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A Limitations, Future Work, and Broader Impact

Learning on naturally heterogeneous datasets can be challenging, as the true data distributions of individual
clients are unknown, making it difficult to correlate the divergence between client data distribution and the
global data distribution with routing policy decisions. In our approach, we estimate the distribution divergence
by measuring the difference between inference losses on global and local models, which helps us reason about
routing probabilities for global and local routes. To further improve our understanding of the model performance,
we plan to propose a metric that quantifies the difference in performance when a particular dataset is included
versus excluded.

Flow has shown the promise of per-instance personalization in improving clients’ accuracy. This approach also
holds the potential of preserving privacy by protecting against gradient leakage [38H40|] and membership infer-
ence [41}142] attacks that are easier to carry out in vanilla FL. Studying the relationship between personalization
and privacy, and comparing our approach to traditional methods like Differential Privacy (DP) [43| 44] can
reveal properties of personalization that go beyond improved accuracy.

B Datasets and Hyperparameters

Stackoverflow The Stackoverflow dataset [30] is comprised of separate clients designated for training,
validation, and testing. The dataset contains a total of 342,477 train clients, whose combined sample count equals
135,818,730. Similarly, the dataset contains 38,758 validation and 204,088 test clients, whose combined sample
counts equal 16,491,230 and 16,586,035, respectively. This dataset is naturally heterogeneous [43]] since each
user of Stackoverflow represents a client, with their posts forming the dataset for that client. The heterogeneity
of the dataset arises from the fact that users have different writing styles, meaning the clients’ datasets are not
i.i.d., and the total number of posts from each user varies, leading to different dataset sizes per client.

We have trained Flow and its baselines on the Stackoverflow dataset for 2000 rounds. The one layer LSTM we
have used has 96 as embedding dimension, 670 as hidden state size, and 20 as the maximum sequence length
[19]]. The batch size used for each client on each baseline is 16. The vocabulary of this language task is limited
to 10k most frequent tokens. The default learning rate used is 0.1. The number of clients per round is set to 10,
as is the common practice in [14} 46, [13}110,47]. For client-side training, the default epoch count is 3 for all the
algorithms.

For KNNPER, we used 5 nearby neighbors, and the mixture parameter is A = 0.5. For APFL, mixture
hyperparameter « is set to 0.25. DITTO has regularization hyperparameter A = 0.1. There are 2 clusters
by default for HYPCLUSTER. Flow and its variants were tested on the following choices of regularizing
hyperparameters v € {le-1, le-2, le-3, le-4}, where le-3 gave the best personalized accuracy.

Shakespeare The Shakespeare dataset [31]] consists of 715 distinct clients, each of which has its own training,
validation, and test datasets. The combined training datasets of all clients contain a total of 12,854 instances,
while the combined validation and test datasets contain 3,214 and 2,356 instances, respectively. The Shakespeare
dataset is considered heterogeneous due to the fact that each client is a play written by William Shakespeare, and
these plays have varying settings and characters.

All the baselines and Flow variants have been run for 1500 rounds, with 10 clients per round. The 2 layer LSTM
used [19] has 8 as embedding size, vocabulary size of 90 most frequently used characters, and 256 as hidden
size. The default epoch count is 5 for each client, for each algorithm. The batch size is 4 since bigger batch sizes
resulted in the divergence of the global model across all the different runs. The default learning rate is 0.1.

Since each client has a sample count under 20, we have used 3 as the nearest neighbor sample count for KNNPER.
A and «, the mixture parameters, for KNNPER and APFL respectively, are set to 0.45 and 0.3. The regularization
parameter A for DITTO is set to 0.1. For Flow, the learning rate is set to 0.11 and the regularization parameter is
picked from € {le-1, le-2, 1e-3, le-4} similar to Stackoverflow.

EMNIST The EMNIST dataset [32]] comprises 3400 distinct clients, each of which has its own training,
validation, and test datasets. The combined total number of instances in the train datasets of all clients is 671,585,
whereas the validation and test datasets of all clients combined contain 77,483 instances each. The heterogeneity
of EMNIST clients is due to the individual writing styles of each client, with each client representing a single
person. This is discussed in Appendix C.2 of [19].

The default round count for all the baselines and Flow variants is 1500, with 10 clients participating per round.
Similar to AFO [19], we have used a shallow convolution neural network with 2 convolution layers. Each client
uses 3 local epochs for on-device training. The default batch size is 20, and the default learning rate is 0.01.

For LOCAL only training, we have used 10 epochs per client with a learning rate of 0.05. The nearest sample
count for KNNPER is 10 and the mixture parameter is A = 0.4. For APFL, we have the default mixture parameter
as a = 0.25. DITTO has regularization hyperparameter as A = 0.1. There are 2 clusters for the clustering
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algorithm HYPCLUSTER. And for Flow, along with its variants, we have picked v € {le-1, 1e-2, le-3, le-4} as
the regularizing hyperparameter.

CIFAR10 The CIFARI10 dataset is derived from the centralized version of the CIFAR10 dataset [33]],
which comprises 50,000 images. The federated CIFAR10 dataset consists of 500 unique clients, each of
which has 100 training samples and 20 testing samples. The training and testing samples for each client are
determined according to the Dirichlet distribution [[19]]. The heterogeneity of a client is determined by the
Dirichlet distribution parameter « € [0, 1], where a client is more heterogeneous than oz — 0. In this context,
heterogeneity refers to the dissimilarity of the dataset instances sampled from a distribution. We conducted
experiments on clients with « values of 0.1 and 0.6.

We ran all the experiments for 4000 rounds for the CIFAR10 dataset. ResNet18 [34] is used for all the algorithms.
The default batch size is 20 and the default learning rate is 0.05. Each client individually trains their local
versions of the global model for 3 epochs.

For LOCAL only training, 20 epochs per client were used. The learning rate was 0.1 for the same. The nearest
sample count and the mixture hyperparameter for KNNPER are set to 5 and 0.5. PARTIALFED learning rate is set
to 0.11, with the local epoch count is 5. APFL has mixture hyperparameter set as « = 0.2. And DITTO has a
regularization hyperparameter set as A = 0.01. Flow and its variants have their regularization hyperparameter as
v € {le-1, le-2, 1e-3, le-4}.

CIFAR100 Like CIFAR10, the CIFAR100 dataset [48] is derived from the CIFAR100 dataset [33]] consisting
of 50,000 images. The number of clients and the count of training and testing images are identical to those of
CIFARI10. Similarly, we also conducted experiments with the Dirichlet parameter set to « = 0.1 and o = 0.6.

Similar to CIFAR10, we have a 4000 round count for all the algorithms ran on the CIFAR100 dataset. We have
again used ResNet18 [34]]. The default local epoch count is 3, and the default learning rate is 0.05. We have
used 20 batch size for all the algorithms. For each round, 10 clients participate as is the norm stated in the
Stackoverflow dataset description.

LocAL only training has 20 epochs per client, and 0.1 learning rate. 5 nearest samples are used for KNNPER,
while the mixture parameter A is set to 0.4. PARTIALFED, just like in CIFAR10, has 0.11 learning rate and 5
local epochs per client. APFL has 0.25 as mixture parameter . DITTO has le-2 as regularization parameter
A. For both CIFAR10 and CIFAR100, we have 2 as the default cluster count for HYPCLUSTER. Flow and its
variants get {le-1, le-2, 1e-3, le-4} as the regularization hyperparameter ~y.

C Additional Results

C.1 Generalized and Personalized Accuracy

Generalized (Personalized) accuracy is calculated based on the global (personalized) model, where each
participating client’s test dataset is used to compute accuracy of the global (personalized) model.

Generalized accuracy is formulated as
E(xyy)esierzl ]]-{y = Wy (‘T)}

1
ACCg = M E Stest (6)
me[M)] m
Personalized accuracy is formulated as
1 > o 1{y = wp,m (2)}
Acey = — 3 Zlowesn . : ©)

Stest
me[M)] m
We have reported Generalized (Personalized) Accuracy Accy (Accy) of Flow, averaged across 1000 clients in
TableEi} for all the datasets. Similarly, variance of accuracies across 3 different runs (based on seeds 0, 44, 56) is
reported in Table[3}

Flow sees an improvement of 1.11-3.46% in Accy and 1.33-4.58% in Acc,, over the best performing baseline.
Besides the main observations listed in Section [5] we discuss results on the CIFAR100 dataset here. For
CIFAR100 (0.6), Flow (40.08% = 0.27%) matches the personalized accuracy of the highest performing baseline,
PARTIALFED (40.18% =+ 0.19%), while achieving 1.98% point increase in generalized accuracy. And for
CIFAR100 (0.1), Flow improves personalized accuracy by 1.78% points. For generalized accuracy, Flow
(34.00% = 0.32%) reaches close to the best performing baseline, PARTIALFED (34.79% = 0.29%). The reason
behind the on-par performance of Flow with PARTIALFED can be attributed to the statefulness of PARTIALFED.
With the assumption of full device participation, PARTIALFED makes use of each client’s previous state of
the personalized model to further train its layer-wise model building policy. With Flow, both the assumptions
of full device participation and statefulness of the personalized model are not necessary. Since the clients do
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Table 4: Generalized (Acc,) and Personalized (Accy) accuracy (the higher, the better) for Flow and
baselines. Variance across different runs is reported in Appendix [C| Table 5]

