
Workshop track - ICLR 2018

ADDITIVE MARGIN SOFTMAX
FOR FACE VERIFICATION

Feng Wang
Department of Information and Communication Engineering
University of Electronic Science and Technology of China
Chengdu, Sichuan 611731 China
feng.wff@gmail.com

Weiyang Liu & Hanjun Dai
College of Computing
Georgia Institute of Technology
Atlanta, United States.
{wyliu, hanjundai}@gatech.edu

Haijun Liu & Jian Cheng
Department of Information and Communication Engineering
University of Electronic Science and Technology of China
Chengdu, Sichuan 611731 China
haijun liu@126.com chengjian@uestc.edu.cn

ABSTRACT

In this paper, we propose a conceptually simple and geometrically interpretable
objective function, i.e. additive margin Softmax (AM-Softmax), for deep face
verification. In general, the face verification task can be viewed as a metric learn-
ing problem, so learning large-margin face features whose intra-class variation is
small and inter-class difference is large is of great importance in order to achieve
good performance. Recently, Large-margin Softmax (Liu et al., 2016) and An-
gular Softmax (Liu et al., 2017a) have been proposed to incorporate the angular
margin in a multiplicative manner. In this work, we introduce a novel additive
angular margin for the Softmax loss, which is intuitively appealing and more in-
terpretable than the existing works. We also emphasize and discuss the importance
of feature normalization in the paper. Most importantly, our experiments on LFW
and MegaFace show that our additive margin softmax loss consistently performs
better than the current state-of-the-art methods using the same network architec-
ture and training dataset. Our code has also been made available1.

1 INTRODUCTION

Face verification is widely used for identity authentication in enormous areas such as finance, mili-
tary, public security and so on. Nowadays, most face verification models are built upon Deep Con-
volutional Neural Networks and supervised by classification loss functions Taigman et al. (2014);
Wen et al. (2016); Wang et al. (2017); Liu et al. (2017a), metric learning loss functions Schroff
et al. (2015) or both Sun et al. (2014); Parkhi et al. (2015). Metric learning loss functions such as
contrastive loss Sun et al. (2014) or triplet loss Schroff et al. (2015) usually require carefully de-
signed sample mining strategies and the final performance is very sensitive to these strategies, so
increasingly more researchers shift their attentions to building deep face verification models based
on improved classification loss functions Wen et al. (2016); Wang et al. (2017); Liu et al. (2017a).

Current prevailing classification loss functions for deep face recognition are mostly based on the
widely-used softmax loss. The softmax loss is typically good at optimizing the inter-class dif-
ference (i.e., separating different classes), but not good at reducing the intra-class variation (i.e.,
making features of the same class compact). To address this, lots of new loss functions are proposed
to minimize the intra-class variation. Wen et al. (2016) proposed to add a regularization term to pe-
nalize the feature-to-center distances. In Wang et al. (2017); Liu et al. (2017c); Ranjan et al. (2017),
researchers proposed to use a scale parameter to control the ”temperature” Hinton et al. (2015) of
the softmax loss, producing higher gradients to the well-separated samples to further shrink the

1https://github.com/happynear/AMSoftmax

1

https://github.com/happynear/AMSoftmax


Workshop track - ICLR 2018

W1

W2

Decision 
Boundary

W1

W2

Decision Boundary 
for Class 1

Decision Boundary 
for Class 2

Class 1

Class 2

Class 1

Class 2

Original Softmax Additive Margin Softmax

Figure 1: Comparison between the original softmax loss and the additive margin softmax loss. Note
that, the angular softmax Liu et al. (2017a) can only impose unfixed angular margin, while the
additive margin softmax incorporates the fixed hard angular margin.

intra-class variance. In Liu et al. (2017a; 2016), the authors introduced an conceptually appealing
angular margin to push the classification boundary closer to the weight vector of each class. Liu
et al. (2017a) also provided a theoretical guidance of training a deep model for metric learning tasks
using the classification loss functions. Liang et al. (2017); Liu et al. (2017c); Ranjan et al. (2017)
also improved the softmax loss by incorporating differnet kinds of margins.

