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ABSTRACT

The attention layer in a neural network model provides insights into the model’s
reasoning behind its prediction, which are usually criticized for being opaque. Re-
cently, seemingly contradictory viewpoints have emerged about the interpretabil-
ity of attention weights (Jain & Wallace, 2019; Vig & Belinkov, 2019). Amid such
confusion arises the need to understand attention mechanism more systematically.
In this work, we attempt to fill this gap by giving a comprehensive explanation
which justifies both kinds of observations (i.e., when is attention interpretable
and when it is not). Through a series of experiments on diverse NLP tasks, we
validate our observations and reinforce our claim of interpretability of attention
through manual evaluation.

1 INTRODUCTION

Attention is a way of obtaining a weighted sum of the vector representations of a layer in a neural
network model (Bahdanau et al., 2015). It is used in diverse tasks ranging from machine transla-
tion (Luong et al., 2015), language modeling (Liu & Lapata, 2018) to image captioning (Xu et al.,
2015), and object recognition (Ba et al., 2014). Apart from substantial performance benefit (Vaswani
et al., 2017), attention also provides interpretability to neural models (Wang et al., 2016; Lin et al.,
2017; Ghaeini et al., 2018) which are usually criticized for being black-box function approximators
(Chakraborty et al., 2017).

There has been substantial work on understanding attention in neural network models. On the one
hand, there is work on showing that attention weights are not interpretable, and altering them does
not significantly affect the prediction (Jain & Wallace, 2019; Serrano & Smith, 2019). While on the
other hand, some studies have discovered how attention in neural models captures several linguistic
notions of syntax and coreference (Vig & Belinkov, 2019; Clark et al., 2019; Tenney et al., 2019).
Amid such contrasting views arises a need to understand the attention mechanism more systemati-
cally. In this paper, we attempt to fill this gap by giving a comprehensive explanation which justifies
both kinds of observations.

The conclusions of Jain & Wallace (2019); Serrano & Smith (2019) have been mostly based on text
classification experiments which might not generalize to several other NLP tasks. In Figure 1, we
report the performance on text classification, Natural Language Inference (NLI) and Neural Ma-
chine Translation (NMT) of two models: one trained with neural attention and the other trained with
attention weights fixed to a uniform distribution. The results show that the attention mechanism in
text classification does not have an impact on the performance, thus, making inferences about inter-
pretability of attention in these models might not be accurate. However, on tasks such as NLI and
NMT uniform attention weights degrades the performance substantially, indicating that attention is
a crucial component of the model for these tasks and hence the analysis of attention’s interpretability
here is more reasonable.

In comparison to the existing work on interpretability, we analyze attention mechanism on a more
diverse set of NLP tasks that include text classification, pairwise text classification (such as NLI), and
text generation tasks like neural machine translation (NMT). Moreover, we do not restrict ourselves
to a single attention mechanism and also explore models with self-attention. For examining the
interpretability of attention weights, we perform manual evaluation. Our key contributions are:

1. We extend the analysis of attention mechanism in prior work to diverse NLP tasks and provide
a comprehensive picture which alleviates seemingly contradicting observations.

1



Under review as a conference paper at ICLR 2020

Figure 1: Comparison of performance with and without neural attention on text classi�cation
(IMDB), Natural Language Inference tasks (SNLI) and Neural Machine Translation (News Com-
mentary). Here,� andc denote attention weights and context vector respectively. The results show
that attention does not substantially effect performance on text classi�cation. However, the same
does not hold for other tasks.

2. We identify the conditions when attention weights are interpretable and correlate with feature
importance measures – when they are computed using two vectors which are both functions of
the input (Figure 1b, c). We also explain why attention weights are not interpretable when the
input has only single sequence (Figure 1a), an observation made by Jain & Wallace (2019), by
showing that they can be viewed as a gating unit.

3. We validate our hypothesis of interpretability of attention through manual evaluation.

2 TASKS AND DATASETS

We investigate the attention mechanism on the following three task categories.