Datasets [ Stackoverflow | Shakespeare | EMNIST [ CIFARIO (0.1) [CIFAR100 (0.1)[ CIFARI0 (0.6) [CIFAR100 (0.6)
Baselines [ Accy  Accy [ Accy  Accy [ Accy  Accy [ Accyg  Accp [ Accy  Accy [ Accy  Accy [ Accy  Accy
LocaL - 15.93% - 18.70% - 28.18% - 49.78% - 36.19% - 62.74% - 21.31%
FEDAVG 23.15% - 52.00% - 85.10% - 60.98% - 28.11% - 67.50% - 30.33% -

FEDAVGFT (23.83% 24.41%|52.12% 53.68% [89.57% 90.14%|61.23% 73.03% |29.60% 31.02%|68.19% 72.21%|31.15% 37.24%
KNNPER 23.16% 24.49%|51.87% 53.10% |85.20% 88.28%59.62% 75.14% |28.08% 33.62%|69.22% 70.14% |30.66% 34.39%
PARTIALFED - - - - - - 62.57% 73.20%|34.79% 40.64% |66.93% 70.38% |37.72% 40.18%
APFL 22.96% 25.70%|52.38% 53.64% |88.40% 89.44%|62.87% 72.86%|31.05% 32.56% |69.53% 72.53% |36.37% 36.74%
DitTOo 22.59% 24.36%|52.44% 53.95% (89.08% 91.30%|62.06% 72.06% |28.14% 35.45% |68.12% 70.31%|35.11% 36.07%
FEDREP 18.92% 21.04%|46.71% 50.09% [89.95% 89.77%|64.85% 68.62% [26.10% 33.72%|69.77% 63.61% |28.42% 31.02%
LGFEDAVG (22.61% 24.03%|51.08% 51.43% |87.43% 91.70%|56.63% 73.19% |31.65% 39.63%|67.48% 68.94% |35.01% 33.90%
HYPCLUSTER|23.75% 22.43%|51.92% 52.74% |89.47% 90.49% |63.64% 71.55%|31.57% 33.04% |65.44% 72.40% |34.76% 36.22%
Flow (Ours) |26.64% 29.49% |55.90% 56.20% [90.88% 94.18% 66.26% 76.47%|34.00% 42.42% |70.88% 77.11% |39.70% 40.08%

Table 5: Variance of generalized and personalized accuracies across 3 different runs (seeds = 0, 44,
56) for Flow and its baselines.

Datasets [SONWP [ Shakespeare [ EMNIST [ CIFAR10 (0.1) [ CIFAR100 (0.1) | CIFAR10 (0.6) [ CIFAR100 (0.6)
Baselines [Accy Accp | Accy Accp | Acey  Accy [Accy Accy, | Acey  Acc, | Accy Accp [Acc, Accy
LoCAL - 0.25% [ - 0.46% | - 1.14%[- 1.56% | - 0.43% |- 0.89% | - 0.25%
FEDAVG 0.07% - 0.39% - 1,32% - L12% - 0.31% - 0.82% - 0.15% -

FEDAVGFT | 0.09% 0.26%|0.51% 0.59% | 1.16% 1.21% |0.99% 0.89% | 0.46% 0.62% |1.10% 1.26% |0.33% 0.42%
KNNPER 0.16% 0.24% | 0.36% 041% | 0.95% 1.02% |1.41% 1.57% |0.34% 0.57% |0.91% 1.06% |0.24% 0.29%
PARTIALFED |- - - - - - 1.36% 1.39% | 0.29% 0.46% |0.96% 1.97% |0.09% 0.19%
APFL 0.19% 0.20% | 0.41% 0.53% | 1.41% 1.50% | 1.24% 1.31% |0.36% 0.72% |0.70% 0.97% |0.42% 0.59%
DITTO 0.12% 0.15% | 0.49% 0.56% | 1.12% 1.22% | 1.35% 1.41% |0.43% 0.69% |0.84% 0.87% |0.28% 0.34%
FEDREP 0.15% 0.29% | 0.50% 0.65% | 0.89% 0.94% |0.95% 1.02% |0.59% 0.79% |0.96% 1.14% |0.14% 0.10%
LGFEDAVG | 0.08% 0.16% | 0.32% 0.56% | 1.10% 1.17% | 1.21% 1.24% | 047% 0.51% |0.82% 0.96% |0.23% 0.21%
HYPCLUSTER | 0.20% 0.19% | 0.56% 0.73% | 0.90% 1.13% | 1.43% 1.49% |0.39% 0.47% |0.98% 0.76% |0.35% 0.46%
Flow 0.23% 0.28% | 0.40% 0.49% | 1.16% 121% |1.23% 1.25% |0.32% 0.36% |0.78% 0.86% |0.21% 0.27%

not necessarily have to carry their personalized model states to the upcoming rounds, the personalized model
recreated by Flow might be unable to compete against stateful approaches like PARTIALFED. Although because
of the per-instance routing, Flow still manages to outperform PARTIALFED for the CIFAR10 (0.1/0.6) datasets,
and gives comparable performance for the CIFAR100 (0.1/0.6) datasets.

C.2 Percentage of Clients Benefiting from Personalization

In this section we discuss the effect of personalization, by comparing each client’s performance on their individual
personalized models with their performance on the global model. The evaluation, just as in section [C.1] is
done on the test datasets of all the clients. The goal with any personalization method is to make each client’s
personalized model more beneficial (for us, in terms of accuracy) compared to the global model. Hence we
want Acc, > Accy, to incentivize personalization for each client. As shown in Table[6] compared to the best
performing baseline, Flow improves the utility of personalization by up to 3.31% points.

Table 6: % of clients for which Acc, > Acc, (the higher, the better).
[ Stackoverflow | EMNIST | Shakespeare | CIFARI0 (0.1) | CIFARI00 (0.1) | CIFARIO (0.6) | CIFARI00 (0.6)

FEDAVGFT 79.26% 81.48% 79.00% 97.18% 91.74% 99.33% 88.54%
KNNPER 82.73% 89.97% 68.87% 90.00% 94.71% 90.00% 96.37%
PARTIALFED - - - 88.30% 90.32% 84.80% 98.64%
APFL 69.66% 93.39% 79.22% 87.48% 86.18% 90.63% 92.03%
DITTO 74.59% 79.26% 73.74% 90.52% 91.45% 89.61% 97.45%
FEDREP 91.53% 82.20% 79.78% 92.30% 78.81% 84.64% 99.54%
LGFEDAVG 83.47% 66.16% 88.43% 88.41% 86.39% 89.59% 91.73%
HYPCLUSTER 80.46% 80.70% 74.84% 95.11% 93.70% 98.18% 99.73%
Flow (Ours) 92.74% 96.70 % 89.77 % 98.33% 97.29% 99.62 % 99.75%

C.3 Breakdown of Correctly Classified Instances

Here we show a detailed view of how instances (across all the clients) get classified correctly between global
and personalized models for each of the baselines. For the plots in Figures[5] y-axis represent % of instances
correctly classified by (a) Both the global and the personalized models (both-correct), (b) Only the global
model (global-only), and (c) Only the personalized model (personalized-only). This % of instances metric is
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averaged across all clients, and is based on their test datasets. The goal here is to increase the % of instances for
both-correct and personalized-only, and reduce the % of instances for global-only. We make the following
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Figure 5: Different combinations of w, and w,, accuracies.

observations for each of the datasets: Since Flow improves both the generalized and personalized accuracies, we
see higher both-correct for Stackoverflow (by 2.75% points), Shakespeare (by 4.34% points), EMNIST (by
3.17% points), CIFAR10 (0.1) (by 5.24% points), CIFAR10 (0.6) (by 0.03% points), CIFAR100 (0.1) (by 0.63%
points) and CIFAR100 (0.6) (by 2.78% points).

Due per-instance personalization, we see improvements in personalized accuracy, but those improvements
are also included in the both-correct bars, so solely comparing personalized-only bar lengths is not a right
comparison. Similarly, we see fewer instances in global-only bars due to the increase in instances which fall
under both-correct.

C.4 Analysis of Routing Decisions

Now we show probability value analysis of the routing policy for CIFAR10/100 datasets. Here we have fixed the
client as the client which had the highest loss difference between its global and personalized models for Flow.
This analysis was done during the inference stage, on the test dataset of the above-mentioned client. The box
plots show statistics on the probability of picking the global route for all the instances. Echoing the observations
made in Section[5] in Figure[f] we see a trend in increasing probability for the global parameters for the instances
which are correctly classified by only the global model. In the contrary, for the instances which can only be
classified by the personalized model, the probability for taking the global route is lower as the input passes
through more layers.