In this work, we propose a novel and more interpretable way to import the angular margin into the
softmax loss. We formulate an additive margin via cos θ−m, which is simpler than Liu et al. (2017a)
and yields better performance. From Equation (3), we can see thatm is multiplied to the target angle
θyi in Liu et al. (2017a), so this type of margin is incorporated in a multiplicative manner. Since
our margin is a scalar subtracted from cosθ, we call our loss function Additive Margin Softmax
(AM-Softmax).

Experiments on LFW BLUFR protocol Liao et al. (2014) and MegaFace Kemelmacher-Shlizerman
et al. (2016) show that our loss function with the same network architecture achieves better results
than the current state-of-the-art approaches.

2 PRELIMINARIES

To better understand the proposed AM-Softmax loss, we will first give a brief review of the original
softmax and the A-softmax loss Liu et al. (2017a). The formulation of the original softmax loss is
given by

LS = − 1

n

n∑
i=1

log
eW

T
yi

fi∑c
j=1 e

WT
j fi

= − 1

n

n∑
i=1

log
e‖Wyi

‖‖fi‖cos(θyi )∑c
j=1 e

‖Wj‖‖fi‖cos(θj)
,

(1)

where f is the input of the last fully connected layer (fi denotes the the i-th sample), Wj is the j-th
column of the last fully connected layer. The WT

yifi is also called as the target logit Pereyra et al.
(2017) of the i-th sample.

In the A-softmax loss, the authors proposed to normalize the weight vectors (making ‖Wi‖ to be 1)
and generalize the target logit from ‖fi‖cos(θyi) to ‖fi‖ψ(θyi),

LAS = − 1

n

n∑
i=1

log
e‖fi‖ψ(θyi )

e‖fi‖ψ(θyi ) +
∑c
j=1,j 6=yi e

‖fi‖cos(θj)
, (2)

where the ψ(θ) is usually a piece-wise function defined as

ψ(θ) =
(−1)k cos(mθ)− 2k + λcos(θ)

1 + λ
,

θ ∈ [
kπ

m
,

(k + 1)π

m
],

(3)

where m is usually an integer larger than 1 and λ is a hyper-parameter to control how hard the
classification boundary should be pushed. During training, the λ is annealing from 1, 000 to a small

2



Workshop track - ICLR 2018

0° 20° 40° 60° 80° 100° 120° 140° 160° 180°

angle

-7

-6

-5

-4

-3

-2

-1

0

1

ta
rg

et
 lo

gi
t

Conventional Softmax
Angular Softmax (m=2, 6=0)
Angular Softmax (m=4, 6=0)
Angular Softmax (m=4, 6=5)
Additive Margin Softmax (m=0.35)

Figure 2: ψ(θ) for conventional Softmax, Angular Softmax Liu et al. (2017a) and our proposed
Hard Margin Softmax. For Angular Softmax, we plot the logit curve for three parameter sets. From
the curves we can infer that m = 4, λ = 5 lies between conventional Softmax and Angular Softmax
with m = 2, λ = 0, which means it is approximately m = 1.5. Our proposed Additive Margin
Softmax with optimized parameter m = 0.35 is also plotted and we can observe that it is similar
with Angular Softmax with m = 4, λ = 5 in the range [0◦, 90◦], in which most of the real-world θs
lie.

value to make the angular space of each class become more and more compact. In their experiments,
they set the minimum value of λ to be 5 and m = 4, which is approximately equivalent to m = 1.5
(Figure 2).

3 ADDITIVE MARGIN SOFTMAX

In this section, we will first describe the definition of the proposed loss function. Then we will
discuss about the intuition and interpretation of the loss function.

