization? To answer this question, we build upon prior work on quasimetric neural
network architectures (Liu et al., 2023; Wang and Isola, 2022b;a) and show that policies
defined greedily with respect to a quasimetric, where latents obey the triangle inequality, are
invariant to planning with respect to the same quasimetric.

4 PRELIMINARIES

We consider a controlled Markov process M with state space S, action space A, and dynamics
p(s’ | s,a). The agent interacts with the environment by selecting actions according to a
policy 7(a | s), which is a mapping from S to distributions over A. We further assume the
state and action spaces are compact. We define the discounted state occupancy measure with
actions as o0
Pi(sk =g|so=sa) 2 7'pT(s =g |50 =s,0a), (1)
t=0

where p™(s; = g | 5o = s, a) is the probability density that policy 7 visits state g after ¢ time
steps when initialized at state s with action a.

Quasimetrics on states. We equip M with an additional notion of distance between states.
We later define planning operator PLAN and policy 7 greedily with respect to this distance.

At the most basic level, a distance d : S x S — R must be positive for all inputs (s, s’ # s)
and zero for all inputs (s, s) (nonnegativity). We will denote the set of all distances as D:

D2{d:S8x8—=R:d(s,s) =0, d(s,s') >0 for each 5,5’ € S where s # s'}.  (2)
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A desirable property for distances to satisfy is the triangle inequality. A distance satisfying
this property is known as a quasimetric, and we define the set of all quasimetric functions as

Q2 {deD:d(s,g) <d(s,w)+d(w,g) for all 5,g,w € S}. (3)

If we were to restrict the distances to be symmetric (d(x,y) = d(y, x)), our quasimetric would
become a standard metric obeying nonnegativity, the triangle inequality, and symmetry.
However, we wish to use a quasimetric that allows for asymmetry over the interchange of
the start and end states: the navigation task s — g may be completely different from g — s,
and the corresponding distance function should reflect this degree of freedom.

An important property of quasimetrics is that they are invariant to the path relaxation
operator from Dijkstra’s algorithm.

Definition 1 (Path relaxation operator). Let PATH4(s, g) be the path relazation operator
over quasimetric d(s,g). For any triplet of states (s,w,g) € S x S x S,

d(s,g) < PaTH,4(s,g) £ mui)n d(s,w) + d(w, g). (4)

Thus, invariance to the path relaxation operator is a form of self-consistency. Any triplet of
distance predictions should satisfy the following property:

d(s,g) < d(s,w) +d(w, g)

which is the familiar triangle inequality. Quasimetrics naturally satisfy this property and,
combined with nonnegativity conditions, are invariant under the path relaxation operator.

Successor distances (a quasimetric). A particular quasimetric of note here is the
successor state distance (Myers et al., 2024a), ddp,, defined as

Pi(sk =g |50 =g)
Pr(sx =g |50 =15)
The successor distance ng is a compelling choice of distance because minimizing the distance
to the goal dd (s, g) corresponds to optimal goal reaching with a discount factor ." The

related successor distance with actions dip (s, a,g) (Myers et al., 2024a) allows us to optimize
this distance over actions:

dip (s, g) = min {log } , where K ~ Geom(1 — 7). (5)

Pi(sk =g 50 =g)
pi(sk =g |50 =s,a)

dip(s,a,g) = min [1og ] , where K ~ Geom(1 — 7). (6)

Given temporal distances between states and state-action pairs, we can define a quasimetric
policy that greedily selects actions with respect to d(s, a, g):

Definition 2 (Quasimetric policy). We define the quasimetric policy as some policy mwa(a |

s,9) where ma(a | 8,g) € argmind(s,a,g).
acA

Here, d(s,a,g) is the successor distance with actions (Eq. 6).

5 INTRODUCING AND ANALYZING HORIZON GENERALIZATION

Equipped with these definitions, we can formally define planning invariance and horizon
generalization in deterministic and stochastic settings. Then, we show that quasimetric
policy m4(a | s,¢g) is planning invariant with respect to a planner defined over the same
quasimetric. Finally, we show that this invariance to planning implies horizon generalization.
Taken together, our analysis shows that horizon generalization exists and can be achieved by
quasimetric methods.

5.1 DEFINITIONS OF PLANNING INVARIANCE AND HORIZON GENERALIZATION

To construct general definitions of planning invariance and horizon generalization, we will
need to define a planning operator which proposes waypoints at a given state to reach a
target distribution over goals.

'Formally, define an MDP with the goal-conditioned reward function r4(s) = 0(s,q)> @ Kronecker

delta function which evaluates to 1 if s = g and 0 otherwise. The dgp-minimizing policy is optimal
for this MDP.
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We denote b

¢ qenote by plan 2 {PLAN : S x A(S) = A(S)} (7)
the class of planning functions that predict a distribution of waypoints from states and goals.
In the special case of deterministic actions, waypoints, and goals, we write

plan™™ £ [PLAN"X : § x S+ S} C plan. (8)

Our analysis in the rest of this section will focus on the simpler “fixed” setting of PLANF™ €
plan™*. We will use w or wpyy to denote the waypoint produced by PLANT* (s, g). The
proofs and quasimetric objects in the stochastic setting are slightly more complicated, but
carry the same structure and takeaways as this simpler case; the general stochastic proofs
and definitions are presented in Appendix B. For notational brevity, we drop the label FIX in
the rest of the analysis section.

There are many possible planning algorithms one could use (e.g., Dijkstra’s algorithm (Di-
jkstra, 1959), A* (Hart et al., 1968), RRT (LaValle and Kuffner, 2001)). Importantly, the
constraints of a quasimetric (see Section 4) and the related idea of path relazations from
Dijkstra’s algorithm provide clues for specifying our planning operator later in our analysis.
We use this planning operator in one of our key definitions (visualized in Fig. 2):

Definition 3 (Planning invariance). Consider a deterministic MDP with states S, actions A,
and goal-conditioned Kronecker delta reward function ry(s) = d(s 4. For any goal-conditioned
policy m(a | s,g9) where g € S, we say that w(a | s,g) is invariant under planning operator
PLAN € plan if and only if

m(a|s,g) =n(a]|s w), where w = PLAN(s,g). (9)

Note that planning invariance says nothing about whether the planner is good or bad. We
will primarily be interested in invariance under the optimal planner with respect to some
quasimetric d(s, g). We denote the class of quasimetric planning functions as

plan, £ {PLAN € plan | d(s, PLAN(s, g)) + d(PLAN(s, g),g) = d(s, g) for all (s,g) € S x S}.

Our second key definition is horizon generalization (see Fig. 1):

Definition 4 (Horizon generalization). Suppose ¢ > 0 and d(s,g) is a quasimetric over
the start-goal space S x 8. In the single-goal, controlled (“fixed”) case, a policy w(a | s,g)
generalizes over the horizon if optimality over nearby start-goal pairs B. = {(s,g) €
S x 8 |d(s,g) < c} everywhere implies optimality over the entire state space S.