C.5 Ablation Study: Regularization

Figures[7] and [§] show the validation curves for generalized and personalized accuracy with and without the
regularization term used in the policy learning objective as shown in Equation[d] With regularization, we see
an improvement of 2.18% (Stackoverflow), 1.86% (Shakespeare), 3.98% (EMNIST), 2.55% (CIFAR10 0.1),
4.36% (CIFAR10 0.6), 0.91% (CIFAR100 0.1), 3.46% (CIFAR100 0.6) for the generalized accuracy. And for
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Figure 6: Behavior of 1), for all instances with respect to each layer of a client with highest loss
difference between personalized and global models.

the personalized accuracy, we see an improvement of 1.92% (Stackoverflow), 2.02% (Shakespeare), 3.01%
(EMNIST), 0.65% (CIFAR10 0.1), 3.98% (CIFAR10 0.6), 2.42% (CIFAR100 0.1), 2.19% (CIFAR100 0.6).

C.6 Ablation Study: Per-instance Personalization

Figures[Q]show the validation curves for 3 Flow variants: (a) Per-instance Per-client Flow, which is the primary
design proposed in this work, (b) Per-instance Flow, which makes choices between two global routes solely
based on each client’s instances, (c) Per-client Flow, which is simply FEDAVGFT where the personalization
only depends on a client, and not on any specific instances.

With all the datasets, we see a trend of Per-instance Flow outperforming Per-client Flow by 1.88% (Stack-
overflow), 0.82% (Shakespeare), 5.07% (EMNIST), 2.90% (CIFAR10 0.1), 2.41% (CIFAR10 0.6), 7.52%
(CIFAR100 0.1), 1.09% (CIFAR100 0.6). We also see the trend of Per-instance Flow outperforming Per-Instance
Per-Client Flow by 3.19% (Stackoverflow), 1.24% (Shakespeare), 0.94% (EMNIST), 0.55% (CIFAR10 0.1),
4.49% (CIFAR10 0.6), 3.88% (CIFAR100 0.1), 1.37% (CIFAR100 0.6).

C.7 Ablation Study: Soft versus Hard Policy

Table[7]shows the personalized accuracy of the test clients while using soft and hard policies during inference.
‘We see that the accuracy difference between the two designs are statistically insignificant. Hence, using a hard
policy for inference not only saves half the compute resources, but also doesn’t affect the personalized model’s
performance.
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Figure 7: Generalized Accuracy of the Ablation Study on the Regularization Term used in the Policy

Learning Objective.

Table 7: Test (personalized) accuracy of two of the Flow variants: (a) Soft Policy variant where the
probability q is continuous in the range of [0, 1] during inference. (b) Hard Policy variant where the
probability q is discrete over the set {0,1} during inference.

Datasets

| Stackoverflow Shakespeare

EMNIST

CIFAR 10 (0.1)

CIFAR 100 (0.1) CIFAR 10 (0.6)

CIFAR 100 (0.6)

Soft Policy

29.57% £ 0.22%

57.01% =+ 0.53%

94

97% £+ 1.06% 77.24% + 1.30%

42.75% £ 0.30% 77.02% =+ 0.90%

39.74% £ 0.13%

Hard Policy | 29.49% + 0.28% 56.20% + 0.49% 94.18% + 1.21% 76.47% + 1.25% 42.42% + 0.36% 77.11% + 0.86% 40.08% =+ 0.27%
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Figure 8: Personalized Accuracy of the Ablation Study on the Regularization Term used in the Policy

Learning Objective.
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Figure 9: Ablation of the dynamic routing component (Per-client Flow), and the local component
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D Proofs

664
665 D.1 Flow: Detailed
666 Here we give a detailed version of Flow (Algorithm 2) for proving its convergence properties. Here we are
667 assuming that the global and local model output interpolation is model-wise (after the final layer), not layer-wise.
Algorithm 2: Flow
Input: R: Total number of rounds, » € [R]: Round index, M: Total number of clients, m € [M]: Client
index, M: Set of available clients , p: Client sampling rate, K: Total local epoch count, k€ [K]:
Epoch index, ne: Local learning rate, wg "): Global model at 7" round, wérwli) m!™ client’s local
update of the global model for 7" round and k" epoch, w/"’f). " client’s local model for 7"
round and k*" epoch, w,(f,fi) th client’s personahzed model for ** round and k** epoch, wér):
Global policy model at " round, zpffﬂ’f) m*" client’s routing policy for 7" round and k*" epoch,
D,,: Data distribution of m*” client, S,,,: Dataset of m'" client, ¢y, ¢: Dataset used to train wy,
Cm,g: Dataset used to train wy and g4
Output: ngH)' Global model at the end of the training
1 Server randomly initializes w(l)
2 for r € [R] round do
3 Sample M clients from M with the rate of p
4 Send w$"”, 1$" to all the clients
5 for m € [M] in parallel do
p wﬁg) (r) w(r ,0) w(r)’ wér ,0) ws(;;g)
7 Cm,t;Cm,g < Sm /* Creating two mutually exclusive datasets */
8 for k € [K1] epochs do
rk k-1 k—1
9 ‘ wé,m) A wgm ) - ﬁZme (w((érm >’ C’m» )
10 end
11 for k € [K3] epochs do
12 YV (Tm, Ym) ~ Cm,g, define
~(r,k—1 rk—1 r,kfl rk—1 r K
@in D (@m) = g (@m) - wilin ) (@m) + (1= (@m) - (em)
i S WY = e ey [fm(”<’"m’“ D5
14 YV (Tm, Ym) ~ Cm,g. define
rk—1 rk rk—1 rk r K
™ (@m) = O (@) - w ™D (@) + (1= 00 (wm)) - wy (wm)
15 wé’)ﬁ) — wg(,f;ﬁ_l) — névw(r,k—l)fm(wz(f k= 1), Cm g)
gom
16 end
17 Send back wéf;f), wf(,rn{{), N = |Cmg]|
18 end
+1 K
19 wf(lr ) W me[M] ”mws(; m )
T r K
» wg +) M Zme[M nm¢< )
21 end
668
es9 D.2 Basics
670 We perform theoretic analysis of Flow based on the following setup: There are total M clients. A client is denoted
671 by a unique integer m associated with it where m € [M]. Each client m has a dataset S,,, = {(«),y$));i €
672 [nm]} where (mg,?, Y ) has been sampled from D, distribution of the m®” client. n,, = |Sm| is the total
673 sample count of the m!" client. Total sample count across all the participating client is n = Zme[M] . The
674 ratio of m*" client’s sample count to total sample count is ov = mm
675 The global distribution is definedas D =) eM] gm Dy Where g, is the weight associated with m/* h client
676 and >0 iy am = 1.
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677

678

679

680

681

Note that wy,», is a combination of outputs of wg,,, (Global parameters) and wy, . (Local parameters) on each
layer. For tractability of analysis, we will assume that the combination is only after the last layer. Hence,

Wp,m (Tm) <= Pg,m(Tm)wg,m(Tm) + (1 = g,m(Zm))we,m (2m).

The local model update rule is,

(Tk) ew”k Y vam(wu: 1)( m), Ym)

where w(7 0 — {9 = wl” . Indices r € [R] and k € [K] are the global round and the local epoch indices.

The policy update rule is,
) e S — eV fn (S (@), Y )
The global model update rule is,
wyw) w0V, fn (W (), Ym)-
We list out all the optimization problems relevant to Flow:

¢ Local true risk of the personalized model
Fon(Wp,m) 1= Bz, g ~D) [frn (Wp.m (Tm ), ym )]
where f, is a loss function associated with the m*" client.

¢ Local empirical risk of the personalized model

Fm(wpxm = o Z fm wpm(ﬂfgn)%yr(n))
m i€[nm]

¢ Local true risk of the global model
Fon(wg,m) = Eayy sy~ D) [ (Wg,m (Tm) ym)]

* Local empirical risk of the global model

Fm(wg,m = Z S (wg,m ( mm )7yr(n))
™ i€[nm]
¢ Local minimizer of local empirical risk of the personalized model
Wy € H such that ﬁ’m(wwn) > ﬁ}n(w;m); Vwp,m € H, Je >0, ||[wp,m — wpm|| <€
* Global true risk of the global model
Flug) =~ 57 mnBlay gy U (gm (), ) where n = 8] = | | Sl

me[M] me([M]

* Global empirical risk of the global model
. 1 . 1 Dy G
Flwg) = — Z N Fom (Wg,m (Tm ), Yym) = —— Z Z fm(wg,M(mgn>)ay£n))
nM nM ]
me[M] me[M]i€[nm]
¢ Local minimizer of global empirical risk
w; € H such that Fi(wg) > F(w})); Yw, € H, Je > 0, |Jwy —w)|| < e
We also use the following assumptions similar to [[19}112} 6]

Assumption D.1 (Strong Convexity). fn, is u-convex for u > 0. Hence,
(V (), 0 =) < fin(0) = fon(w) = Ellw o], ¥im € [M] and w, 0 € H.

We also generalize our convergence analysis for ;1 = 0, general convex cases.