3.1 DEFINITION

Liu et al. (2016) defines a general function ψ(θ) to introduce the large margin property. Motivated
by that, we further propose a specific ψ(θ) that introduces an additive margin to the softmax loss
function. The formulation is given by

ψ(θ) = cosθ −m. (4)

Compared to the ψ(θ) defined in L-Softmax Liu et al. (2016) and A-softmax Liu et al. (2017a)
(Equation (3)), our definition is more simple and intuitive. During implementation, the input after

normalizing both the feature and the weight is actually x = cosθyi =
WT

yi
fi

‖Wyi
‖‖fi‖ , so in the forward

propagation we only need to compute

Ψ(x) = x−m. (5)

In this margin scheme, we don’t need to calculate the gradient for back-propagation because
Ψ′(x) = 1. It is much easier to implement compared with SphereFace Liu et al. (2017a).

Since we use cosine as the similarity to compare two face features, we follow Wang et al. (2017); Liu
et al. (2017b;c) to apply both feature normalization and weight normalization to the inner product
layer in order to build a cosine layer. Then we scale the cosine values using a hyper-parameter s as

3



Workshop track - ICLR 2018

Class centerClass center

Softmax boundarySoftmax boundary

AM-Softmax boundaryAM-Softmax boundary

Target regionTarget region

margin

P1

P0

P2

W1

W2

Figure 3: Conventional Softmax’s decision boundary and Additive Margin Softmax’s decision
boundary. For conventional softmax, the decision boundary is at P0, where WT

1 P0 = WT
2 P0. For

AM-Softmax, the decision boundary for class 1 is at P1, where WT
1 P1 −m = WT

2 P1 = WT
1 P2.

Note that the distance marked on this figure doesn’t represent the real distances. The real distance
is a function of the cosine of the angle, while in this figure we use the angle as the distance for
better visualization effect. Here we use the word “center” to represent the weight vector of the
corresponding class in the last inner-product layer, even though they may not be exactly the mean
vector of the features in the class. The relationship between the weight vector (“agent”) and the
features’ mean vector (“center”) is described in Figure 6 of Wang et al. (2017).

suggested in Wang et al. (2017); Liu et al. (2017b;c). Finally, the loss function becomes

LAMS = − 1

n

n∑
i=1

log
es·(cosθyi−m)

es·(cosθyi−m) +
∑c
j=1,j 6=yi e

s·cosθj

= − 1

n

n∑
i=1

log
es·(W

T
yi

fi−m)

es·(W
T
yi

fi−m) +
∑c
j=1,j 6=yi e

sWT
j fi

.

(6)

In this paper, we assume that the norm of bothWi and f are normalized to 1 if not specified. In Wang
et al. (2017), the authors propose to let the scaling factor s to be learned through back-propagation.
However, after the margin is introduced into the loss function, we find that the s will not increase
and the network converges very slowly if we let s to be learned. Thus, we fix s to be a large enough
value, e.g. 30, to accelerate and stablize the optimization.

As described in Section 2, Liu et al. (2016; 2017a) propose to use an annealing strategy to set the
hyper-parameter λ to avoid network divergence. However, to set the annealing curve of λ, lots of
extra parameters are introduced, which are more or less confusing for starters. Although properly
tuning those hyper-parameters for λ could lead to impressive results, the hyper-parameters are still
quite difficult to tune. With our margin scheme, we find that we no longer need the help of the
annealing strategy. The network can converge flexibly even if we fix the hyper-parameter m from
scratch. Compared to SphereFace Liu et al. (2017a), our additive margin scheme is more friendly
to those who are not familiar with the effects of the hyper-parameters. Another recently proposed
additive margin is also described in Liang et al. (2017). Our AM-Softmax is different than Liang
et al. (2017) in the sense that our feature and weight are normalized to a predefined constant s. The
normalization is the key to the angular margin property. Without the normalization, the margin m
does not necessarily lead to large angular margin.

