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UVMap-ID: A Controllable and Personalized UV Map Generative
Model

Anonymous Author(s)

Policeofficer Sunglasses Blonde Hair

`

Green ClothesSunglasses Blonde HairFace ID

Rendered Results on SMPL

Figure 1: Our method can synthesize high-quality textures while enabling a controllable and personalized generation with the
given text prompts and Face ID (Left). The textures can be directly applied to SMPL meshes [29] (Right).

ABSTRACT
Recently, diffusion models have made significant strides in synthe-
sizing realistic 2D human images based on provided text prompts.
Building upon this, researchers have extended 2D text-to-image
diffusion models into the 3D domain for generating human tex-
tures (UV Maps). However, some important problems about UV
Map Generative models are still not solved, i.e., how to generate
personalized texture maps for any given face image, and how to
define and evaluate the quality of these generated texture maps. To
solve the above problems, we introduce a novel method, UVMap-
ID, which is a controllable and personalized UV Map generative
model. Unlike traditional large-scale training methods in 2D, we
propose to fine-tune a pre-trained text-to-image diffusion model
which is integrated with a face fusion module for achieving ID-
driven customized generation. To support the finetuning strategy,
we introduce a small-scale attribute-balanced training dataset, in-
cluding high-quality textures with labeled text and Face ID. Addi-
tionally, we introduce some metrics to evaluate the multiple aspects
of the textures. Finally, both quantitative and qualitative analyses
demonstrate the effectiveness of our method in controllable and
personalized UV Map generation.

CCS CONCEPTS
• Computing methodologies → Rasterization; Neural net-
works; Motion capture; Artificial intelligence; Rasterization;
Texturing; Reconstruction.
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1 INTRODUCTION
The development of 3D human models has garnered significant
attention in recent years, owing to its versatile applications across
various domains, including filmmaking, video games, augmented re-
ality/virtual reality (AR/VR), and human-robot interaction. Among
the myriad tasks essential for crafting digital humans, texture syn-
thesis stands out as a pivotal element in achieving the photorealistic
quality of 3D avatars. However, creating 3D textures in the tradi-
tional computer graphics pipeline is time-consuming and labor-
intensive. Thus, it is important to utilize generation techniques to
design diverse texture maps automatically.

Texture (UV map) generation has been a focus in previous ap-
proaches for tasks such as 3D face and human reconstruction.
These methods leverage generators from Generative Adversar-
ial Networks (GANs) to estimate textures either in an unsuper-
vised [9, 45, 52, 59] or supervised [24, 25] manner. Subsequently,
the texture estimation model is integrated into the avatar fitting
stage. Nonetheless, these methods are limited in generating novel
textures and need more support for controllable generation.

Large-scale text-to-image diffusion models [36, 38], nowadays,
have been proven very effective over cross-model generation tasks,
which should mainly attributed to the scalable 2D image-text data
pairs along with large-scale parallel computation. Yet we notice that
the lack of large-scale 3D texture data makes training high-quality
texture generative models quite challenging. Inspired by the pre-
trained strategy of DreamBooth, SMPLitex [5] has employed a few
texture maps (UV defined by SMPL [29]) to fine-tune a pretrained
text-to-image diffusion model. It has been observed that this ap-
proach enables the synthesis of texture maps while supporting its
foundation text-driven task. However, the inability of SMPLitex to
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support personalized texture generation poses a significant limi-
tation on their approach, particularly in applications where user
customization is crucial. Personalized texture generation enables
the tailoring of textures to specific individual preferences, fostering
a comprehensive experience in 3D applications, including avatars,
VR, and gaming. Besides personalization, evaluating the quality
of generated textures within the UV space remains an unresolved
challenge, leaving more space for research.