Assumption D.2 (Smoothness). The gradient of fy, is S-Lipschitz,
|V fm(w) — Vfm@)]] < Bllw —vl||, Ym € [M] and w,v € H.
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Assumption D.3 (Bounded Local Variance). hp(w) := V fim(w(Zm), ym) is an unbiased stochastic gradient
of f,, with variance bounded by o73.

E (20 ym~Dy) | |m (W) — V fon (0 (m), ym)||* < 07, ¥Ym € [M] and w € H.

Assumption D.4 ((G, B)-Bounded Gradient Dissimilarity). There exists constants G > 0 and B > 1 such that

1 *

i > IVin)|* < G* +28B*(F(w) — F(w"))

me[M)]
for a convex f,,. And for a non-convex f,,
1
i > IV Eaw)|* < G? + B?|VF(w)|]?.
me[M]

The derivation is given in Section D.1 of Scaffold [12].

We also use a definition to quantify the diversity of a client’s gradient with respect to the global gradient as
defined in [29]:

Definition D.5 (Gradient Diversity). The difference between gradients of the m" client’s true risk and the
global true risk based on the global model w is,

Sm = sup ||V fm(w) — VF(w)||?

weH

D.3 Convergence Proof for the Global Model: Convex (Strong and General) Cases

(TO) ()

A client’s local update for one local epoch on the global model, starting with wg ;" — wg ’, is
wiim ™ = i) = e (W) ®)
And a client’s local update for K epochs on the global model, would be
wilin) = wy) — e Z B (w3 Y) ©

=wii) — mzh ) @) (@) + (1= 05 (@m)) 0o (@) ym). (10)

In both the above cases, the gradient is with respect to w, parameters.

The global model update is,

wir T = Z nmwl (1n

me[]\l]

(5

We first start with a lemma which binds the deviation between the local model w, and the global model

starting point ng) for it at round 7.

Lemma D.6 (Local model progress). If mt" client’s objective function f, satisfies Assumptwns- - and
condition ng < ————1in Algorzthm the following is satisfied:

B4 /2K(K 1)
Eljw?5) — w{"O|? < 6K*n7E||V fm(w(”)|]* + 3Knio}
Proof.
Ellw{7X — w1 = Ellwf 5 — 0oV fo (wiE V) — w702 (12)

1 r r, r
< (14 g ) Bl = w1+ KB fn o) + o
(13)
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692 Here we have used triangle inequality and variance separation.

(” F) Ellw; K — w2 + KBV fn (w3 E )P + nio?

< (1 g ) Bl = w4 ndo?

+ KDZEV fon (Wi ™) =V fin (w2 + ¥ frn (w2

< (14 o ) Bl — w4 2RIV ) = Ol
+ 2K 07 B[V fon (w3 + ni o}

<1+7>EH D wfmO)12 4 2K B0 E[w Y — w1

+ 2K BN fn(w{ )| + mi 07

= BW we get

K ,0) 112 K—1 L0112
Bl - oI < (14 27 ) Bl - wi|

+ 2K E||V fon (WP + i o

693 Assuming 1y <

694 Unrolling the above recursion,
Ellw{” —wii |7 < Y (2KnZENV (w1 + nio? ) (1 - —1)
i=1

< 3K (2KnE|[V (w0 + 07

= 6K E||V fon (w2 )|* + 3Knj o7

695

14

s)

(16)

a7

18

19)

(20)

@n
O

696 Now we move forward to a lemma which binds the deviation between the local version of the global model

(r,k)

697 Wy, and the global model starting point w( " for it round .

698 Lemma D.7 (Local version of the global model progress) If m™ client’s objective function fm satisfies

6!

©

9 Assumptwns D. 1 and condition ny < 7 f in Algortthm the following is satisfied:
E\Iw(’" ) —wg |[* < 8EPEENG S BNV fm (wg”)|* + dkni o

700 Proof. We start by expanding w(""‘ in terms of its previous epoch iterate.

Bl — i II* = Ellwfin ™ =neV o fm(wlin ) = wiln) ||
701 Using triangle inequality and separation of variance, we get,

T, k T, rk—

(1 * f) El|wgiin ™" — wiln [|* + EfEIV o fon (™I + i o]

702 Using the convex property of f.,,, we get

1 T, r, T, T,
(1+f) EllwTn " = wi|[* + knfEl |5V fon (wilin = )| + o

< (1 g ) Blluld - i) +

+ R |95 (V fn (win ™) — me<wéfo>+w (WS D)II?

< (14 g ) Bl - wfi P + ao? + 20 Bl PRI S (a0
+2kmE|\wé”>|| BT fn (0730 = 7 fn (72

< (14 g2 + i P ESS k>||2) Ellw{ ) — w12 + ol

+2kmEHw§f DIPE||V fon (wl9))] 12

24

(22)

(23)

24

(25)

(26)

@n



703

704

709

710

71

7

iy

2

7
7

3
Ny

715

716
77

=

Unrolling the recursion,

rk 7,0)112
Ellwiin) — w0l

Assuming that 1, <

following is satisfied:

k

BW

k k
Ellw{E) — w9 < (%nilﬁzwm|2E||me<w§£°> 112 +nm> >

we get knz (% < 1,

i=1

i=1

< 4k (2K 2B IPEIY f (w1 + 0o )
< 8K ZE| [ |PEIV fn (w7 + 4kni o?

||y — gl

Proof.

rk 7,0)
E|lwi — wi)

)

2
I

II> < 16k*nZE[|1 —

T T, 1 T ‘
< 3 (Zen Bl PRIV (WGP + nio?) (1 ot zknfﬂzﬁuwé,w)

(28

(14555 +2) @

(30)

(3N
O

Lemma D.8 (Deviation of the personalized model from the global model). If m'"* client’s objective function
fm satisfies Assumpnons . H and condition n, < min <7ﬂ AR BVAR \/ﬁ) in AlgorlthmH the

GSNPEIY fn (wi™)|P + 8kn7 o Bl w0 |12

+ 12K 0fEl[1 — ¢ {50 |PEI|Y i (wf)| | + 607 of Bl 75 ||

= B[S wiid + (1 — i )win 0 — wln) 2 (32)

= Bl (wiin’ —win) + (il —wii)|? (33)
wnw““w&’“’ winy +wi) — w4 (w0 —wE (34)
< B9850 (wlT) — w1 + 2E|(1 — ) (wi) —wE (35)

Using lemmas[D.6|and[D.7]

Ellwf) — w1 < 286502 (SK IR IPEIV fm (w1 + 6K*7E]|Y fin () 1)

+ 2E||1 — {0 (4knio; 4+ 3K a7 ) (36)

< 16k*n7E||1 — wér NPEY fon (wi)]|? 4 8k o B[00 ||
+ 12K E|[1 — 50 PV fo (w§)|]P + 6K 07 o7 Bl || 3N
O

Theorem D.9 (Convergence of the Global Model for Convex Cases). If each client’s objecnve funcnon fm

satisfies Assumptions

(Strong Convex Case)

E[Ff™)] - Fw)) <

(General Convex Case)

E [F(w_E,R>)] ~ F(w

2 1/3 2 1/4
+ 2 (40[(2,6%02) T (401(2 8 %GQ) +n? (28K Bo?)
0 0

*
g

Algorithm[2] then the following convergence holds:

) <

T3 oo

1

ng the learning rate % < 1; < min 4FBBK2’ 832

2G?

(0) w;||26xp <7n45]1;R> +

+401{2[3 <ﬁ+1> qu +28Kﬂ(

12 R?

1
neKQZ(R+1)

uR a3 *R?

i 2G2 1/2
Elfwg” — wI[* + e (7 > ’
o

QGpuR

282K

PO 1) o

1/3

+ ¢ (56K 5%07) "

where qg /1 are the probabilities of picking global/local routes averaged over all the instances sampled from the

global distribution.
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718 Proof. From the update rules stated in Equations [T0]and [TT}

wﬁfﬂ) —w, = M ;4] Nm wq R Zh wéﬂ’; 1) — w, (38)
=7 D nmw wln) — Z N Z B (w0$Th 1) — ), (39)
7n€ [M] 7nE [M] k=1
- wér) * Z Nm Z hrn w;()rnli 1) (40)
mE[]W]

719 Taking squared norm and expectation on both sides with respect to the choice of Ay,

T * E * rk T *
E[|w§,“’—wg|2]SE[||w§,>—wg|2]—2m<W S 3Bl ) §>—wg>
me[M) k=1
2

+niE Z anh (w1 (41)

mE[]VI

720 Separating mean and variance according to Lemma 4 of Scaffold [12],

SE[HU}“ IUZHQ} —2W< > anEV (o) fn (W (Tk_l))},wér)—w2>

mE[]W
Ty
K 2
2 1 (r,k—1) U?UL?K
F0PE || D m DV e f ()| |+ (42)
me([M] k=1
T2
Bounding T}
K
Tl:_27”< S S UEIV, g f ) ;f>—w5> “
mG[M k=1
1 K
’V‘k 1) * s