3.2 DISCUSSION

3.2.1 GEOMETRIC INTERPRETATION

Our additive margin scheme has a clear geometric interpretation on the hypersphere manifold. In
Figure 3, we draw a schematic diagram to show the decision boundary of both conventional softmax
loss and our AM-Softmax. For example, in Figure 3, the features are of 2 dimensions. After nor-
malization, the features are on a circle and the decision boundary of the traditional softmax loss is
denoted as the vector P0. In this case, we have WT

1 P0 = WT
2 P0 at the decision boundary P0.

4



Workshop track - ICLR 2018

0 10 20 30 40 50 60

feature norm

10-1

100

101

102

103

fe
at

ur
e 

gr
ad

ie
nt

 n
or

m

w/ feature normalization
w/o feature normalization

Figure 4: The feature gradient norm w.r.t. the feature norm for softmax loss with and without
feature normalization. The gradients are calculated using the weights from a converged network.
The feature direction is selected as the mean vector of one selected target center and one nearest
class center. Note that the y-axis is in logarithmic scale for better visualization. For softmax loss
with feature normalization, we set s = 30. That is why the intersection of these two curves is at 30.

For our AM-Softmax, the boundary becomes a marginal region instead of a single vector. At the
new boundary P1 for class 1, we have WT

1 P1 −m = WT
2 P1, which gives m = (W1 −W2)TP1 =

cos(θW1,P1) − cos(θW2,P1). If we further assume that all the classes have the same intra-class
variance and the boundary for class 2 is at P2, we can get cos(θW2,P1

) = cos(θW1,P2
) (Fig. 3).

Thus, m = cos(θW1,P1
) − cos(θW1,P2

), which is the difference of the cosine scores for class 1
between the two sides of the margin region.

3.2.2 ANGULAR MARGIN OR COSINE MARGIN

In SphereFace Liu et al. (2017a), the margin m is multiplied to θ, so the angular margin is incorpo-
rated into the loss in a multiplicative way. In our proposed loss function, the margin is enforced by
subtractingm from cos θ, so our margin is incorporated into the loss in an additive way, which is one
of the most significant differences than Liu et al. (2017a). It is also worth mentioning that despite
the difference of enforcing margin, these two types of margin formulations are also different in the
base values. Specifically, one is θ and the other is cos θ. Although usually the cosine margin has an
one-to-one mapping to the angular margin, there will still be some difference while optimizing them
due to the non-linearity induced by the cosine function.

Whether we should use the cosine margin depends on which similarity measurement (or distance)
the final loss function is optimizing. Obviously, our modified softmax loss function is optimizing the
cosine similarity, not the angle. This may not be a problem if we are using the conventional softmax
loss because the decision boundaries are the same in these two forms (cos θ1 = cos θ2 ⇒ θ1 = θ2).
However, when we are trying to push the boundary, we will face a problem that these two similarities
(distances) have different densities. Cosine values are more dense when the angles are near 0 or π.
If we want to optimize the angle, an arccos operation may be required after the value of the inner
product WTf is obtained. It will potentially be more computationally expensive.

In general, angular margin is conceptually better than the cosine margin, but considering the compu-
tational cost, cosine margin is more appealing in the sense that it could achieve the same goal with
less efforts.

3.2.3 FEATURE NORMALIZATION

In the SphereFace model Liu et al. (2017a), the authors added the weight normalization based on
Large Margin Softmax Liu et al. (2016), leaving the feature still not normalized. Our loss function,
following Wang et al. (2017); Liu et al. (2017c); Ranjan et al. (2017), applies feature normalization
and uses a global scale factor s to replace the sample-dependent feature norm in SphereFace Liu
et al. (2017a). One question arises: when should we add the feature normalization?