In this paper, we introduce the UVMap-ID method, a UV map
generation model that supports ID-driven personalized generation
tasks. Specifically, we fine-tune a pretrained text-to-image diffusion
model using a small-scale training dataset. In contrast to 2D person-
alized methods [7, 46, 49, 56] that necessitate large-scale training
data in 2D methods, our dataset, which is attribute-balanced (i.e.,
"Race and Gender"), comprises around 750 image-ID pairs: the tex-
tures map with annotated text prompts, the corresponding portrait
faces. To enable the ability of ID-driven personalized generation, we
extend the stable diffusion with an additional face fusion module.
Moreover, we introduce some corresponding metrics to evaluate
the quality of generated textures from multiple aspects, i.e., fidelity,
structure preservation, ID preservation, and text-image alignment.
Remarkably, our model achieves high-quality and diverse texture
synthesis within just several hours of training, while also support-
ing controllable and personalized synthesis with the user-provided
image ID.

In summary, our contributions are as follows:

• We are the first to propose a controllable and personalized UV
map generative model capable of synthesizing diverse and per-
sonalized texture maps.

• We propose an efficient fine-tuning strategy for training an ID-
driven extension architecture for StableDiffusion, utilizing only
a small-scale training dataset.

• We utilize our method to produce a new dataset, containing
around 5k UVMap-ID image pairs, and will make it publicly
available. Our small-scale attribute-balanced training dataset,
the larger-scale dataset, and metrics for textures play a bridging
role in guiding subsequent work in this field.

2 RELATEDWORK
UV-Map Generative Model. This model aims to generate diverse
textures based on the generative models, such as Generative Ad-
versarial Networks [10], Diffusion Models [13, 43]. Existing works
utilize this technique in the 3D face reconstruction with the 3D
morphable model (3DMM) [3] or human reconstruction with the
SMPL [29]. For face texture generation, GANFIT [9] first uses 10,000
high-resolution textures to train the GAN generator, then takes this
GAN generator as the statistical parametric representation of the
facial texture in the fitting progress. To avoid the training using the
limited numbers and diversity of texture map, StyleUV [25] inte-
grates the 2D image fitting and rendering stages into the adversarial
networks. Additionally, some methods focus on contributing the 3D
facial UV-texture datasets, such as Facescape [55], and FFHQ-UV [1].
For human texture generation, most of the works learn to recover
the full texture from a single human image. The Re-Identification
metric as supervised in this task is proposed [45]. To further im-
prove the quality of texture generation, Zhao. et al [59] introduce