We highlight the key base case assumption: optimality over shorter trajectories that cover
the entire desired state space S leads to horizon generalization. We assume this base case
holds everywhere — without additional assumptions about the symmetries of the MDP, it is
beyond the scope of this work to consider horizon generalization to completely unseen states.
Rather, we analyze generalization to unseen, long-horizon (s, g) state pairs.

5.2 QUASIMETRIC POLICIES ARE (NONTRIVIALLY) PLANNING INVARIANT

With these notions of planning invariance and horizon generalization in hand, we will consider
nontrivial quasimetric planning algorithms PLAN, € plan, that acquire a quasimetric d(s, g)
and output a single waypoint w € S:

PLANg4(S, 9) = wppay € argmind(s,w) + d(w, g). (10)

weS

Note that this planning algorithm takes the form of the path relaxation operator (Definition 1).
By the triangle inequality, we have d(s, wpian) + d(Wppan, g9) = d(s,g). Our first result is
that quasimetric policies w4 are invariant under planning operator PLAN,.

Theorem 1 (Quasimetric policies are invariant under PLANg). Given a deterministic MDP
with states S, actions A, and goal-conditioned Kronecker delta reward function ry(s) = O(s,g)s
define quasimetric policy wq(a | s,g) and quasimetric planner class plan,. Then, for every
quasimetric planner PLAN, € plang, there always exists a policy wq(a | s, g) that is planning

variant: rala] s, g) = ﬂ'd(a | s,w forw = PLANd(s,g)). (11)
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The proof is in Appendix B.1. In practice, we measure planning invariance by comparing
the relative performance of algorithms with and without planning. For this condition,
we do not necessarily need my(a | s,9) = ma(a | s, wprax); rather, the weaker condition
d(s,mq(a | $,9),9) = d(s,7a(a | $,WpLax), WpLay) is sufficient and necessary for planning
invariance when there are no errors from function approximation and noise. We extend this
result to stochastic settings in Appendix B.3.

5.3 QUASIMETRIC POLICIES GENERALIZE OVER THE HORIZON

Our main result of this section is to prove that horizon generalization exists for quasimetric
policies through an inductive argument.

Theorem 2 (Horizon generalization exists). Consider an MDP with states S, actions A,
and goal-conditioned Kronecker delta reward ry4(s) = d(s,4). For any quasimetric d(s, g) over
the start-goal space S X S and ¢ > 0, the quasimetric policy wq(a | s,g) that is optimal over
B.={(s,9) € S xS |d(s,g) < c} is optimal over the entire start-goal space S x S.

The idea of the proof is to begin with a ball of states B.(s) = {s’ € S | d(s,s’) < ¢} on
which the policy m4(a | s,-) is optimal, and show that planning invariance and the triangle
inequality in turn imply optimality over a ball of states with double the radius Ba.(s).

Thus, there must exist planning-invariant goal-reaching policies that generalize over the
horizon: optimality over pairs of close states everywhere implies optimality over arbitrarily
distant pairs of states. The complete proof, extended to stochastic settings, is in Appendix B.4.

We also observe that horizon generalization is not guaranteed for a goal-reaching policy that
is not planning invariant (Remark 3, see Appendix B.5 for proof).

Remark 3 (Horizon generalization is nontrivial). Let finite ¢ > 0 and goal-conditioned MDP
with states S, actions A, and goal-conditioned Kronecker delta reward function r4(s) = 6 g
be given where there are no states outside of S. For a policy that is not planning invariant,
optimality over B, = {(s,g9) € S x § | d(s, g) < ¢} is not a sufficient condition for optimality
over the entire start-goal space S x S.

Combined, these results show that planning invariance and horizon generalization, as defined
in Section 5.1, exist in nontrivial forms via quasimetric policies.

5.4 LIMITATIONS AND ASSUMPTIONS

Despite our theoretical results proving that hori- no planning invariance
zon generalization exists, we expect that practi- Lo
cal algorithms will not perfectly achieve horizon
generalization.

The "reach” of a planning-invariant policy
corresponds to the area under this curve

0.5
An assumption in our inductive proof is that

horizon generalization exists as a binary cate-

gory. However, in practice, each application of 0.0 } } } }

the inductive argument will incur some error, so planning invariance
. o . 10f

the extent of horizon generalization will not be

indefinite.

Success Rate

Concretely, define SUCCESS(c) as the success rate 051 —
for reaching goals in radius ¢, and assume that
we choose ¢y small enough that SUCCESS(¢g) =
1. Suppose each time the horizon is doubled 0og T 0 15 20 25 a0
(co = 2¢o — 4co — ---), the success rate de- Distance to Goal

creases by a factor of n. We will refer to n as
the horizon generalization parameter and
la}ter measure this parameter in our experiments ;. o generalization. When the success
(Section 6). We can now define the REACH as  ,itenuation factor 1 > 0.5, the REACH goes
the sum of SUCCESS(c) over ¢ > c¢p. With the {5 00. For a policy with no horizon general-
above constraints on SUCCESS(c), in the worst ization (n = 0), its REACH = 1.

case,

REACH, = 1+7(2 = 1) +12(4=2) + P8 = 4) + - = { T (0512 1)

Success Rate

Figure 3: Approximate horizon general-
ization is still useful. Success when there
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When there is no horizon generalization, the Reach is 1. We can see this by integrating the
success curve in Fig. 3. When the degree of horizon generalization has a low value of (say)
n = 0.1 (i.e., it generalizes for only 1 out of every 10 goals), the Reach is 1.125, not much
bigger than that of a policy without horizon generalization. Once the degree of horizon
generalization reaches nn = 1/2 (i.e., generalizes for 1 out of every two goals), the Reach is
infinite. In short, the potential reach of horizon generalization is infinite, even when each
step of the recursive argument incurs a non-negligible degree of error.

A second assumption behind our analysis is that the base case holds everywhere: the policy
must succeed at reaching all nearby goals when initialized at all possible starting states. In
practice, this may translate to a coverage assumption on the training data. If the base case
does not hold (poor performance on easy goals) but planning invariance holds, then we do
not expect to see optimality over arbitrarily hard goals. We observe this empirically in our
experiments (Fig. 4): a random policy is invariant to planning (it always selects random
actions, regardless of the goal) yet its performance on nearby goals is poor, so the policy
fails to exhibit horizon generalization.

Finally, note that invariance under any arbitrary planner does not guarantee horizon gener-
alization. Rather, only invariance under a planner that minimizes an asymmetric distance
(quasimetric) leads to horizon generalization.