Our answer is that it depends on the image quality. In Ranjan et al. (2017)’s Figure 1, we can see
that the feature norm is highly correlated with the quality of the image. Note that back propagation

5



Workshop track - ICLR 2018

Softmax NormFace (s=10) SphereFace (m=4, λ=0.5) AM-Softmax (s=10,m=0.2) AM-Softmax (s=10,m=0.5)

Figure 5: Feature distribution visualization of several loss functions. Each point on the sphere
represent one normalized feature. Different colors denote different classes. For SphereFace Liu
et al. (2017a), we have already tried to use the best hyper-parameters we could find.

has a property that,

y =
x

α
⇒ dy

dx
=

1

α
. (7)

Thus, after normalization, features with small norms will get much bigger gradient compared with
features that have big norms (Figure 4). By back-propagation, the network will pay more attention
to the low-quality face images, which usually have small norms. Its effect is very similar with hard
sample mining Schroff et al. (2015); Lin et al. (2017). The advantages of feature normalization are
also revealed in Liu et al. (2017b). As a conclusion, feature normalization is most suitable for tasks
whose image quality is very low.

From Figure 4 we can see that the gradient norm may be extremely big when the feature norm
is very small. This potentially increases the risk of gradient explosion, even though we may not
come across many samples with very small feature norm. Maybe some re-weighting strategy whose
feature-gradient norm curve is between the two curves in Figure 4 could potentially work better.
This is an interesting topic to be studied in the future.

3.2.4 FEATURE DISTRIBUTION VISUALIZATION

To better understand the effect of our loss function, we designed a toy experiment to visualize
the feature distributions trained by several loss functions. We used Fashion MNIST Xiao et al.
(2017) (10 classes) to train several 7-layer CNN models which output 3-dimensional features. These
networks are supervised by different loss functions. After we obtain the 3-dimensional features, we
normalize and plot them on a hypersphere (ball) in the 3 dimensional space (Figure 5).

From the visualization, we can empirically show that our AM-Softmax performs similarly with the
best SphereFace Liu et al. (2017a) (A-Softmax) model when we set s = 10,m = 0.2. Moreover,
our loss function can further shrink the intra-class variance by setting a larger m. Compared to
A-Softmax Liu et al. (2017a), the AM-Softmax loss also converges easier with proper scaling factor
s. The visualized 3D features well demonstrates that AM-Softmax could bring the large margin
property to the features without tuning too many hyper-parameters.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our loss function is implemented using Caffe framework (Jia et al., 2014). We follow all the exper-
imental settings from (Liu et al., 2017a), including the image resolution, preprocessing method and
the network structure. Specifically speaking, we use MTCNN (Zhang et al., 2016) to detect faces
and facial landmarks in images. Then the faces are aligned according to the detected landmarks.
The aligned face images are of size 112 × 96, and are normalized by subtracting 128 and dividing
128. Our network structure follows (Liu et al., 2017a), which is a modified ResNet (He et al., 2016)
with 20 layers that is adapted to face recognition.

All the networks are trained from scratch. We set the weight decay parameter to be 5e−4. The
batch size is 256 and the learning rate begins with 0.1 and is divided by 10 at the 16K, 24K and
28K iterations. The training is finished at 30K iterations. During training, we only use image mirror
to augment the dataset. The dataset we use for training is CASIA-Webface (Yi et al., 2014), which
contains 494,414 training images from 10,575 identities.

6



Workshop track - ICLR 2018

LFW BLUFR LFW BLUFR MegaFace MegaFace
Loss Function m VR@FAR=0.01% DIR@FAR=1% Rank1@1e6 VR@FAR=1e−6

Softmax - 60.26% 50.85% 45.26% 50.12%
Softmax+75% dropout - 77.64% 63.72% 57.32% 65.58%

(Wen et al., 2016) - 83.30% 65.46% 63.38% 75.68%
(Wang et al., 2017) - 88.15% 75.22% 65.03% 75.88%
(Liu et al., 2017a) - 91.26% 81.93% 67.41% 78.19%