a consistency learning to enforce the cross-view consistency of
texture prediction during training. Texformer [52] introduces the
transformer architecture to exploit global information of the input,
effectively facilitating higher-quality texture generation. Different
from these methods without using any ground-truth 3D textures,
Verica. et al [24] non-rigidly registers the SMPL model to thousands
of 3D scans, and encoders the appearances as texture maps. And
theses 3D textures are used to train a texture completed model.
However, these mentioned methods cannot support diverse and
text-guided texture generation. The most related work to ours is
SMPLitex [5]. Motivated by the Dreambooth [37], SMPLitex utilizes
a few texture maps to fine-tune the pretrained text-guided diffusion
model to enable the textures inpainting and text-guided texture
generation task. Compared to SMPLitex, our method supports both
text-guided and ID-driven personalized texture generation.
Text-to-3D Avatar Generation. Text-guided 3D content genera-
tion has achieved great success with the development of 3D repre-
sentation methods and generative models. Lots of methods utilize
the frozen image-text joint embedding models from CLIP [33] to op-
timize the underlined 3D representation, such as NeRF [30] where
some of them work on generation for general 3D object [18, 31,
40, 50, 54], or human Avatar [14, 16]. The most famous work is
Dream Fields [18] which first demonstrated the effectiveness of
combining the CLIP model and NeRF representation for 3D object
creation, but 3D objects produced by this approach tend to lack re-
alism and accuracy. DreamFusion [32] introduces Score Distillation
Sampling (SDS) loss which is based on probability density distilla-
tion that enables the use of a pretrained 2D diffusion model as a
prior for optimization of a parametric NeRF representation. By us-
ing SDS loss instead of CLIP, DreamFusion generates high-quality
coherent 3D objects while aligning with the given text prompt.
Recently, many similar methods with SDS loss have occurred to
improve text-to-3D results in various aspects, such as enhancing
the realism of rendering with detailed geometry [6], solving the
multiple-view inconsistency problem [27, 42] or using variational
score distillation (VSD) [47] method instead of SDS to improve
the fidelity and diversity of 3D content generation. However, high-
quality human avatars remain a challenge due to the complexity of
the human body’s shape, pose, and appearance. To make the avatar
animatitable, DreamAvatar [4] and AvatarCraft [19] integrate the
SMPL prior into the NeRF or SDF representation with a deformable
field. To improve the avatar’s quality and avoid the cartoon-like
appearance, DreamHuman [23] uses a spherical harmonics light-
ing model instead of diffuse reflectance model and additionally
optimizes a spherical harmonics coefficients; HumanNorm [17] in-
troduces a normal diffusionmodel to enhances the diffusionmodel’s
understanding of 3D geometry to further improve the texture and
geometry’s quality. More recently, HumanGaussian [28] integrates
3D Gaussian representation instead of NeRF into 3D Human Avatar
generation to reduce training time. Compared with these text-to-3D
works, we focus on achieving a controllable texture generation but
don’t care about the generation of geometry.
Text-DrivenPersonalizedDiffusionModels.Diffusionmodel [13,
43], is a class of generative modeling in which it iteratively trans-
forms noises to samples simulating the true data distribution. Diffu-
sionmodels generally outperformed other traditional methods, such
as GANs, due to the fact that the output quality has been notably
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improved across diverse domains. Diffusion models are widely used
for text-to-image generation [34, 36, 38], and also stand out support-
ing more cross-model tasks [2, 35, 53]. One of the foundation works,
Stable diffusion [36], applies the diffusion process on latent space, re-
ducing training computation while preserving quality. While other
methods, such as Imagen [38] and DALL-E2 [34], generate samples
directed over pixel space, have also proven effective. Finetune-wise,
DreamBooth [37] and LoRA [15] introduces a subject-driven train-
ing approach, enabling text controls, and offers a compelling feature
for precise personalizing. Text Inversion [8] and VideoBooth [20]
suggest an alternative solution via latent inversion before editing.
Another class of methods [7, 46, 48, 49, 51, 56–58, 60] extends the
model with additional networks to extract and adopt conditional
inputs that guide the generation. Representatively, IP-Adapter [56]
introduces a decoupled U-Net that injects conditional hidden fea-
tures to the original diffusion U-Net, achieving an accurate con-
trol from the reference input. Some concurrent 2D methods such
as Instant-ID [46], Infinite-ID [49] and SSR-Encoder [58], also at-
tracted lots of attention. In this work, we share goals similar to
IP-Adapter and Instant-ID, focusing on 3D human texture rather
than 2D generation.

3 METHODS
Given a reference portrait describing the facial appearance (Face ID)
of the target individual, our model aims to generate a texture that
aligns with the facial appearance of the target person and fits the
structure of the UV map defined by SMPL. In this section, we first
provide a brief introduction to Denoising Diffusion Probabilistic
Models [13] in Section 3.1, laying the foundational framework and
network architecture for our method. Subsequently, detailed expla-
nations of design specifics are presented in Section 3.2. Then, we
will explain the pipeline we use to build the dataset in Section 3.3.
Finally, we introduce some metrics for UV textures in Section 3.4.