Nonetheless, planning invariance is attractive for several reasons: (1) planning-invariant
policies potentially automatically get the benefits of planning, (2) optimal policies are
invariant under optimal planners, and, as we show in our analysis, (3) invariance to planners
that shorten quasimetric distances leads to horizon generalization (Theorem 2).

5.5 WHICH PRACTICAL METHODS MIGHT EXHIBIT HORIZON GENERALIZATION?

Temporal difference methods (Ziebart et al., 2008), quasimetric architectures (Wang et al.,
2023), RL algorithms (Savinov et al., 2018), and data augmentations (Ghugare et al., 2024)
that employ explicit planning can all achieve planning invariance under some assumptions.

Appendix C discusses these methods in more detail. In Appendix C.1, we discuss several
new directions for designing RL algorithms that are invariant to planning. Appendix C.2
recalls figures from prior works in search of evidence for horizon generalization.

6 EXPERIMENTS

The aim of our experiments is to demonstrate horizon generalization and planning invariance
in existing RL settings, and to study the extent to which existing methods already achieve
these properties. We also present an experiment highlighting why horizon generalization is a
useful notion even when considering temporal difference methods (Section 6.2).

We start with a didactic, tabular navigation task (Fig. 11), connecting short horizon tra-
jectories and evaluating performance on long-horizon tasks. In our first experiment, we
measure the empirical average hitting time distance between all pairs of states. We define
a policy that acts greedily with respect to these distances, measuring performance of this
“metric regression” policy in Fig. 4 (Top Left). The degree of horizon generalization can
be quantified by comparing its success rate on nearby (s, g) pairs to more distant pairs.
We compare to a “metric regression with quasimetric” method that projects the empirical
hitting times into a quasimetric by performing path relaxation updates until convergence
(d(s,g) + min, d(s,w) + d(w, g)). Fig. 4 (Top Left) shows that this policy achieves near
perfect horizon generalization. While this result makes intuitive sense (this algorithm is very
similar to Dijkstra’s algorithm), it nonetheless highlights one way in which a method trained
on nearby start-goal pairs can generalize to more distant pairs.

We study planning invariance of these policies by comparing the success rate of each policy
(on distant start-goal pairs) when the policy is conditioned on the goal versus on a waypoint.
See Appendix E for details. As shown in Fig. 4 (Top Right), the “metric regression with
quasimetric” policy exhibits stronger planning invariance, supporting our theoretical claim
that (Theorem 1) planning invariance is possible.

We next study whether these properties exist when using function approximation. For this
experiment, we adopt the contrastive RL method (Eysenbach et al., 2022) for estimating
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Figure 4: Quantifying horizon generalization and invariance to planning. On a simple
navigation task, we collect short trajectories and train two goal-conditioned policies, comparing
both to a random policy. (Top Left) We evaluate on (s, g) pairs of varying distances, observing that
metric regression with a quasimetric exhibits strong horizon generalization. (Top Right) In line with
our analysis, the policy that has strong horizon generalization is also more invariant to planning:
combining that policy with planning does not increase performance. (Bottom Row) We repeat these
experiments using function approximation (instead of a tabular model), observing similar trends.

the distances, comparing different architectures and loss functions. The results in Fig. 4
(Bottom Left) show that both the architecture and the loss function can influence horizon
generalization, with the strongest generalization being achieved by a CMD-1 (Myers et al.,
2024a). Intuitively this makes sense, as this method was designed to exploit the triangle
inequality, which is linked to planning invariance. Fig. 4 (Bottom Right) shows the degree of
planning invariance for these policies. Supporting our analysis, the policy most invariant to
planning when trained on short horizon tasks shows the strongest horizon generalization.

To better understand the relationship
between planning invariance and hori-
zon generalization, we used the data
from Fig. 4 (Bottom Left) to estimate
the horizon generalization parameter n  fraction of
(see Section 5.4), and used the data from .. e
the (Bottom Right) to compute the ratio  without
of performance with and without plan- P8
ning (Fig. 7). These two quantities are 0.4
well correlated, supporting Theorem 2’s
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variance than that which uses an MLP, Figure 7: Relating horizon generalization (z-axis) to
suggesting that some degree of planning planning invariance (y-axis).
invariance is possible even without a quasimetric architecture. Intriguingly, methods using
the L2 architecture have a value of 7 &~ 0.5, right at the critical point between bounded and
unbounded reach (see Section 5.4). The CMD-1 method, which is explicitly designed to
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(a) Ant Environment (b) Success rates stratified by distance to goal
Horizon Generalization in Ant Continuous Control Domain

1.0F CRL (d¢,, Liwa) T CRL (d,, Lowd)
Goal Distance H BCRL (dg,, Loym) BCMD-1 (dMrN, Lowd)

"""" —— 08 BSAC (Quitr. L1a)
h ‘Goal I
~ 0.6 -
/‘ S
N
0.4 I
ﬁ 02
Agent
0.0 1 -1 -

Im—10m 10m 15m 15m—20m 20m—25m 25m— 30111
— v

short train tasks long eval tasks

Success rate

Distance to goal

Figure 5: Measuring horizon generalization in a high-dimensional (27D observation,
8DoF control) task. (Left) We use an enlarged version of the quadruped “ant” environment,
training all goal-conditioned RL methods on (start, goal) pairs that are at most 10 meters apart.
(Right) We evaluate several RL methods, measuring the horizon generalization of each. These
results reveal that (i) some degree of horizon generalization is possible; (i) the learning algorithm
influences the degree of generalization; (%ii) the value function architecture influences the degree of
generalization; and (iv) no method achieves perfect generalization, suggesting room for improvement
in future work. The ratio of success at 10m vs 5m and 20m vs 10m corresponds to 7 from Section 5.4.
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Figure 6: Illustrating Horizon Invariance in Additional Environments. (Left) A large Ant
maze environment with a winding S-shaped corridor. (Right) A humanoid environment with a
complex, high-dimensional observation space. We evaluate the horizon generalization as measured
by n for a quasimetric architecture (CMD) and a standard architecture (CRL), quantifying the ratio
of success rates when evaluating at 5m vs 10m, 15m vs 30m, and 25m vs 50m after training to reach
goals within 10m. The largest 1 values in each row are highlighted.

incorporate the triangle inequality, exhibits much stronger planning invariance and horizon
generalization (1 =~ 0.8 > 0.5), well above the critical point.

Note that the random policy is an outlier: it achieves perfect planning invariance (it always
takes random actions, regardless of the goal) yet poor horizon generalization. This random
policy highlights a key assumption in our analysis: that the policy always succeeds at reaching
nearby goals (in Fig. 4, note that the success rate on the easiest goals is strictly less than 1).