721 Using perturbed strong convexity lemma (Lemma 5) from [12], we get,

2
Ti< oY 3 | BV )] = V1nl?) — BBl — wj|l* + BE/wn " — w1

m€ (] k=1 Lemmal[D.8]
(43)
(r) * WMK (r) *112
< 2K (E[F(wg”)] = Fwg) ) — oM S Ellwg” — wgl|
2 e r T
208 S~ S (I6KEIL = 6 PEIY )P + SR
me[M] k=1
+ 12602 E| |1 = {0 | BV fon ()| + 6K o7 El [0 ?) (46)
” « nep K r
< —2nok (BIF ()] - F(w))) = BEZElwf — v
2008 4 2 (2 rK)(2 2 2 2 rnK)|2
+ 282 nn (V6K EIV i (w )| PEIL = w0 + 8K n o Bl |
me[M]
+ 12K nE||V fou () PENL = 0501 + 6K n ot Bl ?)), 47
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722 Next, using Assumption[D.4]

r * [ K
T < —2nK (BIF ()] = F(w})) — BEZEl[wf” —wj?
+ 320} K" BE||1 — | (GQ+2/332( [Fi™)] = Fwy))) + 160 K> BoFEl v
+ 245t K BE||1 = 0| (67 + 288 (E[F(wl”)] = P(w)))) + 120 K> Bo7El |y ||
48)
r * i K *
< —2nK (EIF(w{)] - F(w))) - BEZEl[w” —wj|?
+ 167 K*8° B> (4K + 3)E||1 - (”H (EF(w <T>>}—F<w;))
+ 80 K°B(AK + 3)E||1 — 9" ||*G* + 28n; K*Bo7E [} ||
(49)
Bounding 75
2
1 X k—1)
Ty :nl%]E i Z anV (wc 1) fm wpf ) (50)
me[M]
1 - i
rk— r
=B ||| D0 mm D (Y onn fm(win ™) = Vim(wl?) +  fn(wg)) (51)
me[M)] k=1
r 2
2 1 - (r,k—1) ()
<2 E WM Z nmz (V (Tk 1>fm(wp, )_vfm(wg )
L me[M] k=1
2
2
+2;E M 3 anme (52)
me[M]
2 n2 k—1) 2 2 1 - 2
< 22B°K - M Z anE[H (rk=1) _ () ] }+2WK-—M 3 anEU’me(wg”))M
n
me[M] k=1

Lemma[D.8]
(53)

< 160/ K*8° B (4K + 3)E||1 — 4| (EIF (w§™)] = F(w))) + 8nf K*8° (4K + B)E|[1 — 0 |°G?
+ 560¢ K*8° T Bl [ |1” + 207 K (G* + 2BBE[F (w()] - F(w})) (54)

723 Plugging in 73 and 7% bounds,

E [l — ] < E [l — ] - 200K (BIF@)] ~ Flw)) — “ER Bl — wj
+ 165 K*8° B> (4K + 3)(nef + DEINL - 07| (E[F(w§™)] — F(w))
+ 807 K°B(4K +3)(nef” + DE|[1 — 47 [|°G* + 280 K* B E|v(” ||
+ 5607 K502 E || + 207 K (G2 + 28 B°E[F(wf )] - Fw;))  (55)

724  Rearranging the terms, and replacing E| |1/)5(7T> [|?> and E||1 — (T) ||? with q3 (probability of picking global route

725 averaged over the instances sampled from the global distrlbutlon) and qf respectively,

[ * TM/U’K r *
B [l - ] < (1- 2 ) B I - w31

— (20K — 800} K B2 B2 (e + V)a? — 4 KBB) (B [F(w)] - F(w}))

+40n; K°B(nef? + 1)aiG® + 20, KG® + 280, K*B(2n; B2 K + 1)ago;
(56)
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726
727

728

729
730

731
732

733

734

736
737

738

739

Assuming ’”K >80 K B2B?*(neB +1) = ne < and 2 ‘K > 4niKBB?* = n <

we get

B [l — ] < (1= B B [l = wgl] - merc1 - a® (B [Pl - F)

+ 40 K2 B(ne? + 1)aiG? + 20] KG? + 280, K*B(207 B° K + 1)qio7

1 1
4\/10BBK2 SBQﬁ’

(57
Moving E [F (wgr))] — F(wy) to the left-hand side, and rest of the terms on right-hand side,
T * WMK T * 7 ®
mKad (E |[Fw))] - Fu))) < (1 - W) B [llw§” —wjl*| = E [l = wj|l’]
+ 4007 K B(meB” + 1)QIG? + 207 KG® + 2807 K*B(2n7 5 K + 1)aaio (58)
. (r) o ) 1 o TMIU’K (ry %2 1 (r+1) 2
LE[F@)] - Fw;) < e (1 ) E [l = w?] ol (1§ = wj1?]
2 -2 2 ai 277150 2
+A0 KB (e +1) 2 G+ = o + 280, KB(2n; B°K + 1)o7 (59)
0 0

Unrolling the recursion over R rounds and then using the linear convergence lemma (Lemma 1) for strong
convex case from Scaffold [12],

* * 14 KR 2G2
B [F(uf®)] - Flup) < Bl -l e (<2500 ) + 200
0
40K2/3 8 N\, 28KB (28°K :
—+1) = 1 60
TR (MRJr 2% e Gere T (00)

Unrolling the recursion over R rounds and then using the sublinear convergence lemma (Lemma 2) for general
convex case from Scaffold [12],

(R) () 2 262\ '/
E [F(wg )} — F(wy) < WEHW —wgl|” +mne <7q8 > +

1/3 1/5

2 1/2 2 1/3
g (401(25%02) + g (40}(2 8 %GQ) + 07 (28KB07)"” +nf (56K8°07)
0 0
(61)

O

D.4 Convergence Proof for the Global Model: Non-convex Case

We start with a non-convex version of Lemmas[D.7]and[D-8]

Lemma D.10 (Local version of the global model progress). If m'" client’s objective function fm satisfies
Assumptions[D.2][D3] in Algorithm[2] the following is satisfied:

El[w{h — w2 * < A°n7E||V fu (w1 + 2knio? + 4k™n 522E||w(” Y —w{D|?

k) .

Proof. We start by expanding w<7 in terms of its previous epoch iterate.

Ellwgln’ — wi|I” = Ellwgin ™ =00V g (gl ™) = wili | (62)
Using triangle inequality and separation of variance, we get,
(”f ) Bllwgin " = wgn I + fEI|Y e fn (0~ DI +00? (63)

1
< (1 g ) Bl = w4 ao?

+ KE||V frn (WS ™) =V frn (wS)) + Y frn (w2 (64)
(65)
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740

741

742

743

744
7

N
o

7

N

6

747

748

7:

N

9

7

o
o

7

u

1

< (14 g ) Bl — ol + wio? + 2B 0 £ (I

+ 2k B[V fon (i) = Y frn (w )] (66)
< (14 g2 ) Bl - <’"°>|\ 4 120? + nfBV fou(f )
+ 2kn; BBl wim D — wi”|)? (67)
(68)
Unrolling the recursion,
k
Ellwii — wfi|? < 3 (2k0fENIV fn (0l +nfo? + 2kn? BBl - wf”|?)

=1

1+L i (69)

k-1
Ellwy — wi|* < 2k (%n%mwm( §”>|\2+niw+zkmﬁ2zﬁ|\ S D — §”|2> (70)
i=1

= AP ZE||V fr (w(7)? + 2knf o] + 4k>n; 57 ZEH S D —wdE

O

Lemma D.11 (Deviation of the personalized model from the global model). ] mt client’s objective function
fm satisfies Assumptions W @I and condition g < 5 f TTS in Algorzthm the following is satisfied:

El|wl —wiD]? < 20K El[1 — 90 PE(|Y f (D)7 + 10K 0 o7 B350 ||

Proof.
EHw(rk) (ro)ll Ellq/)(rk) (rk)+( w(rk)) (rK) (rO)H (72)
= El[gy (wiim — wiw) + (wf (”" w1 (73)
= E|[p{8) (w) — <*°>+w<’"°> wi) + (wi) —wIT)IE a4
< 2B |5 (wiTh) — win)|1 + 2E[|(1 — 95w —wHIP @35)

Using lemmas [D.6]and [D-10]

Ellww) — wiW])? < 2E|[1 — im0 | (K%ﬁmme(w;”n2+6K2n?1€|wm<w§”)|2>

+ 2Kl )12 <2Kn§a%+3m?a§+4f<2mﬁ ZEHw(” Y- §”||2>

(76)
Assuming 8K?n23% <1 = n < 3 f T and unrolling the recursion over wéTWZL 2 wér),
k
<> (20K2n%E|1 — O |PEIV fn ()| + 10K o B[00 | ) an
< 20K 7RI — g |PENY i (wg”)||? + 10K 0707|5750 (78)
O