1. Single Sequence tasksare those where the input consists of a single text sequence. For in-
stance, in sentiment analysis, the task is to classify a review as positive or negative. This also
includes other text classi�cation tasks such as topic categorization. For the experiments, in
this paper, we use three review rating datasets: (1) Stanford Sentiment Treebank (Socher et al.,
2013), (2) IMDB (Maas et al., 2011) and (3) Yelp 20171 and one topic categorization dataset
AG News Corpus(business vs world).2

2. Pair Sequence taskscomprise of a pair of text sequences as input. The tasks like NLI and
question answering come under this category. NLI involves determining whether ahypoth-
esisentails, contradicts, or is undetermined given apremise. We use Stanford Natural Lan-
guage Inference (SNLI) (Bowman et al., 2015) and Multi-Genre Natural Language Inference
(MultiNLI) (Williams et al., 2018) datasets for our analysis. For question answering, similar to
Jain & Wallace (2019), we use CNN News Articles (Hermann et al., 2015) and three tasks of
the original babI dataset (Weston et al., 2015) in our experiments, i.e., using one, two and three
supporting statements as the context for answering the questions.

3. Generation tasksinvolve generating a sequence based on the input sequence. Neural Machine
translation is an instance of generation task which comprises of translating a source text to a
target language given translation pairs from a parallel corpus. For our experiments, we use

1from www.yelp.com/datasetchallenge
2www.di.unipi.it/ gulli/AG corpusof newsarticles.html
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three English-German datasets: Multi30k (Elliott et al., 2016), En-De News Commentary v11
from WMT16 translation task3 and full En-De WMT13 dataset.

3 NEURAL ATTENTION MODELS

In this section, we give a brief overview of the neural attention-based models we analyze for different
categories of tasks listed in Section 2. The overall architecture for each category is shown in Fig 1.

3.1 SINGLE SEQUENCEMODELS:

For single sequence tasks, we adopt the model architecture from Jain & Wallace (2019); Wiegreffe
& Pinter (2019). For a given input sequencex 2 RT �j V j , whereT and jV j are the number of
tokens and vocabulary size, we �rst represent each token with itsd-dimensional GloVe embedding
Pennington et al. (2014) to obtainx e 2 RT � d. Next, we use a Bi-RNN encoder (Enc ) to obtain
anm-dimensional contextualized representation of tokens:h = Enc (x e) 2 RT � m . Then, we use
the additive formulation of attention proposed by Bahdanau et al. (2015) for computing attention
weights� i for all tokens de�ned as:

u i = tanh( W h i + b); � i =
exp(u T

i c)
P

j exp(u T
j c)

; (1)

whereW 2 Rd� d0
; b; c 2 Rd0

are the parameters of the model. Finally, the weighted instance
representation:h � =

P T
i =1 � i h i is fed to a dense layer (Dec ) followed by softmax to obtain

predictionŷ = � (Dec (h � )) 2 RjYj , wherejYj denotes the label set size.

We also analyze the hierarchical attention model (Yang et al., 2016), which involves �rst computing
attention over the tokens to obtain a sentence representation. This is followed by attention over sen-
tences to obtain an instance representationh � , which is fed to a dense layer for obtaining prediction
(ŷ). At both word and sentence level the attention is computed similar to as de�ned in Equation 1.

3.2 PAIR SEQUENCEMODELS:

For pair sequence, the input consists of two text sequences:x 2 RT1 �j V j ; y 2 RT2 �j V j of length
T1 andT2. In NLI, x indicates premise andy is hypothesis while in question answering, it is the
question and paragraph respectively. Following Bowman et al. (2015), we use two separate RNNs
for encoding both the sequences to obtainf h x

1 ; :::; h x
T1

g andf h y
1 ; :::; h y

T2
g. Now, similar to Jain &

Wallace (2019), attention weight� i over each token ofx is computed as:

ui = tanh( W 1h x
i + W 2h y

T2
); � i =

exp(u T
i c)

P
j exp(u T

j c)
; (2)

where similar to Equation 1,W 1; W 2 2 Rd� d0
denotes the projection matrices andc 2 Rd0

is a
parameter vector. Finally, the representation obtained from a weighted sum of tokens inx : h � =P T

i =1 � i h x
i is fed to a classi�er for prediction.

We also explore a variant of the above attention proposed by Rocktäschel et al. (2016). Instead of
keeping the RNN encoders of both the sequences independent, Rocktäschel et al. (2016) use condi-
tional encoding where the encoder ofy is initialized with the �nal state ofx 's encoder. This allows
the model to obtain a conditional encodingf h0y

1 ; :::; h0y
T2

g of y given the sequencex . Moreover,
unlike the previous model, attention over the tokens ofx is de�ned as follows:

M = tanh( W 1X + W 2h0y
T2


 eT1 ); � = softmax( w T M ); (3)

whereX = [ h x
1 ; :::; h x

T1
], eT1 2 RT1 is a vector of ones and outer productW 2h0y

T2

 eT1 denotes

repeating linearly transformedh0y
T2

as many times as words in the sequencex (i.e. T1 times).