6.1 STUDYING HORIZON GENERALIZATION IN A HIGH-DIMENSIONAL SETTING

Our next set of experiments study horizon generalization and planning invariance in the
context of a high-dimensional quadrupedal locomotion task (see Fig. 5). We start by running
a series of experiments to compare the horizon generalization of different learning algorithms
(CRL (Eysenbach et al., 2022) and SAC (Haarnoja et al., 2018)) and distance metric
architectures (details in Appendix E). The results in Fig. 5 highlight that both the learning
algorithm and the architecture can play an important role in horizon generalization, while also
underscoring that achieving high horizon generalization in high-dimensional settings remains
an open problem. See Table 1 for a summary of the methods used in these experiments.
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Figure 8: Impact of horizon generalization on Bellman errors. (Left) Two goal-reaching
methods exhibit different horizon generalization. (Right) Despite neither method being trained
with the Bellman loss, we observe that the method with stronger horizon generalization has a lower
Bellman loss. Thus, understanding horizon generalization may be important even when using TD
methods (which guarantee horizon generalization at convergence).

These trends hold in more complex environments as well: Fig. 6 shows greater horizon
generalization (as measured by the n-value defined in Section 5.4) for a CMD-1 architecture
compared to a CRL architecture in both an AntMaze and a Humanoid environment.

6.2 IMPACT OF HORIZON GENERALIZATION ON BELLMAN ERRORS

Why should someone using a temporal difference method care about horizon generalization,
if TD methods are supposed to provide this property for free? One hypothesis is that
methods for achieving horizon generalization will also help decrease the Bellman error,
especially for unseen start-goal pairs. We test this hypothesis by measuring the Bellman
error throughout training of the contrastive RL method (same method as Fig. 4), with
two different architectures. The results in Fig. 8 show that the architecture that exhibits
stronger horizon generalization (dy,) also has a lower Bellman error throughout training.
Thus, while TD methods may achieve horizon generalization at convergence (at least in the
tabular setting with infinite data), a stronger understanding of horizon generalization may
nonetheless prove useful for designing architectures that enable faster convergence of TD
methods.

7 CONCLUSION

The aim of this paper is to give a name to a type of generalization that has been observed
before, but (to the best of our knowledge) has never been studied in its own right: the
capacity to generalize from nearby start-goal pairs to distant goals. Seen from one perspective,
this property is trivial —it is an application of the optimal substructure property, and the
original Q-learning method (Watkins and Dayan, 1992) already achieves this property. Seen
from another perspective, this property may seem magical: how can one guarantee that a
policy trained over easy tasks can extrapolate from easy tasks to hard tasks?

We hope to provide a theoretical framework for understanding this property as a form of
self-consistency over model architecture, and show how we can obtain and measure this
property in practice. The experiments in Section 6 then connect these insights to concrete
advice for structuring the representation for goal-reaching:

1. Policies that model state distance with metric architectures have planning invariance.
2. Planning invariance is correlated with the degree of horizon generalization of a policy.
3. Quasimetric architectures can enable planning invariance and horizon generalization.

Appendix D discusses further implications of these notions of invariance on model consistency.

Limitations and Future Work. Future work should examine planning invariance and
horizon generalization in more complex decision-making environments, such as robotic
manipulation and language-based agents. Which versions of the distance parameterizations
in Table 1 are most effective at scale should be investigated with larger-scale empirical
experiments. We assume a goal-conditioned setting, but there are meany alternative forms
of task specification (rewards, language, preferences, etc.) that could similarly benefit
from generalization over long horizons. Future work should explore how planning-invariant
geometry could be extended or mapped onto these task spaces.
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A DEFINITION OF PATH RELAXATION

In this section, we formally define the general path relaxation operator in Definition 5. This
definition extends Definition 1 to allow for actions and environmental stochasticity.

Definition 5 (Path relaxation operator with actions). Let PATH4(s,a,G) be the path
relazation operator over quasimetric d(s,a,@). For any triplet of state and state distributions

(s, W,G) € S x A(S) x A(S),

PaTH,(s,a,G) £ mlnd(s a, W) + d(W,G). (13)
In the controlled, fized goal setting, define

PatH}™ (s, a,9) £ n}li}n d(s,a,w) + d(w,g). (14)

The notation A(X) used here and throughout the appendix denotes the space of probability
distributions over set X.

B  FORMALIZING PLANNING INVARIANCE AND HORIZON GENERALIZATION

In this section, we prove results discussed in Section 5.2 and versions of results in Section 5
for the general stochastic, distributional setting.

B.1 PLANNING INVARIANCE EXISTS

Theorem 1 (Quasimetric policies are invariant under PLANg). Given a deterministic MDP
with states S, actions A, and goal-conditioned Kronecker delta reward function ry(s) = d(s.g),
define quasimetric policy wq(a | s,g) and quasimetric planner class plan,. Then, for every
quasimetric planner PLAN, € plan, there always exists a policy wq(a | s, g) that is planning

invariant: ma(a | s,g) =ma(a | s,w for w=PLANy(s,g)). (11)

Proof. Let s,g € S and the action-free distance function be d(s, g) = min, d(s, a, g); this
statement is true for the contrastive successor distances (Eq. 5). Define the (determlmstlc)
planned waypoint as
wppan < PLANg(S, g) € argmind(s,w) + d(w, g). (15)
weS

We can then construct the following policy:

ma(a | s,g) € argmind(s,a, g) (16)
acA
and later restrict the selection of equivalently optimal actions to obtain planning invariance,
where wpyay € argmin,, s d(s,w)+d(w, g). Applying this policy to (s, wpan), we have that
ma(a | s, wpran) € argmin d(s, a, Wppay)
acA

= arg min d(s, a, wPLAN) + d(wPLAN7 g)
acA
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= d(37 wPLAN) + d(wPLAm g)

C argmind(s, a, g). (17)
acA

Thus, for a given deterministic planning algorithm defined as in Eq. (15), there exists
some deterministic policy m4(a | s,9) = ma(a | s, wpran) € argmingc 4 d(s, a, Wpran) C
arg min,c 4 d(s, a, g) that is planning invariant.

B.2 QUASIMETRIC OVER DISTRIBUTIONS

Definition 6 (Quasimetric over distributions). Given quasimetric dqy defined over start-goal
space S X 8, we define the quasimetric over distributions as

doun(P,Q) = _inf / dau (P, 9)v(p, q) dpdg, (18)
YEI(P,Q) Jsxs

which is the asymmetric Wasserstein Distance with quasimetric cost function dga (p, q).

We can interpret this object as the minimum cost to convert distribution P to @), where the

cost function is some quasimetric between individual states.

We show Definition 6 is a valid quasimetric. Because dqgyp is an asymmetric Wasserstein
distance and cost function dqy(p, ¢) is a quasimetric, this proof is an extension of a well-known
result (Clement and Desch, 2008) that drops the metric symmetry condition. We include
the proof here for completeness.