Theorem D.12 (Convergence of the Global Model for Non-convex Case). If each client’s objective function
‘. 2\/5[33[{27 %/40[(45332

fm satisfies Assumptions using the learning rate 7 < n¢ < min ( L 1 ) in
Algorithm[2) then the following convergence holds:

xS elori ] < o o] e [rogen]] - 22

2 9812 —
405 K5 G? (76 e W) +20K° 8 mea? (Bmf = L)
0
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752 Proof. From the update rule stated in Equation and (-smoothness of f,,, we have
T T T T T ﬁ T T
Flw§ ™) < Pwf”) + (VF@), i —wf)) + 2 wf ™) = wf| (79)
753 Taking expectation on both sides,

E [Py )] <E[Fi)] +E[(VF@),wf ™ —wf)] + §||wgr+1> —wl)? (80)

754 Using Equation@for second and third terms, and using the fact that the expectation is with respect to the choice
755  of Ay,

gE[F(w;”)]—m<v wi), Z amZE[ <g§—1))}>

mE[M
K 2
2
1 e
R S an Y bl )| 81)
me[M] k=1

756 where a;, = 7, which are the weights for weighted aggregation according to the sample count, as shown in
757 Equation[TT]

758 Separating mean and variance according to Assumption[D.3]

E[Fw{™)] <E[F@§)] - <VF ™), Z amZE[V (e o (i~ )}>
mE[M

K ;Bo;
Bn? 1 Z rk—1 niBo; K
5 Bl €M) Qm k=1 wa;fﬁ—l)fM(wz() m )) t oM (82

7ss Using (a,b) = —4[la — bl + &lall” + 3IoII*

2

K
T T 1 7
E[F{™)] <E[F@)] —n |-3E|VE@{) = 2 3 an YV, e fulwiin ™)
me[M) k=1
K 2
1 a2 11 rk—1
— 51EHVF(7,U§,>)H +ZE|| - am YV, o ()
me[M)] k=1
2
. ;B0 K
+5% Z amZV ) fon (w3 ™) +% (83)
mG[M
<E[rei] - 5E HVF(wé”>H
2
B v,
() T ond e
7n€
% 2
r 1 rk— ag
F 2B VP - S an SV, )|+ T (g
me[M] k=1



760

K
ne _ Bp oy 1 . .
(5_ 2Z>E VF(wé))— > OtmE VG- D frm (i) = VE(w())
mG[M =1
K 2
ul " 1 (rk—1 n; Boi K
+ 2|\ VF@) - o EG[M]% k}ﬂ:v 0 Fm(w 0|+ TEEZEE (86)

5 6m> E||vE( <’“))H2 + %

)JE VF(w M Z amZV (=) (wih=1)y 87

e 2 2 (r) _ (rk 1)
_(2 ) B M Z amZEHw
761 Using Lemma[D.11]

E [F(wérJrl )} <E [F( r>)} (% — ﬂﬂ?) E HVF(wgr))Hz + %
(5-pi)

(M]
+ 10K n; o7 B[00 ) (89)

(8%)

K
amy <20K3 2|1 — 40| PEIY fn (w2
k=

me 1

762 Using Assumption[D.4]for non-convex case, we get,
20 2
n;Boi K

B [ )] <& [Fi)] - (3 - o0t ) 5| wr) |+ o0
— (% = B0t ) 208K 0} (G* + B*E||VE(w{)|P)EI[L - v
— (% - sut) (108°K o7 ?) ©0)

2
|+

2
763 Rearranging the terms to put E HVF (wf,r)) H on left-hand side,
37712 4 2 2 (N 2 () ) (r+1)
— B —20K*B*n; B*q} (= — fBn; E||VF(wg") <IE F(g) —E |F(wg ™)
2
1%
—20q} K 303G (1 = pf) — 1062 K7 i (1 — ) + 7K o

2 2M

764 Assuming 10K*5%n3 B* < L = < and 20K*3%n; B? < L = g <

1
= 2VBBBK2

- %/401(4;33 B2’

(3)teorti [ <5 o] -5 ] B

26n; —
a0 gtac? (P ) s 0gb kot (o - ) o2)
2
() 2 (] _ (4] 4 1T K
B[ e < o [B[Pi] - B [red ]+ 27

2 2 2
+40%K462WG2 (W) +20K° 8o (B = 5)  93)
0
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765

766

767

768

770

771

772

773

774

Taking average over all the R rounds,
r 2 17@,8(722[(
B[ Vel < o [B [Fel)] - B [Faite]| + 1S
Z g [ 1P Wy + Thrq
+40%K452mc:2 ( 20 — ) + 20K B2 o7 (ﬁm - 7;") (94)
0
O
D.5 Convergence Proof for the Personalized Model: Convex (Strong and General) Cases
Lemma D.13 Local ress of the personalized model). If m!" client’s objective function fm, satisfies
Assumptions and m and conditioning on ng < 7 \/7 in AlgorlthmEl the following are satisfied:
E|jw( 50 — ~;f£>\| < A8KPE||V fr(@530)]|* + 108K niE[|V fon (w7 + 126K 1t o
+ 9K nZE [l |” + 144K Bl [0 | PEI |V fon ()]
Proof.
By — @y I? < BIWGAT w1 — gl el —wiwin) = 0= vihw 01
95)
= ]EH ( (nK) _ eV 1) Fm (05 K))) (wg’f;ff‘” - vag";fﬂ)fm(w;(ff 1)))
4 (1 Y0+ 0¥ @52 ) il — 0Dl — (1 = il
(96)
= B9 w0l ™ = 0 meV e (W) = w00V ) fn(850)
+ va 1) fn (WS )V (=) fom (wp D)+ (1 - 11)“%5)) wy
Wi e 0 (@) = i) — (1= ) ©7)
Using the convexity of fy,,
Ve P (@f5)) = Vo fn (400 00!+ (1= 95 w00 (98)
< wé’fn’i“ V fon (i) 99)
and
Vg (@) = oy fon () [0 — w7, = w7 ) (100)
< (il =)V @) (101)
we get,
E[jw(;3 (r,K) — m)” < EH%%{()wg%{ n 4 (1 (r K)) wzrmm érﬁ)wézg) (1- (7‘ O))wérmK)
= e )V () (w5 = w0 (102)
1 r ~(r, r,
< (1 g ) Bl ™ = G+ 3KV ()
+ 3K Bl |wg ) — w4 KBy 0| (103)
1 . _ -
(1+K—) Elfwil " = @i | + 3K B[V fon (wili ™) = Vo (750)) + V fon (50 ||
+ 6K E[|wiii — w0 ||* + 6EngE||w) — wiim V|| + 3Kn7E||w || (104)
Using Lemma|[D.6]and[D.7] and smoothness property,
]' T, r, T,
< (1 + w1 +6Kn§52) Ellwiin " = a5 |° + 6KnfE||V f (w50 ||
+6Kn7 (6K nZEIIV fon (w4 3K 707 ) + SKnFE 40|
+ 6K (SICREIW (O IPENV (w7 + 4K 707 ) (105)
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775

K
Ellwym) — s P <> <6Kn§E\|me (@S| + 36 K ni BV fon (w1 + 42K} of

i=1

T, T, T 1 ‘
+ 3KFE|[o g0 | + 48K By | E||me(w§>>||2) (Hﬂvaﬁﬁ?)
(106)

776 Assuming 6 K722 <1 = np < ﬁ\/—

Ellwl 5 — @912 < 3K (6Kn§JE||me (@12 + 36 K i E||V fon (w 7)1 + 42K} of

+ 3K B[40 || +48K4nm||w§’:f>|2E||me<w;”>||2> (107)
= 18K N7E||V fr (@30)||* + 108 K*nfE||V frn (w™)]|? + 126K °njf o7
+ 9RE|[ ¢80 + 44K LSO PEV fon (w12 (108)
777 O

778 Lemma D.14 (Deviation of local parameters from the aggregated global parameters). If mt client’s objective
779 function fy, satisfies Assumptions|[D.3| in Algorithm[2] the following is satisfied:

. . ¥ 5o
Bl -l < 18 (atad + (o5 + 57 ) it ) (sotad + (o3 + 07 ) a2
o r
001 a8 K? (Kot + (9% + 57 ) K ) (62 + BRIV F(l)))

780  Proof. Stating the aggregate rule from Algorithm[2] Lines[12] [T9]and 20}

_(r v, ri) 1 . N )
Bl — o1 =B 5 3 wOg 3 el (1o g 30 e | wiitte
c€e[M] CE [M] ce[M]
arwnIO — (1 — i) wETmK)H (109)
1 1 2
<2 3wy 3 e |
ce[M] ce[M]
+2IEH 1_f ngrK) ngntlvf{)_u— éT,K) (TK)H (110)
ce[M]
T, Ia ]. r " 2
<2EH Sl w0 | [ ST ) -l H
(‘6 [M] ce[M]
2
w2 (00— 57 3 o ) (w0 —ulG) [T a
ce [M]