3.1 Preliminary: Denoising Diffusion
Probabilistic Models

The denoising diffusion probabilistic models operate by simulating
a forward process that adds noise to an image or its latent represen-
tation over a series of time steps, transforming them into Gaussian
noise. Conversely, the reverse process seeks to recover the original
image or latent representation by iterative denoising. This bidirec-
tional process is key to the diffusion models’ ability to generate
high-fidelity images. Our work leverages Stable Diffusion (SD), a
pertrained generative model that could generate high-quality im-
ages from a text prompt. Specifically, given an image 𝑥 , SD first uses
a pretrained autoencoder to encode 𝑥 into latent: 𝑧 = E(𝑥). Then,
noise is gradually added to 𝑧 over a sequence of 𝑇 steps, transition-
ing the data distribution from the original data distribution to a
Gaussian Noise distribution, and the noise added forward a Markov
chain of conditional Gaussian distributions defines the process:

𝑞(𝑧𝑡 |𝑧𝑡−1) = N(𝑧𝑡 ;
√︁
1 − 𝛽𝑧𝑡−1, 𝛽𝑡 𝐼 ),

where 𝛽𝑡 is the variance schedule. During training, the denoising
u-net 𝜖𝜃 of SD aims to learn to reconstruct the original latent 𝑧
from the noise, modeled by:

𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 ) = N(𝑧𝑡−1; 𝜇𝜃 (𝑧𝑡 , 𝑡), 𝜎2𝜃 (𝑧𝑡 , 𝑡)I),

and the learning objective is defined as follows:

𝐿(𝜃 ) = E𝑧𝑡 ,𝑐,𝜖,𝑡
[
| |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑐, 𝑡) | |2

]
,

where 𝑐 represents text conditional embeddings.

3.2 Fine-Tuning Text-to-Image Models for
ID-Driven UV Map Generation

Fig. 2 provides the pipeline of our proposed approach. The initial
input to the pipeline consists of random noise and a reference
portrait. Our text-to-image model is configured based on the design
of SD, employing the same framework and trained weights of SD.
Motivated by DreamBooth [37], we propose to utilize the finetuning
strategy with a prior preservation loss (Fig. 2 (Left)) applying to
text-to-image diffusion architecture integrating with a face fusion
module (Fig. 2 (Right)).

3.2.1 Face Fusion Module. To enable Stable Diffusion to accept
additional image information, (i.e., the portraits), the previous meth-
ods mainly leverages the CLIP image encoder, either directly substi-
tuting the CLIP text encoder or through decoupled cross-attention
mechanism to separate cross-attention layers for text features and
image features [34, 56]. Nevertheless, the CLIP image encoder is
constrained by its operation on images of lower resolution, which
particularly impacts its efficacy in encoding face images by failing to
encapsulate comprehensive details. Moreover, CLIP’s architecture,
fundamentally designed to align semantic features between text
and images, mainly focuses on high-level feature correspondence.
This orientation towards semantic feature matching inadvertently
results in a dilution of finer, detailed features during the encoding
process, posing a challenge for applications requiring precise detail
retention. Hence, we propose to use the face embedding extracted
by the face recognition models and linear projection layers to pro-
vide SD with human face information. Also, to preserve the orig-
inal model’s ability to process text information while integrating
image information, we adopt the decoupled cross-attention mech-
anism [56], ensuring a seamless blend of both modalities. Given
query feature 𝑍 , image feature 𝑐𝑖 and the text feature 𝑐𝑡 , the output
𝑍 ′ of decoupled cross-attention layers is:

Z′ = softmax(𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉 + softmax(𝑄 (𝐾 ′)𝑇√︁
𝑑𝑘

)𝑉 ′,

where 𝑄 = 𝑍𝑊𝑞 , 𝐾 = 𝑐𝑡𝑊𝑘 , 𝑉 = 𝑐𝑡𝑊𝑣 , 𝐾 ′ = 𝑐𝑡𝑊 ′
𝑘
, 𝑉 ′ = 𝑐𝑡𝑊 ′

𝑣 ,
and the𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 ,𝑊 ′

𝑘
and𝑊 ′

𝑣 are learnable parameters of the
projection layers. Similar fusion modules have been utilized in some
concurrent 2D methods [46, 49].