Proof. We check the conditions of a quasimetric for dgyp (P, @) with quasimetric cost function
dom (p> q)~
Non-negativity: By definition of v(p, ¢) and dqu(p, ¢), we have dqun (P, Q) > 0 for all P, Q.

We show that dqup (P, Q) = 0 if and only if P = @, beginning with the forward direction:

doun(P, P) = inf /S SdQM(p, q)v(p,q) dp dq
X

~€ETI(P,P)
< / don(p, 9)vp(p, q) dpdg (set v as diagonal matrix vp)
SxS
= [ doutp i) o (where (p) = 7(p,p))
=0 (doum(p,p) = 0)

For the other direction, we have that dqup(P,Q) = 0 implies v(p,q) = 0 for all p # q.
However, because 7(p, q) is a probability distribution, this must mean P = Q.

Asymmetry: We have that dqyp (P, Q) is not necessarily symmetric because the quasimetric
doum (P, ¢) is not necessarily symmetric.

Triangle inequality: Let P, @, R be three probability measures. Let 77, and 73 3 be

minimizers of doup (P, Q) and doup(Q, R) respectively. We can construct some 71 2,3(p, ¢, 7)
such that

/ 71,2,3(177 q, T) d’f' = 7;2

S

/ Y,23(0,¢,7)dp =75 3
S

/ 1,230 ¢,7)dg =733
S

where 7, 3 is not necessarily the optimal joint distribution to minimize dqup(P, R). Then,
we have:

doun(P, R) < / A (s 1)71.5 (s ) dp I
SxS

= / dqm(I% 7’)71,2,3(1776177“) dp dg dr
SXSXS
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IN

/ dou(p, q) + dou(q, 7)) 11,2,3(p, ¢, 7) dp dg dr (dou satisfies A-ineq)
SXSXS

/ dou(p, @) 71,2,3(p, q,7) dp dg dr +/ don(q,m)71,2,3(p,q, ) dp dg dr
SXSxS

SXSXS
=d MD(P Q) +dQMD(Q R)

as desired. Therefore, dqyp is a quasimetric and we are done. O

B.3 QUASIMETRICS, PATH RELAXATION, POLICIES, AND PLANNING INVARIANCE IN
STOCHASTIC SETTINGS

We extend the definitions of quasimetrics, path relaxation, policies, and planning invariance
to the setting of general stochastic MDPs.

Definition 7 (Quasimetric over actions in general stochastic setting). Denote by S5 , =

p(s’ | s,a) the distribution over next-step states after taking action a from starting state
s. Given the quasimetric domp defined as in Definition 0, we define the stochastic-setting
quasimetric over actions as

domp (s, a, G) £ domp (s, S(s ) + damp (S, ), G)-

Definition 8 (Quasimetric policy in general stochastic setting). Given goal-conditioned MDP
M with states S, actions A, and goal-conditioned Kronecker delta reward function r4(s) =
d(s,q) and quasimetric over distributions dovp (Definition 6), we extend the quasimetric
policy to stochastic settings:

ma(a | s,G) € argmindqup (s, a, G). (19)

We can also generalize the planning class to take in states, actions, and state distributions
as inputs: plan 2 [PLAN: S x A x A(S) — A(S)}. (20)

This planner chooses a waypoint distribution conditioned on a given start state, action taken
from this state, and a desired future goal distribution.

Definition 9 (Quasimetric planner class in general stochastic setting). Given goal-conditioned
MDP M and quasimetric over distributions doup (Definition 6), we extend the quasimetric
planning class to stochastic settings:

pland é{PLAN S plan | dQMD(S, a, W) + dQMD(VV, G) = dQMD(s,a, G)

for all (s,a,G) € S x A x A(S) where PLAN(s,a,G) = W}.
The existence of planning invariance in stochastic settings follows from these quasimetric
definitions.

Lemma 4 (Quasimetric policies are planning invariant in general stochastic settings). Given
an MDP with states S, actions A, and goal-conditioned Kronecker delta reward function
r¢(8) = d(s,9), consider a quasimetric policy w4(a | s,G) and planner class plang. Then, for
every planning operator

PLANy(s,a,G) = Wppan € argmin(domp (s, a, W) + doup (W, G)),
WeA(S)

there exists a quasimetric policy wq(a | s,G) such that
71—d(a | 87G) = ﬂ—d(a | SaWPLAN);

e., the policy is invariant to the planning operator.

Proof. For any start-goal distribution (s, G) € S x A(S) pair,
min dqmp (s, a, G) = mindqmp (s, S(; o)) + doup (S ), G) (by definition (Definition 6))
= main mmi/H dQMD(S, st,a)) + dQMD(styay W) + dQMD(W, G) (A—ineq)
= min mmi/n dQMD(S, a, W) + dQMD(VV, G) (21)

17



Published as a conference paper at ICLR 2025

start at s after reaching s,
plan plan plan
N —
S 52 3 S 3
> >
1 1
1 ]
s’ 1 1
]
v '
0 ) . latent space :
. ) (8 xS - R
PGops)  ~ Hons) ~ §s1.5) ¢ :
: : 1
: : v
o a; policy

fRFs A 71:8SxS— A

Figure 9: Invariance to planning leads to horizon generalization. (Left) Invariance
to planning maps (s, {51, $2, 84}) together in latent space, which results in a shared optimal
action. (Right) After successfully reaching the closest waypoint s; in 1 step, the next optimal
action is also shared, meaning any trajectory of length 2 is optimal. We can repeat this
argument for trajectories of length 4,8, ... until the entire reachable state space is covered.

From Definition 8, let quasimetric policy 7 be
ma(a | s,G) € argmindqup (s, a, G).
acA
Now, applying this policy to state-waypoint distribution pair (s, Weay) € A X A(S),
m(als, Wppan) € argerﬁin domp (s, a, Wppan)
= argefﬁin dombp (8, a, Wppan) + domp (Wpian, G)

C argmindqmp(s, a, G) (22)
acA

as desired. Thus, for any quasimetric planner PLAN,4(s, a, G), there exists some quasimetric
policy
ma(a|s,G) =m4(a | s, Wpan) € argmindgmp (s, a, Wpax)

acA
C argmind(s, a,G), (23)
acA
as desired. O

B.4 HORIZON GENERALIZATION EXISTS

In this section, we include a proof of Theorem 2 for the general stochastic setting. This
result is visualized in Fig. 9.

Theorem 2 (Horizon generalization exists). Consider an MDP with states S, actions A,
and goal-conditioned Kronecker delta reward ry4(s) = d(s,4). For any quasimetric d(s,g) over
the start-goal space S X 8§ and ¢ > 0, the quasimetric policy wq(a | s,g) that is optimal over
B.={(s,9) € S xS |d(s,g) <c} is optimal over the entire start-goal space S x S.