781 Using Lemma 8 from [29] and Lemma[D17

) wg
Bl — ufiOF < 18 (sotad + (05 + 7 ) Kt ) (sotad + (o3 + 57 ) a2
§Y ,
ol ey n? (Kot + (% + 57 ) K ) (624 BBV R P)
(112)
782 O
783 Lemma D.15 (One epoch progress of the personalized model). If mt" client’s objective function fy, satisfies

784 Assumptionsm @ @ and in Algorithm@ the following are satisfied:

E|[w{E D — w212 < 302E||V f (W) || + 302wk — w1 + 3uEl[w 012
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785

786

787

790

and hence,

Ellwf = wii|> < 6807 (ELfm ()] - <w;,m))+3mKZE||w(“>

Proof.
rok+1
ElJwym

1=k
+ 36 K°n/E||V fn (wi)||* + 40K2m o

+ASK 0 E||V fin (w2 ZEHw; 217

k)12 rk+1 rk+1 rk+1 K rk rk rk r, K
_w;(:,m)” :E||¢§,m+ )wg(],m+ ) 4 (1 _¢é,m+ ))w( A G P Gt I (1— s(I,m)) ( )||

l,m g,m *g,m

(113)
= ]EH ( () WVW o fn (07 k))) (wéka) - va_ﬁ,’,?’"’i’ fm(wz(:',r]ri)))
( — i+ eV i, ) frn (W by k))) wiT ) — (TR — (1 — iR
(114)
:Euibéﬁlrf)wéﬁs) w{WV iyt Fm (T ) — neyim V e k>fm(w§!}5>)

T T, r K
+n:V ot k)fm(wp " )V (k) Fr (WS + (1 - ?/fg(;,wlf))wg s

IOV e Fn(R) = 0w — (= w0 ans)

r, K k rk k k
= Bl (w5 i) 9 g ) e () ¥ g )

(116)
Using,
Vo P (@) = Ve fn (8400 00! 4+ (1= 9 w700 (117
< ik k+1>me(wgf$>) (118)
and,
v¢éT$)fm(w;T;r’i)) vw(T K fm( (r, k>[ws<77: k) (Ty’nK)} o wgr;nK)) (119)
< W) — w1V fm (W0, (120)
we get,
2
< | — (w0 — ) Vi) — ()Y )| (21
< B[V fon (wiri)) + (wéf;f) wé’;,’i)) vV (122)
< 30PE(|V fin (w0 ||° + 307wy — wilin || + 3n?E oV (123)
From Lemmas and[D.71
Summing over i = k to K,
Elfwim) —wii || Euzw = w0 | (124)
< 3n; ZEHme(w(” DI+ 3mKZEIIw§’" 2I?
i=k i=k
K
o2 S (6K BV i ()| + 357207
1=k
K .
+607 Y (SECnZEIW PRIV f (w1 + AKnZo? ) (125)

)
e

2
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791
K .
< 6807 (Elfm (win)] = f(wym)) + 302K S Bl
i=k

+ 36K i BV fn (w)||* + 18K g o

+ 48K 0 E[|V f (w)|[? ZEW”)HHMK%?U? (126)
792
K .
Bl = w1 < 68n7 (Elfm (i) = f(wym)) + 307K > Bl
i=k
+ 36 KBV frn (w2 + 40K2nz*a,?
+ 48K RV fon (w72 ZEIW” (127)
793 O

794 Theorem D.16 (Convergence of the Personalized Model for Convex (Strong and General) Cases). If each
795  client’s objective function f,, satisfies Assumptions using the learning rate ‘%R <ne < %Bz in
796 AlgorilhmE] then the following convergence holds:

797 (Strong Convex Case)

B[ F(wlB)] — i) < S B0 — ol exp (#—mum)

RK3 K-1

+ 12K 600 + 12K} ZIEHVF (w2 + 4Kn2o? + L 5 + 16K°nZq2éms

K? 5¥ o2 5o
3 <T+1) 7715 P l
+ 16K mqo— E E||VF(w )|| + —= 3 <— (6 r)) (7' + (6 + = >>

1+ niK? 1) r w
LK (K03n§+<5;a+ﬁ) ) ZEHVF )2 + 26%9)

798 (General Convex Case)

* 1 1 *
E [fm(0f5i)] = ) < 35 (1+ X1 )El\w“) — Wy
44

R 2
(2K S EIVE@) )Y + (22650 4 (sod)  + B 16k adan) e

r=1

2 P 2 w /3
2pepes 2l (r+1)y[(2y1/3 K® (o v 0T\ (9 (gwe 070
nz (16K qp Z]EHVF WY+ ( 2 (K (6 + M)) (K * (6m + M )))

1/3
K2 " (r) Wg
2 (3 < (5 +7)) E:IEHVF I+ 2829)

799 where & Ele E| |VF(11)§7T))H2 is bounded as shown in Thearem

800  Proof. We restate the update rules of the personalized model in Algorithm [2]

801 1. For all samples ,,, define @5 () < 538 (2 )W) (@m) + (1 — 30 (mm))wymm (Tm)
802 2. Train policy parameters w(r s w(r k) ngV - k>fm(wp 7,12)( m)s Ym)

803 3. For all samples x,,, define

804 Wil () = Pgin D (@m)wgin (@m) + (1= g (@) w (5 (@m)

805 4. Train global parameters w(/;%) + w{k " — nngé,-;yk;fl) Fm (WS (20n), yom)
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]EH (7+1 K) w;,mH EH (7‘+1 K) ~(7‘+1,0) W ~(r+1,0) ('r K) + w('r K) w;,mHQ (128)
< 2KE||wZ(f$1’K) ~(r+1 o)H +2KE|| ~(r+1 0 Z()rwlf)H
Lemma[D.13] Lemma[D.14]
1 *
+ (1 + K—) El|wym = wpm (129)

8os  And using Assumption[D-4]

< 36K %02 [fm(w;,m) ) [f (wHh °>)H + 216K R |V fim (w2 + 126K 07
)

+ 18K ZE||[p T O||? + 288 Kt B[y § O PE|Y fin ()|

¥ wy | O
+18 (Kafm? + (5:51 + M) K%ﬁ) (KUW + (5 S+ ﬁ> K%;?)
§¥
001+ Ry (Kot + (8 + 57 ) K2 ) BIV )]

1 rK * 2
+ (1 + T /me) El[wilin = wym| (130)

807 Rearranging the terms,

36K %n? [ [fm( ¢, o))] _ fm(w;,m)] < (1 + Kl_ = WM) EJ [l — wf |2 — El[wlE D w2
+ 216 K B[V i (wi D)2 + 126 K °n0? + 18K QEWJ(TH JK) H
+ 288K i B[y | PRV fon (w2
w15 (Kotap + (044 57 ) ot ) (otat + (o0 + 50 )
+6(1+ 07 KB K (Kame + (5% + %) K ) E||V frm (w™)]|? (131)
808

T * 1 1 T, * (r,
[fm( ( +1 O))] - fm(wp,m) S 36 2K2 (1 + K _1 _an) ]E”wl()ﬂrlf) _wp,mH2 || K+1)

+ 6K IV fon (wy )P + 4K i o7 + EIW“ BN + 8K 2B [ h O PENY fin (wl )2

K207 (of (o 6P\ (9F  (sws 0
() ()

1+ niK> 5 .
+ ”Tﬂ <Ka?n§ + <6}i + M) K"’n?) E[|V f (w§ )] (132)

pomll

36m, 2K2

809 For strong convex (i > 0) case, using the linear convergence rate lemma from [[12]] (Lemma 1) and Definition

sto [D3]

. 36 " 1
E | fr(wSEO) | = fn(wi) < “3JE|| (LI s [P exp | ——— — neuK R
RK K—-1

+ 12K2n260s + 12K2m ZIEHVF (w{™)|? + 4Knj o} + % + 16 K307 qaom’

r=1
+16K%2q *ZEHVF (7‘+1))|| +K ¢ Ue 5¥ Jrﬁ Uj+ §Yo §We
‘R & 2 \(x T\ " s K "M
1+ n2K28 5% . w
+’7+5 Kot + (6% + 07 ) K ZIEHVF ()][2 4 26%7) (133)
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811
812

813

814

816

For general convex (1 = 0) case, using the sublinear convergence rate lemma from [12] (Lemma 2), and

conditioning on n7 K2

[fm (w:t(f 2

R 2
1 r w
(12K 2 SB[V () |) 4 (12K7550) 10 4 nf (4K o}) ' + D

K? (o o
3 (r+1) 1/3 4 P
PRSI L S BV + (5 (F+ (4 30)) (

4§1:>77€<K52,

1 1
Cfo(wh ) < 1 E (1K) .
0] = futwin) < g (1 ) Bl = v

r=1

r=1

1/3
K> 5v 2 &
2 P “ (r)y)12 Wg
+ 7 <3 <K (6 +M))(R;_1EHVF(M" T 4 26m7)

D.6 Convergence Proof for the Personalized Model: Non-convex Case

ot

K

+ (5715:’ +

5%
M

(134)

O

Lemma D.17 (One round progress of the local model). If m!" client’s objective function fn, satisfies Assump-
tions[D3) in Algorithm[2] the following is satisfied:

Proof.