AM-Softmax 0.25 91.97% 81.42% 70.81% 83.01%
AM-Softmax 0.3 93.18% 84.02% 72.01% 83.29%
AM-Softmax 0.35 93.51% 84.82% 72.47% 84.44%
AM-Softmax 0.4 93.60% 84.51% 72.44% 83.50%
AM-Softmax 0.45 93.44% 84.59% 72.22% 83.00%
AM-Softmax 0.5 92.33% 83.38% 71.56% 82.49%

AM-Softmax w/o FN 0.35 93.86% 87.58% 70.71% 82.66%
AM-Softmax w/o FN 0.4 94.48% 87.31% 70.96% 83.11%

Table 1: Performance on modified ResNet-20 with various loss functions. Note that, for Center Loss
(Wen et al., 2016) and NormFace (Wang et al., 2017), we used modified ResNet-28 (Wen et al., 2016)
because we failed to train a model using Center Loss on modified ResNet-20 (Liu et al., 2017a) and
the NormFace model was fine-tuned based on the Center Loss model.

To perform open-set evaluations, we carefully remove the overlapped identities between training
dataset (CASIA-Webface (Yi et al., 2014)) and testing datasets (LFW (Huang et al., 2007) and
MegaFace (Kemelmacher-Shlizerman et al., 2016)). In testing phase, We feed both frontal face
images and mirror face images and extract the features from the output of the first inner-product
layer. Then the two features are summed together as the representation of the face image. When
comparing two face images, cosine similarity is utilized as the measurement.

4.2 DATASET OVERLAP REMOVAL

The dataset we use for training is CASIA-Webface Yi et al. (2014), which contains 494,414 training
images from 10,575 identities. To perform open-set evaluations, we carefully remove the over-
lapped identities between training dataset (CASIA-Webface Yi et al. (2014)) and testing datasets
(LFWHuang et al. (2007) and MegaFace Kemelmacher-Shlizerman et al. (2016)). Finally, we find
17 overlapped identities between CASIA-Webface and LFW, and 42 overlapped identities between
CASIA-Webface and MegaFace set1. Note that there are only 80 identities in MegaFace set1, i.e.
over half of the identities are already in the training dataset. The effect of overlap removal is re-
markable for MegaFace (Table 4.2). To be rigorous, all the experiments in this paper are based
on the cleaned dataset. We have made our overlap checking code publicly available2 to encourage
researchers to clean their training datasets before experiments.

Loss Overlap MegaFace MegaFace
Function Removal? Rank1 VR

AM-Softmax No 75.23% 87.06%
AM-Softmax Yes 72.47% 84.44%

Table 2: Effect of Overlap Removal on modified ResNet-20

In our paper, we re-train some of the previous loss functions on the cleaned dataset as the baselines
for comparison. Note that, we make our experiments fair by using the same network architecture
and training dataset for every compared methods.

4.3 EFFECT OF HYPER-PARAMETER m

There are two hyper-parameters in our proposed loss function, one is the scale s and another is the
margin m. The scale s has already been discussed sufficiently in several previous works (Wang

2https://github.com/happynear/FaceDatasets

7

https://github.com/happynear/FaceDatasets


Workshop track - ICLR 2018

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Rank

40

50

60

70

80

90

100

Id
e
n

ti
fi
c
a

tio
n

 R
a

te
 %

Identification with 1M Distractors

Softmax

Softmax+Dropout

Center Loss

NormFace

SphereFace (m 1.5)

AM-Softmax (m=0.35)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

False Positive Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Verification with 1M Distractors

Softmax

Softmax+Dropout

Center Loss

NormFace

SphereFace (m 1.5)

AM-Softmax (m=0.35)

Figure 6: Left: CMC curves of different loss functions with 1M distractors on
MegaFace (Kemelmacher-Shlizerman et al., 2016) Set 1. Right: ROC curves of different loss func-
tions with 1M distractors on MegaFace (Kemelmacher-Shlizerman et al., 2016) Set 1. Note that for
Center Loss and NormFace, the backend network is ResNet-28 (Wen et al., 2016), while others are
based on ResNet-20(Liu et al., 2017a). Even though the curves of the Center Loss model and the
NormFace model is close to the SphereFace model, please keep in mind that part of the performance
comes from the bigger network structure.

et al., 2017; Liu et al., 2017c; Ranjan et al., 2017). In this paper, we directly fixed it to 30 and will
not discuss its effect anymore.