Proof. We prove the more general result for policies m4(a | s,G) defined over start-goal
distribution pairs (s, G). See earlier sections in Appendix B.3 for quasimetric, policy, and
planning definitions over distributions.

Lemma 5. For a goal-conditioned MDP with states S, actions A, and goal-conditioned
Kronecker delta reward function ry(s) = (s,q). Let finite thresholds ¢ > 0 and quasimetrics
dqmp (s, G) over the start-goal distribution space S x A(S) be given. Then, a quasimetric
policy mq(a | s,G) that is optimal over B, = {(s,G) € S x -(S) | d(s,G) < ¢} is optimal over
the entire start-goal distribution space S x A(S).
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Note that we can recover the fixed, deterministic action and goal setting (“fixed” setting) by
letting goal-distribution G be a Dirac delta function at a single goal g.

We prove Lemma 5 using induction. Assume optimality over B, = {(s,G) € § x A(S) |
d(s,G) < ¢2"} for arbitrary n € Z*. Without loss of generality, consider arbitrary state
s € § and all goal distributions B, (s) = {G € A(S) | d(s,G) < c2"}.

We can consider the space of distributions B, (G) that are ¢2" distance away from goal
distribution G € B, (s):
B,(G)={S" € A(S) | d(G,S") < 2",G € B,(s)}
= {5 € A(S) | d(s,8") < 2"}
= Bnta(s) (24)

where we correspondingly define the ball of start-goal distribution pairs drawn from B, (G)
as

B, ={(5,58)eSxA(S)| S €B.(G),G € B,(s)}
={(5,9) €S xA(S)|S €Byii(s)}
=By (25)
Invoking the definition of the quasimetric policy m4(a | s,S5’), for some waypoint distri-

bution Wp .y € argming, g )(dQMD(s,a, W) 4+ domp (W, G)) and goal distribution
G e Bn+1(8)1

n+1(3
ma(a | s,G) € argmindqgmp (s, a, Wppax)-
a€A

To show that there always exists some planned waypoint distribution Wp, 4y within the region
of assumed optimality B,, from the inductive assumption, we consider the case Wpyan & By (s)
and show that there exists some Wp .y, w € B, such that

domp (s, a, Weian, w) + dovd (Weiax, v, G) = doup (s, a, G).
We drop the QMD subscript on quasimetric d for readability. By the triangle inequality,

d(s,a,G) = Werl?iill(s)(d(s’ a,W)+d(W,Q))

= d(87 a, WPLAN) + d(WPLAN7 G)

= min d(s,a, Wour) + d(Wour, G)
Wour€Brn41(8)\Bn(s)

= e ijil?s>\ 5o nin (d(s,a, Wix) + d(Wix, Wour)) + d(Wour, G)

= min min d(s,a, W) + (d(Wi, W, +dWour, G
Wi €8 (5) Wour€Bp 41(5)\Bn (5) ( ) + (AW, Wour) + d(Wour, G)
= i d(s,a, W, dW, G A-i
WNIQ;SI:(S) (5,0, Wiy) + d(Wiy, G) (A-ineq)
= d(s, a, WPLAN, IN) + d(WPLAN, IN» G), (26)

for all s € §. Thus, there always exists an optimal state-waypoint distribution pair within
the assumed optimality region B,,; we can thus restrict (s, Wppan) € B,,.

Therefore, with the previously defined quasimetric policy m4(a | s,G),

Tq (a | (s, Wppax) € Bn) € argmind(s, a, Wppax) (inductive assumption)
acA

C argmind(s,a,G),, (Lemma 4: planning invariance)
acA

so, the policy m4(a | s, @) is optimal over B,,41 following the inductive assumption. Since we
assume the base case holds everywhere, Theorem 2 follows. O

B.5 HORIZON GENERALIZATION IS NONTRIVIAL

We observe that planning invariance and horizon generalization can be arbitrarily violated
for general policies and MDPs.
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Remark 3 (Horizon generalization is nontrivial). Let finite ¢ > 0 and goal-conditioned MDP
with states S, actions A, and goal-conditioned Kronecker delta reward function r4(s) = d(s g
be given where there are no states outside of S. For a policy that is not planning invariant,
optimality over B. = {(s,g) € S x § | d(s,g) < ¢} is not a sufficient condition for optimality
over the entire start-goal space S X S.

Proof. We restrict our proof to the fixed, controlled setting and let quasimetric d(s, g) be the
successor distance dsp(s,g) (Myers et al., 2024a) — this assumption lets us directly equate
the optimal horizon H to the distance dsp(s, g), but note that similar arguments can be
applied by treating d(s, g) as a generalized notion of horizon.

Consider the goal-conditioned policy 7% (a | s, g) that is optimal for (s, g) pairs over some
horizon H. Assume there is at least one goal ¢’ that is optimally H + 1 actions away from
s, and that there exists some optimal waypoint s’ on the way to ¢’ reachable via actions
A" c A (where A\ A, the set of suboptimal actions, is nonempty).

We can then construct a policy 71 where (1) 7#%1(a | s,¢’) returns an action in the
suboptimal set A\ A’ and (2) 7f*! restricted to start-goal pairs horizon H apart is
equivalent to 7*f. Therefore, an arbitrary, non-planning invariant goal-reaching policy does
not necessarily exhibit horizon generalization.

C  WHICH PrRACTICAL METHODS MIGHT EXHIBIT HORIZON
GENERALIZATION?

In this section, we discuss how temporal difference methods, quasimetric architectures, RL
algorithms, and data augmentations that employ explicit planning can all achieve planning
invariance under some assumptions. Appendix C.1 discusses several new directions for
designing RL algorithms that are invariant to planning. Appendix C.2 recalls figures from
prior works in search of evidence for horizon generalization.

Dynamic programming and temporal difference (TD) learning. We expect that
dynamic programming and TD methods will achieve planning invariance in tabular settings.
The intuition is that TD methods “stitch” (Ziebart et al., 2008) together trajectories which
is a natural route to obtain policies with horizon generalization. Indeed, our definition of
planning invariance is very closely tied with the optimal substructure property (Cormen et al.,
2022, pp. 382-387) of dynamic programming problems, and likely could be redefined entirely
in terms of optimal substructure. Viewing horizon generalization and planning invariance
through the lens of machine learning allows us to consider a broader set of tools for achieving
invariance and generalization (e.g., special neural network layers, data augmentation).

Quasimetric Architectures (implicit planning). Prior methods that employ special
neural networks may have some degree of horizon generalization. For example, some prior
methods (Wang et al., 2023; Pitis et al., 2020; Myers et al., 2024a) use quasimetric networks
to represent a distance function. As the correct distance function satisfies the triangle
inequality, it is useful to employ special quasimetric neural network architectures (Liu et al.,
2023; Wang and Isola, 2022b;a) that are guaranteed to satisfy the same property before
seeing any training data. These architectures are invariant to path relaxation by construction,
though prior work rarely examines their generalization or invariance properties. Other prior
methods (Tamar et al., 2016; Lee et al., 2018) have proposed architectures that perform
value iteration internally and (hence) may be invariant to the Bellman operator. Because
Bellman optimality implies invariance to optimal planning (c.f. optimal substructure), we
expect that these value iteration networks to exhibit some horizon generalization as well.