E||

Ellw{ " — w0 < (1 - 20K B + nf K28}
K K
T K r, K T
wi ) — O = Bllwi Y =00 >V (wl) = w400 >V o (w1

k=1 k=1
K

K> (G*+ B*E||VF(w")|)

= Ellwf Y = wf) = ne > [V (@) = 9 fn ()] |2

k=1

<Elluf ™ — wf? —nek 8 (w Y~ wf) |
= BI|0 —ne K 5) (wg ™ — ) |1

1 T T 2
< (= e8] o 3 il )

~ (1 - nK8E| 5 3 @l —neZme

ce[M]
= (1 - nKFVE| -2 3 Zme Sl
ce[M 1 k=1
< (1—nekB?) WEH* Y Vim(w?) H
c€[M]

< (1—nKp* it K* (G* + BE||VF ("))

= (1 -2 KB* + i KB n; K*

The last inequality follows from Assumption[D-4]

2
wgr)

(&> + BBV Fw{))

(135)

(136)

(137)
(138)

(139)

(140)

(141)

(142)

(143)
(144)

O

We proceed with a lemma which binds the deviation of the personalized model w,, of an arbitrary client m over

one round, i.e., wp

1
(”L ) and wp’m, for non-convex case.

Lemma D.18 (Local progress of personalized model). If m'™ client’s objective function fu, satisfies Assumptions

. and ne < \/W in Algorlthm the following is satisfied:
Ellwpin ™ = w2 |IF < 18K Bl fn (wf)||* + 9K niof + 36K ni o7 BI[1 — g7 ||?

+ 24K DRE||V fr (w)PE 5002
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822 Proof. We start with using the update rule stated for the personalized model at the beginning of Theorem [D.16]
Elfwyln ™ — wii |I* = Bl wglin ™ + (- ol e — w1 4s)

p,m ,m

823 Expanding by one iterate,

rk k k rk
= Bl (v =1V i fn (wfT)) () =0V o0 Fon (w20

(1= 4 eV g S ) il — w1 (146)
= E|jp{7Rwk) wéfn'§>nsz<r,k>fm(wéfk)) ngIf)WV <rk)fm(wp7:k))

+va“ 0 fm (W)Y o k)fm(w;(frs))'*‘( 1— iR ywi

g0V e fn (w30 9) — Wl (147)
=l —wilm + (i, —wlGD)neV o (w5

(=6 eV g0 Fon () M Fon (0T P (148)
< 3Elfwiiin’ — wiim [P+ 3Ellwy 3 — wilin|I° + 30PEIV o (w1 (149)

824 The inequality was derived from the fact that E|| — UAYREE) Fn (WS 12 = Bl — k)12 < 1.
g,m
825  Unrolling the recursion across r € [R], then using Lemmas and and Assumptlon

Ellwn’ - wii |l <Z(<1+—)EH o) =P +KWEng*;'pfm(wz(I'“)Ilz)

(150)

< (6K4n?E|me(w§,”)|2 +3K°n20? + 12K n202E||1 — by m] |

al k
1 . . )
4 ( K — 1) KsngHme(wé ))||2E||w97m|2> Z (1 + -1 + 12K27]l?r8)
k=1
(151)

826 Assuming K 7> 12K%n28 = n < \/ﬁ,

Ellwgim — wim |[I* < ( K'nZE[|V fou(w)|1* + 3K niof + 12K 7|1 — 50|

1 s T
i (1 * ﬁ) KP1FE||V fn (w0 >>||2E|w§,;::>||2a%> 3K (152)

= 18K N7E||V fr (w()||* + 9K ni o} + 36 K*n7 o E||1 — k||
+ 24K ||V fon (wi) |PEL0 {01 (153)
827 O

828 Lemma D.19 (One round progress of personalized model). If m'" client’s objective function f., satisfies
829 Assumptions@ in AlgorilhmE] the following is satisfied:

Ellwfn " = wiOlP < 72004+ 07) K0 (5K(G? + BPE||IVF(w”) ) + 1207
2 2 p §Y 2 2 2 2 0%
+36 ( Kogng + 6m+M K*n; ) ( Koing + | 6n° +ﬁ K*n}

¥
+12(1 + i K BN K (Kafnf + (5:2 + M) K%ﬁ) (&> + B*EIIVF(w{)1)

Proof.
Bl — w0 = Bl - w50 4w - ) (154)
< 2B ||wlr ) — wlEO? 4 2B [[wl O — w0 (155)
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830 Using the Lemmas[D.I8|and[D.14] we proceed as
<7201+ n)) K0} (5K(G2 + B2E||VF(w)|?) + 120—3)
+36 ( Koin; + 6% + o K*n; ) ( Koins + | 6mf + o K*n?
™M M
P
+12(1 + 9 K*BYm K*° (Km%ﬁ + (5;& + %) K%ﬁ) (G2 + BQEHVF(wff))HQ) (156)

831 O

832 Theorem D.20 (Convergence of the Personalized Model for Non-convex Cases). If each client’s objective
833 function fn, satisfies Assumplions using the learning rate 1, < K;\/W in AlgorizhmEI then the
834 following convergence holds:

LSBT o NP < 2 (& [ 03] — E [0
r=1

+6(1+n§)K( K(G®+ B~ ZIEHVF T>)||)+1203>

5¥ w o
+3Kn; (a? + <5$‘; + M) K) (o—? + (ng +7 ) K)

5 1 & i
+ A+ KB K (03 + <5;‘; + M) K) <G2 + BQE > E||VF(w >)|2>
r=1

835 Proof. According to the update rule of Equation@and B-smoothness of f,,, we have,

f (w;T+1 K)) < fm(wéf}f>)+<Vf (wz(IK)) wz(:Jrl JK) wpf K)> || (r+1 K) w}()rnff)H2 (157)
836 Taking expectation on both sides,

E [fm (055 < B [fn )] + B (9 fin wlf3), w5 — w3t 4+ DRl — i)

(158)
w7 Using (a.) = lal* + 3[Il]* — 2lJa — b
T T T +1 ™ Ty
E [fn (0] < B[ fm )] + SEIV fn (I + <5 )IEH (r11) ()| 2
]" T, T T,
= SEIV fon (wilin?) = (wy " = i) 2 (159)
T 1 T, B+1 T T
< B [fnf)] + GEIV IO + (240 ) Bl - o)
~ BV fm (g )I* = Ell (g™ — w1 (160)
T, T, B 1 T T
< [fnfi)] - GEIV O + (250 ) Bl - o)
(161)
(162)
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838

839

840

841
842

Rearranging the terms to put E| |me(wz(f}nK))||2 at LHS,

1 —1
SEIV (@i S E [fn(wi)] = B [fmn (wl5)] + (%) Ellwfi " — w1

LemmalD. 19

(163)
BNV fon (wO) P < 2 (E [Fon (wl30)] = B [fn (w52)])

+728(1 +nd) K 0} (5K(G +B EHVF(w(”)HQ)HQa,?)

+ 3683 (Kafnf + (5;‘; + %) K%ﬁ) (Kafn,? + (5’;29 + 5Mg ) K%ﬁ)

§v r
1260+t i (Kot + (044 57 ) 02 ) (6% + BEIT P
(164)

Taking an average over all the rounds r € [R],
R
1 r,
= S BV @l < 2 (E [fn(wf5)] ~ B [ fm ()]
r=1

R
1 r
+ 7281 +n)K*n; <5K(G2 + BQE > EIVE(wi ™)) + 1203>

r=1

P wy
+ 368K%n; (ag + (6‘” fw) K) (a? + <5 + %) K)

51#
+ 12801 + i K28 K (UE + (5:5; + M) ) <G2 + 32R ZIEHVF N )
(165)

Assuming 12K°ni8 <1 <1 = ne < s,

- 2
RZEIIme @S NP < = (B [fn(wfn®)] — E [ (wf5)])
1 R
+6(1+n)K <5K(G2 + BQE ;EHVF(@”)HQ) + 1203>
+3Kn; (o7 + (05 + o &) (o2 + (5% + 52k
Ne [ M [ i
P
+(1+n§K254)n§K(a?+(5zﬁ+%> )<G2+321ZE|VF )|> (166)

Plugging in Theorem to get bounds on S E||VF ( )H2 would get us bounds on
&SP B ) =

40



	Limitations, Future Work, and Broader Impact
	Datasets and Hyperparameters
	Additional Results
	Generalized and Personalized Accuracy
	Percentage of Clients Benefiting from Personalization
	Breakdown of Correctly Classified Instances
	Analysis of Routing Decisions
	Ablation Study: Regularization
	Ablation Study: Per-instance Personalization
	Ablation Study: Soft versus Hard Policy

	Proofs
	Flow: Detailed
	Basics
	Convergence Proof for the Global Model: Convex (Strong and General) Cases
	Convergence Proof for the Global Model: Non-convex Case
	Convergence Proof for the Personalized Model: Convex (Strong and General) Cases
	Convergence Proof for the Personalized Model: Non-convex Case