3.2.2 Prior Preservation Loss. We observed that when using “UV
texture map" as the text prompt, SD often fails to generate any cor-
rect UV maps. This is likely because SD is trained on data scraped
from the internet, where real UV texture maps are rarely found in
the training resources. Also, our goal is to generate images with a
small training set (about 750 images in our dataset), each featur-
ing different facial characteristics of individuals, and generating
accurate faces has always been a weakness of SD. Additionally,
our input incorporates extra face image information, and during
fine-tuning, we would like to ensure our model does not lose SD’s
original capability to correctly process textual information. To this

3
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Figure 2: The left side of the figure shows the overview of our proposed pipeline. Given a reference image as face ID, we utilize
a pre-trained text-to-image diffusion model, where the input is a combination of a noised UV Map and text prompt of a unique
identifier and characteristics of the portrait where "A [S] Texturemap of [P]," where [S] is a unique identifier and [P] represents
the race and gender. To maintain the quality of images generated by the pre-trained model and effectively process textual
features, we adopt a prior preservation loss. The right side of the figure shows the detailed architecture of our model, where
facial information is mapped to the same dimensions as text embeddings through a facial recognition model and face projection
layers. Subsequently, we merge facial and textual information via decoupled cross-attention, which is then integrated into the
pre-trained text-to-image model.

end, we introduced prior preservation loss, as proposed in Dream-
booth [37], to ensure the model retains its generalization ability
and does not overfit the few-shot examples provided during the
personalization process.

However, our objectives differ fundamentally from Dreambooth
in two ways. Firstly, Dreambooth targets subject-driven generation,
whereas our model aims at generating specific formats of images,
the UV texture maps. This leads to a situation where Dreambooth
requires re-fine-tuning the entire SD for each subject, while our
model, after training, can generate corresponding UV maps for any
input face ID. This distinction arises because, in DreamBooth, one
unique identifier represents a single unique subject, whereas our
unique identifier [S] denotes one unique kind of image structure
(UV Map defined by SMPL). Secondly, we added extra facial infor-
mation [P] to our text prompts during training to further preserve
the original capabilities of the text encoder, enabling it to effectively
parse attributes such as race and gender. For detailed experiments,
please refer to Section 4.4

Formally, the training loss of our model is defined as:

𝐿(𝜃 ) = E𝑧𝑡 ,𝑐,𝜖,𝑡
[
| |𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑐, 𝑡) | |2

]
+ E𝑧𝑡 ,𝑐′,𝜖,𝑡

[
| |𝜖pr − 𝜖𝜃 (𝑧𝑡 , 𝑐′, 𝑡) | |2

]
,

where 𝑐′ is a fixed conditional text prompt “a texturemap” and
𝜖pr is the generate data using the frozen diffusion model with 𝑐′.

3.3 Dataset
Training Dataset In this part, we describe the process of con-
structing our dataset, which is centered around the generation of
high-quality and diverse UV texture maps for digital human models.
Our approach can be segmented into three stages:

1) Celebrity Selection: In the initial phase of our dataset creation,
we aimed for a balanced and inclusive representation by employing
OpenAI’s ChatGPT to generate a list of 150 celebrities. Our selection
was structured to include equal representation across three ethnic
groups: African American, Asian, and White, with 50 celebrities
from each group. To further enhance the diversity and applicability
of our dataset, we ensured gender balance within each ethnic cate-
gory, selecting 25 male and 25 female celebrities. We use celebrities
because SMPLitex accepts only text input, and celebrity portraits are
readily available. This approach allows us to link names, portraits,
and corresponding UV texture maps effectively.

2) UV Texture Map Generation: We employed SMPLitex to gen-
erate UV texture maps for each of the selected celebrities. This
process resulted in 50 UV texture maps per celebrity, totaling 7,500
initial texture maps.