Explicit planning methods. While our proof of planning used a specific notion of planning,
prior work has proposed RL methods that employ many different styles of planning: graph
search methods (Savinov et al., 2018; Zhang et al., 2021b; Beker et al., 2022; Chane-Sane
et al., 2021), model-based methods (Sutton, 1991; Chua et al., 2018; Nagabandi et al., 2018;
Lowrey et al., 2018; Williams et al., 2017), collocation methods (Rybkin et al., 2021), and
hierarchical methods (Kulkarni et al., 2016; Parascandolo et al., 2020; Nasiriany et al., 2019;
Pertsch et al., 2020). Insofar as these methods approximate the method used in our proof,
it is reasonable to expect that they may achieve some degree of planning invariance and
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horizon generalization (see Fig. 10). Prior methods in this space are typically evaluated
on the training distribution, so their horizon generalization capabilities are typically not
evaluated. However, the improved generalization properties might have still contributed to
the faster learning on the training tasks: after just learning the easier tasks, these methods
would have already solved the complex tasks, leading to higher average success rates.

Data augmentation. Finally, prior work (Ghugare et al., 2024; Chane-Sane et al., 2021) has
argued that data augmentation provides another avenue for achieving the benefits typically
associated with planning or dynamic programming.

C.1 NEW METHODS FOR PLANNING INVARIANCE

While the aim of this paper is not to propose a new method, we will discuss several new
directions that may be examined for achieving planning invariance.

Representation learning. As shown in Fig. 2, planning invariance implies that some
internal representation inside a policy must map start-goal inputs and start-waypoint
inputs to similar representations. What representation learning objective would result
in representations that, when used for a policy, guarantee horizon generalization?? The fact
that plans over representations sometimes correspond to geodesics (Tenenbaum et al., 2000;
Eysenbach et al., 2024) hints that this may be possible.

Flattening hierarchical methods. While hierarchical methods often achieve higher suc-
cess rates in practice, it remains unclear why flat methods cannot achieve similar performance
given the same data. While prior work has suggested that hierarchies may aid in explo-
ration (Nachum et al.; 2019), it may be the case that they (somehow) exploit the metric
structure of the problem. Once this inductive bias is identified, it may be possible to imbue
it into a “flat” policy so that it can achieve similar performance (without the complexity of
hierarchical methods).

Policies that learn to plan. While explicit planning methods may be invariant to planning,
recent work has suggested that certain policies can learn to plan when trained on sufficient
data (Chane-Sane et al., 2021; Lee et al., 2024). Insofar as neural networks are universal
function approximators, they may learn to approximate a planning operator internally. The
best way of learning such networks that implicitly learn to perform planning remains an
open question.

C.2 EVIDENCE OF HORIZON GENERALIZATION AND PLANNING INVARIANCE FROM
Prior WORK

Not only do the experiments in Section 6 provide evidence for horizon generalization and
planning invariance, but we also can find evidence of these properties in the experiments
run by prior work. This section reviews three such examples, with the corresponding figures
from prior work in Fig. 10:

1. Zhang et al. (2021b) propose a method for goal-conditioned RL in the online setting
that performs planning during exploration. While not the main focus of the paper, an
ablation experiment in that paper hints that their method may have some degree of
planning invariance: after training, the policy produced by their method is evaluated both
with and without planning, and achieves similar success rates. This experiment hints at
another avenue for achieving planning invariance: rather than changing the architecture
or learning rule, simply changing how data are collected may be sufficient.

2. Ghugare et al. (2024) propose a method for goal-conditioned RL in the offline setting
that performs temporal data augmentation. Their key result, reproduced above, is
that the resulting method generalizes better to unseen start-goal pairs, as compared
with a baseline. While this notion of generalization is not exactly the same as horizon
generalization (unseen start-goal pairs may still be close to one another), the high success
rates of the proposed method suggest that method does not just generalize to nearby
start-goal pairs, but also exhibits horizon generalization by succeeding in reaching unseen
distant start-goal pairs.

2The construction in our proof is a degenerate case of this, where the internal representations
are equal to the output actions.
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Figure 10: Evidence of Horizon Generalization and Planning Invariance from
Prior work. (a) Prior work has observed that if policies are trained in an online setting
and perform planning during exploration, then those policies see little benefit from doing
planning during evaluation. This observation suggests that these policies may have learned
to be planning invariant. While results are not stratified into training and testing tasks, we
speculate that the faster learning of that method (relative to baselines, not shown) may be
explained by the policy generalizing from easy tasks (which are learned more quickly) to more
difficult tasks. (b) Prior work studies how data augmentation can facilitate combinatorial
generalization. While the notion of combinatorial generalization studied there is slightly
from horizon generalization, a method that performs combinatorial generalization would also
achieve effective horizon generalization.

D SELF-CONSISTENT MODELS

In machine learning, we usually strive for consistent models: ones that faithfully predict the
training data. Sometimes (often), however, a model that is consistent with the training data
may be inconsistent with other yet-to-be-seen training examples. In the absence of infinite
data, one way of performing model selection is to see whether a model’s predictions are self-
consistent with one another. This is perhaps most easily seen in the case of metric learning,
as studied in this paper. If we are trying to learn a metric d(z,y), then the properties of
metrics tell us something about the predictions that our model should make, both on seen
and unseen inputs. For example, even on unseen inputs, our model’s predictions should
obey the triangle inequality. Given many candidate models that are all consistent with the
training data, we may be able to rule out some of those models if their predictions on unseen
examples are not “logically” consistent (e.g., if they violate the triangle inequality). One way
of interpreting quasimetric neural networks is that they are architecturally constrained to be
self-consistent. We will discuss a few implications of this observation.

Do self-consistent models know what they know? What if we assume that quasimetric
networks can generalize? That is, after learning that (say) s; and sy are 5 steps apart,
it will predict that similar states s} and s, are also 5 steps apart. Because the model is
architecturally constrained to be a quasimetric, this prediction (or “hallucination”) could also
result in changing the predictions for other s-g pairs. That is, this new “hallucinated” edge
s| —> s5 might result in path relaxation for yet other edges.
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What other sorts of models are self-consistent? There has been much discussion
of self-consistency in the language-modeling literature (Huang et al., 2022; Irving et al.,
2018). Many of these methods are predicated on the same underlying as self-consistency in
quasimetric networks: checking whether the model makes logically consistent predictions on
unseen inputs. Logical consistency might be used to determine that a prediction is unlikely,
and so the model can be updated or revised to make a different prediction instead.