The main hyper-parameter in our loss function is the marginm. In Table 4.1, we list the performance
of our proposed AM-Softmax loss function with m varies from 0.25 to 0.5. From the table we can
see that fromm = 0.25 to 0.3, the performance improves significantly, and the performance become
the best when m = 0.35 to m = 0.4.

We also provide the result for the loss function without feature normalization (noted as w/o FN) and
the scale s. As we explained before, feature normalization performs better on low quality images
like MegaFace(Kemelmacher-Shlizerman et al., 2016), and using the original feature norm performs
better on high quality images like LFW (Huang et al., 2007).

In Figure 6, we draw both of the CMC curves to evaluate the performance of identification and ROC
curves to evaluate the performance of verification on MegaFace dataset(Kemelmacher-Shlizerman
et al., 2016). From this figure, we can show that our loss function performs much better than the
other loss functions when the rank or false positive rate is very low.

REFERENCES

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in unconstrained environments. Technical report, Technical
Report 07-49, University of Massachusetts, Amherst, 2007.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678.
ACM, 2014.

Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard. The megaface
benchmark: 1 million faces for recognition at scale. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4873–4882, 2016.

8



Workshop track - ICLR 2018

Xuezhi Liang, Xiaobo Wang, Zhen Lei, Shengcai Liao, and Stan Z. Li. Soft-margin softmax
for deep classification. 24th International Conference on Neural Information Processing, pp.
413–421, 2017. doi: 10.1007/978-3-319-70096-0 43. URL https://doi.org/10.1007/
978-3-319-70096-0_43.

Shengcai Liao, Zhen Lei, Dong Yi, and Stan Z Li. A benchmark study of large-scale unconstrained
face recognition. In IEEE International Joint Conference on Biometrics, pp. 1–8. IEEE, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. arXiv preprint arXiv:1708.02002, 2017.

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convolu-
tional neural networks. In International Conference on Machine Learning, pp. 507–516, 2016.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017a.

Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, and Le Song. Deep
hyperspherical learning. In Advances in Neural Information Processing Systems, pp. 3953–3963,
2017b.

Yu Liu, Hongyang Li, and Xiaogang Wang. Rethinking feature discrimination and polymerization
for large-scale recognition. arXiv preprint arXiv:1710.00870, 2017c.

Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In BMVC,
volume 1, pp. 6, 2015.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

Rajeev Ranjan, Carlos D. Castillo, and Rama Chellappa. L2-constrained softmax loss for discrimi-
native face verification. arXiv preprint arXiv:1703.09507, 2017.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
815–823, 2015.

Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation by joint
identification-verification. In Advances in neural information processing systems, pp. 1988–1996,
2014.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap
to human-level performance in face verification. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1701–1708, 2014.

Feng Wang, Xiang Xiang, Jian Cheng, and Alan L. Yuille. Normface: L2 hypersphere embedding
for face verification. In Proceedings of the 25th ACM international conference on Multimedia.
ACM, 2017. doi: https://doi.org/10.1145/3123266.3123359.

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach
for deep face recognition. In European Conference on Computer Vision, pp. 499–515. Springer,
2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch. arXiv
preprint arXiv:1411.7923, 2014.

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503,
2016.

9

https://doi.org/10.1007/978-3-319-70096-0_43
https://doi.org/10.1007/978-3-319-70096-0_43

	Introduction
	Preliminaries
	Additive Margin Softmax
	Definition
	Discussion
	Geometric Interpretation
	Angular Margin or Cosine Margin
	Feature Normalization
	Feature Distribution Visualization


	Experiments
	Implementation Details
	Dataset Overlap Removal
	Effect of Hyper-parameter m