3) Manual Selection: To ensure the highest quality and relevance
for our dataset, we manually reviewed the generated UV texture
maps and selected 5 maps per celebrity that best met our predefined
criteria. These criteria included clarity, detail accuracy, and repre-
sentation quality of ethnic features. This manual selection process
narrowed our dataset to 750 UV texture maps with 5 UV texture
maps per ID.
A New Dataset: CelebA-HQ-UV We utilize our method with
personalized generation to produce a new dataset, which contains
5k UVMap-ID pairs. Specifically, we select 5000 high-resolution face
images fromCelebA-HQ [21] as reference image IDs of our methods.
For every ID, our method produces 10 textures and selects 2 by
the evaluation of multiple aspects, i.e., the quality of textures, the
preservation of UV structure, and the preservation of face ID. Fig. 3
shows some results using three face IDs from CelebA-HQ. We refer
to this dataset as CelebA-HQ-UV, and will make it publicly available.
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Figure 3: Personalized textures generation results using face
IDs from CelebA-HQ dataset.

Note that we define a list of text prompts for these generations
which will be introduced in the supplementary material.

3.4 Metrics
As previously mentioned, assessing the quality of generated tex-
tures within the UV space defined by SMPL poses a significant
challenge, especially within the scope of our personalized gener-
ation task. In this paper, we introduced four metrics to evaluate
the quality of the generated textures from multiple aspects: Incep-
tion Scores [39] to evaluate the fidelity and diversity, Semantic
Structure Preservation (SSP) to evaluate structure preservation of
UV space defined by SMPL [29], Deep Face Recognition (DFR) to
evaluate Face ID preservation and CLIP-Text (CLIPT) [20, 48] score
to evaluate the text-image alignment.
Inception Score (IS) on UV textures and rendered results The
Inception Score (IS) and Fréchet Inception distance [12] are widely
utilizedmetrics for evaluating the diversity and quality of 2D images
generated by generative models. FID is a well-established measure
that compares the inception similarity score between distributions
of generated and real images. One key distinction between IS and
FID is that IS is computed solely using fake samples, eliminating the
need for real samples in its calculation. Due to the lack of real sample
distribution, we employ the IS to directly evaluate the quality of
5000 generated textures rather than FID. We refer to IS on textures
of UV space as IS (UV). Additionally, we render these textures into
2D space by applying them to the SMPL Mesh. Subsequently, we
utilize IS to evaluate the quality of 5000 rendered human images in
2D space. We refer to this type of IS as IS (R).
Semantic Structure Preservation (SSP) To assess the preserva-
tion of UV structures in generated textures, we introduce a novel
metric termed Semantic Structure Preservation (SSP). Notably, we
have observed instances where the generated textures from SMPLi-
tex [5] may not faithfully retain these underlying structures, as illus-
trated in Fig. 4. The SSP metric is designed to quantify this preser-
vation. We leverage off-the-shelf human parsing techniques [26]

UV Structure Texture
s

Output Groundtruth

Figure 4: It shows UV structures, textures from SMPLitex,
extracted semantic segmentation, and semantic groundtruth
from left to right.

to extract semantic segmentation from the generated images and
then compare it with ground truth segmentation (Fig. 4 (right)). We
conduct this comparison across a dataset comprising 1000 images
and compute the mean difference as the SSP score.
Deep Face Recognition (DFR) To assess the preservation of iden-
tity (ID) within textures, a crucial aspect of personalized image gen-
eration tasks, we propose employing Deep Face Recognition (DFR)
methods to quantify the similarity between generated textures and
reference facial images. Specifically, we leverage the off-the-shelf
tool [41] to do face recognition between the textures and image ID.
We use 10 face IDs, and 100 samples for every ID and report the
successful numbers. We refer to this metric as the DFR score which
is reported as a measure of the preservation of identity within the
generated textures.
CLIP-Text (CLIPT) To measure the alignment of the generated
textures and given text prompts, we use the CLIP-Text (CLIPT)
score followed by 2D methods [20, 48]. This metric is calculated
using the cosine similarity of the CLIP text embeddings of the given
text prompts and CLIP image embeddings of the generated textures.
We compute the CLIPT score using 1000 text-prompt pairs.