There is an important difference between this example and the quasimetrics. While the
axiom used for checking self-consistency in quasimetrics was the triangle inequality, in
this language modeling example self-consistency is checked using the predictions from the
language model itself. In the example of quasimetrics, our ability to precisely write down a
mathematical notion of consistency enabled us to translate that axiom into an architecture
that is self-consistent with this property. This raises an intriguing question: Can we quantify
the rules of logic in such a way that they can be translated into a logically self-consistent
language model? What makes this claim seem alluringly tangible is that there is abundant
literature from mathematics and philosophy on quantifying logical rules (Whitehead and
Russell, 1927).

MDP reductions. Finally, is it possible to map one MDP to another MDP (e.g., with
different observations, with different actions) so that any RL algorithm applied to this
transformed MDP automatically achieves the planning invariance property?

E EXPERIMENT DETAILS

Table 1: Summary of methods and modifications tested

Method Description \ Losses Critics
CRL Contrastive RL (Eysenbach et al., 2022) {Ltwd, Lowd: Lsym} {de,, dmrp}
SAC Soft Actor-Critic (Haarnoja et al., 2018) {Lsac} {Qmrp}
CMD-1  Contrastive metric distillation (Myers et al., 2024a) | {Lpwa } {dmrn~}
(a) Losses (b) Architectures
Liwa InfoNCE loss:  predict goal ¢ dy, L2-distance parameterized architec-
from current state-action (s, a) pair ture, uses ||¢(s) — ¢¥(g)| as a dis-
(Sohn, 2016) tance/critic (Eysenbach et al., 2024)
Liwa Backward InfoNCE loss: predict dyrp  Uses multi-layer perceptron (MLP)
current state and action (s,a) from to parameterize the distance/critic
future state g (Bortkiewicz et al., (Rosenblatt, 1961; Burr, 1986)
2024)

dvry  Metric residual network, uses a

Lsym Symmetric contrastive loss: com- . . .
quasimetric architecture to parame-

bine the forward and backward con-

trastive losses (Radford et al., 2021) B%Sg;z the distance/critic (Liu et al.,
Lsae Temporal difference loss (Haarnoja ~ Qurp MLP-parameterized Q-function
et al., 2018) (Haarnoja et al., 2018)

The following subsections discuss the environment details for the figures in the main text.

E.1 Dipactic MAZE: FIGURE 2

This task is a maze with walls shown as in Fig. 2. The dynamics are deterministic. There
are 5 actions, corresponding to the cardinal directions and a no-op action.

For this plot, we generated data from a random policy, using 1000 trajectories of length 200.
We estimated distances using Monte Carlo regression. The left two subplots were generated
by selecting actions uses these Monte Carlo distances. We computed the true distances by
running Dijkstra’s algorithm. The right two subplots show actions selected using Dijkstra’s
algorithm.
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E.2 TABULAR MAZE NAVIGATION: FIGURE 4 (TopP)

This plot used the same environment as described in Appendix E.1. For this plot, we
generated 3000 trajectories of length 50 using a random policy. Only 14% of start-goal
pairs have any trajectory between them, meaning that the vast majority of start-goal pairs
have never been seen together during training. Thus, this is a good setting for studying
generalization.

We first estimated distances using Monte Carlo regression. We select actions using a
Boltzmann policy with temperature 0.1 (i.e., w(a | 5,9) oc e %14(5:9)). Evaluation is done
over 1000 randomly-sampled start-goal pairs. The X axis is binned based on the shortest
path distance. The data are aggregated so that start-goal pairs with distance between
(say) 20 and 30 get plotted at = 30. The “metric regression + quasimetric” distances are
obtained by performing path relaxation on these Monte Carlo distances until convergence.
The corresponding policy is again a Boltzmann policy with temperature 0.1.

For the Top Right subplot, we perform planning using Dijkstra’s algorithm. We first identify
a set of candidate midpoint states where d(s,w) and d(w, g) are both within one unit of half
the shortest path distance. We then randomly sample a midpoint state. This planning is
done anew at every timestep.

E.3 LEARNED MAZE NAVIGATION: FIGURE 4 (BOTTOM)

This plot used the same environment as described in Appendix E.1. The CRL method
refers to (Eysenbach et al., 2022) and CMD refers to (Myers et al., 2024a). We used a
representation dimension of 16, a batch size of 256, neural networks with 2 hidden layers of
width 32 and Swish activations, v = 0.9, and Adam optimizer with learning rate 3 - 1073.
The loss functions and architectures are based on those from (Bortkiewicz et al., 2024).

For the Bottom Right subplot, we performed planning in the same way as for the Top Right
subplot.

E.4 JaXGCRL BENCHMARK ENVIRONMENTS

Ant (Figure 5): For this task we used a version of the Ant environment from Bortkiewicz
et al. (2024) modified to have variable start positions and distances to the goal. All other
hyperparameters are kept as the defaults from that paper. Training is done for 100M steps

AntMaze and Humanoid (Figure 6): Both environments are modified versions of the
AntMaze and Humanoid environments from Bortkiewicz et al. (2024). The CMD-1 and CRL
methods (with the backward infoNCE loss and /5 distance parameterization) were evaluated
at the listed distances and twice as far, and the ratio of the two success rates was used to
compute 7.

E.5 LoNG MAZE: FIGURE 8

For this experiment we used an S-shaped
maze, shown in Fig. 11.% The dynamics are
the same as those of Fig. 2.

We collected 3000 trajectories of length 10

and applied CRL with a representation dimension of 16, a batch size of 256, neural networks
with 2 hidden layers of width 32 and Swish activations, the backward NCE loss (Bortkiewicz
et al., 2024), v = 0.9, using the Adam optimizer with learning rate 3 - 1073. We measured
the Bellman error as follows, where xg, x1, z7 are the current, immediate next, and future
states:

Figure 11: Long S-shaped maze.

pdist = metric_fn.apply(params, x0[:, None], xT[Nonel)
pdist_next = metric_fn.apply(params, x1[:, None], xT[None])
td_target = (1 - gamma) * (x1 == xT[None, :, 0])

+ gamma * jax.nn.softmax(pdist_next, axis=1)
bellman = optax.kl_divergence(

CUk W N =

3We used this maze in preliminary versions of other experiments, but opted for the larger maze
in the other paper experiments because the results were easier to visualize.
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6 td_target, jax.nn.softmax(pdist, axis=1)
7 ) .mean()

For the success rates in the Left subplot, we stratify goals into “easy” (less than 100 steps
away, under an optimal policy) and “distant” (more than 100 steps away).

We repeated this experiment 10 times for generate the standard errors shown in both the
Left and Right subplots.
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