4 EXPERIMENTS
4.1 Training Details
Our experiments are based on the Realistic_Vision_V4model, which
is further fine-tuned on Stable Diffusion v_1.5 [36], and could pro-
duce more photorealistic images. Additionally, we utilize the buf-
falo_l pre-trained face recognition model from SCRFD [11], and
pre-trained projection layers from [56]. The experimental code is
developed using the HuggingFace Diffusers library [44]. During
training, we fine-tune the entire U-Net, text encoder and face pro-
jection layers, and keep the VAE encoder and decoder of Stable
Diffusion frozen. The UVMap-ID training is conducted on a single
machine equipped with an A40 GPU for 1500 steps, with a batch
size of 2. We employ the AdamW optimizer [22] with a fixed learn-
ing rate of 1e-6 and a weight decay of 0.01. Our dataset comprises
images with a resolution of 512 × 512, hence we generate images
at this resolution during training. In the inference phase, we use
a 50-step DDIM sampler [43] and set the classifier-free guidance
scale to 7.5.

4.2 Baselines
We take the texture generation model SMPLitex [5] as the baseline.
And all results from SMPLitex are produced from their released code
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Figure 5: Our personalized generation results. The 1st column shows reference faces, obtained from the website, and not existing
in our training set.
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Figure 6: Comparsionwith SMPLitex [5] results. SMPLitex is not an image ID-drivenmethod. Thus, we provided these celebrities’
names in the test prompts for SMPLitex, but not for ours. Taking "Betty Sun" as an example (upper-left corner), the test prompt
of SMPLitex is "a texturemap of Betty Sun wearing...", and our test prompt is "a texturemap of Asian woman wearing...". Note
that image IDs are not existing in our training data.

and pretrained model. SMPLitex does not support image-driven
personalized generation. Thus, we provide image ID’s name in the
text prompts for SMPLitex, but not for our method.

4.3 Comparisons
Fig. 5 shows diverse personalized texture generation results from
our methods. Our reference face IDs (1st column images) are col-
lected from a diverse range of sources on the website, thus en-
compassing a wide variety of characteristics, including different
ethnicities, genders, occupations, levels of fame, and even facial

Methods IS (R) ↑ IS (UV) ↑ SSP ↓ CLIPT ↑ DFR ↑
SMPLitex [5] 1.46 ± 0.020 1.95 ± 0.049 10.45 29.40 62
UVMap-ID 1.78 ± 0.020 1.89 ± 0.027 8.46 29.12 792

Table 1: Quantitative results using four metrics: inception
scores on rendered images (IS (R)), inception scores on UV
maps (IS (UV)), Semantic Structure Preservation (SSP), CLIP
Text (CLIPT), Deep Face Recognition (DFR).
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UVMap-ID𝑤/𝑜 "Race and Gender" 436
UVMap-ID𝑤/ "Race and Gender" 792

Table 2: Ablation Study for "Race and Gender" label.

Methods IS (R) ↑ IS (UV) ↑ SSP ↓ CLIPT ↑ DFR ↑
UVMap-ID (1) 1.88 ± 0.028 2.03 ± 0.039 10.59 29.09 734
UVMap-ID (2) 1.78 ± 0.020 1.89 ± 0.027 8.46 29.12 792
UVMap-ID (5) 1.55 ± 0.017 1.55 ± 0.084 8.74 29.27 798

Table 3: Ablation studies of Training data. UVMap-ID (𝑁 )
denotes the number (𝑁 ) of textures for each ID in the training
stage.

poses. As shown in the 2nd-6th columns of Fig. 5, our generated UV
textures effectively preserve the identity features of these reference
face IDs, demonstrating the effectiveness and robustness of our
methods in personalized generation. Moreover, our method also
achieves accurate text-driven controllable generation.

We conducted visualization comparisons with SMPLitex [5], as
depicted in Fig. 6. Notably, SMPLitex is not an image-driven method.
Therefore, while we utilized some well-known celebrities as image
IDs and provided their names in text prompts for SMPLitex, we
deliberately omitted this information for our method to ensure
a fairer comparison. Remarkably, our results exhibit a higher de-
gree of similarity in face ID preservation compared to SMPLitex,
underscoring the superiority of our method in maintaining iden-
tity features during personalized texture generation. Moreover, our
approach also demonstrates superior structural preservation com-
pared to SMPLitex, as evidenced by the "Jay Chou" row (Top-Right).

Quantitative results using four metrics are shown in Table 1.
We observe that SMPLitex achieves better IS (UV) scores than our
method. We attribute this to the fact that our approach is image-
driven, which means that the provided reference ID constrains the
diversity of generated images, a crucial aspect of IS. In contrast,
our method achieves a higher IS (R) than SMPLitex. As mentioned,
SMPLitex often struggles to preserve UV structures effectively,
resulting in unrealistic renderings. The comparison of structure
preservation can be validated by our achieved superior SSP score.
Moreover, our DFR score significantly outperforms the Baseline,
validating that our method achieves better similarity to the target
ID in personalized texture generation tasks. Additionally, the high
success rate of 837 out of 1000 demonstrates the robustness of
our method to reference images. Furthermore, we observe that our
CLIPT score is comparable to the baseline, indicating that the "image
prompt" generated by our image encoder does not significantly
affect the control capability of the text prompt.

4.4 Ablation Studies
"Race and Gender" in prompts As shown in Fig. 7, we analyze
the impact of including race and gender labels in prompts during
training, assessing how this additional information affects genera-
tive model performance. As indicated in Table 2, incorporating race
and gender labels significantly enhances the model’s DFR score
compared to the version without these labels (UVMap-ID𝑤/𝑜 "Race

Face ID
w/o "Race

and Gender"
w/ "Race

and Gender"

Figure 7: Qualitative ablation studies of between𝑤/𝑜 and𝑤/
"Race and Gender" labels. The 1st-row results show our full
method preserves the "Gender" attribute and the 2nd-row
results show our full method preserves the "Race" attribute.

and Gender"). This indicates that the facial recognition model we
use focuses more on the structural information of the human face,
while the label supplements the missing information such as skin
color.
Training Data In this part, we explore the impact of varying the
number of UV maps used per image ID during training. Our model,
UVMap-ID, is evaluated using a consistent training strategy, except
that each image ID in the training dataset is processed using 1, 2, or
5 UV maps. These setups are denoted as UVMap-ID (1), UVMap-ID
(2), and UVMap-ID (5) respectively.

Table 3 highlights the performance metrics across these config-
urations. Based on the results shown in Table 3, we have chosen
UVMap-ID (2) as our base model. This configuration utilizes two
UV maps, which provide a diverse dataset sufficient to capture
the critical variations in facial features, without overloading the
pre-trained model. UVMap-ID (2) strikes a balance, delivering re-
markable realism in image generation while effectively maintaining
the identity of reference images.

5 CONCLUSIONS
In this paper, we introduce UVMap-ID, the first method for ID-
driven personalized texture generation. UVMap-ID takes the Sta-
bleDiffusion as the backbone and extends it with an additional face
fusion module. Moreover, our method is a highly efficient model
with only several hours fine-tuning strategy on a small-scale dataset.
Additionally, we also explore the evaluation of quality for UV tex-
tures and introduce some corresponding metrics. Finally, with user
provided face images, our method can automatically create high-
quality UV textures with the preservation of face ID while enabling
text-driven controls, which is a very available application for 3D
avatar creation in compute graphics fields. By using our method,
we create a new dataset, CelebA-HQ-UV, comprising textures and
face ID pairs. This dataset will be shared with the community to fa-
cilitate further research. We desire to explore the interactive editing
of textures in the future.
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