3http://www.statmt.org/wmt16/translation-task.html
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3.3 GENERATION TASK MODELS:

In this paper, for generation tasks, we focus on Neural Machine Translation (NMT) problem which
involves translating a given source text sentencex 2 RT1 �j V1 j to a sequencey 2 RT2 �j V2 j in
the target language. The model comprises of two components: (a) an encoder which computes a
representation for each source sentence and (b) a decoder which generates a target word at each
time step. In this work, we utilize RNN based encoder and decoder models. For each input sentence
x , we �rst obtain a contextualized representationf h1; :::; hT1 g of its tokens using a multi-layer
Bi-RNN. Then, at each time stept, the decoder has a hidden state de�ned as

ct = f (ct � 1; yt � 1; h t
� ); where h t

� =
T1X

i =1

� t;i h i :

In our work, we compute� t;i as proposed by Bahdanau et al. (2015) and Luong et al. (2015). The
former computes attention weights using a feed-forward network, i.e.,� t;i = w T tanh(W [ct ; hi ])
while the latter de�ne it simply as� t;i = cT

t hi .

3.4 SELF-ATTENTION BASED MODELS:

We also examineself-attentionbased models on all three categories of tasks. For single and pair
sequence tasks, we �ne-tune pre-trained BERT (Devlin et al., 2019) model on the downstream task.
In pair sequence tasks, instead of independently encoding each text, we concatenate both separated
by a delimiter and pass it to BERT model. Finally, the embedding corresponding to[CLS] token
is fed to a feed-forward network for prediction. For neural machine translation, we use Transformer
model proposed by Vaswani et al. (2017) withbasecon�guration.

4 IS ATTENTION AN EXPLANATION ?

In this section, we attempt to address the question:Is attention an explanation?through a series
of experiments which involve analyzing attention weights in a variety of models (x3) on multiple
tasks (x2). Following Jain & Wallace (2019), we take the de�nition ofexplainabilityof attention
as: inputs with high attention weights are responsible for model output. Jain & Wallace (2019);
Serrano & Smith (2019) have extensively investigated this aspect for certain class of problems and
have shown that attention does not provide an explanation. However, another series of work (Vig &
Belinkov, 2019; Clark et al., 2019; Tenney et al., 2019) has shown that attention does encode several
linguistic notions. In our work, we claim that the �ndings of both the line of work are consistent. We
note that the observations of the former works can be explained based on the following proposition.
Proposition 4.1. Attention mechanism as de�ned in Equation 1 as

u i = tanh( W h i + b); � i =
exp(u T

i c)
P

j exp(u T
j c)

for single sequence tasks can be interpreted as a gating unit in the network.

Proof: The attention weighted averaging computed in Equation 1 for single sequence tasks can be
interpreted as gating proposed by Dauphin et al. (2017) which is de�ned as

h(X ) = f (X ) � � (g(X )) ;
whereX 2 Rn � d is the input and� denotes element-wise product between transformed input
f (X ) and its computed gating scores� (g(X )) . Equation 1 can be reduced to the above form by
taking f as an identity function and de�ningg(X ) = cT tanh(W X + b) and replacing� with
softmax. We note that the same reduction does not hold in the case of pair sequence and generation
tasks where attention along with input also depends on another text sequenceY and current hidden
statect , respectively.

Based on the above proposition, we argue that weights learned in single sequence tasks cannot be in-
terpreted as attention, and therefore, they do not re�ect the reasoning behind the model's prediction.
This justi�es the observation that for the single sequence tasks examined in Jain & Wallace (2019);
Serrano & Smith (2019), attention weights do not correlate with feature importance measures and
permuting them does not change the prediction of the model. In light of this observation, we revisit
the explainability of attention weights by asking the following questions.
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SST IMDB AG News YELP

Bahdanau et al. (2015) 83:4 � 0:5 90:7 � 0:7 96:4 � 0:1 66:7 � 0:1

Uniform (Train+Infer / Infer) � 1:0 /� 0:8 � 0:8 /� 6:3 � 0:1 /� 0:7 � 0:5 /� 6:3
Random (Train+Infer / Infer) � 1:1 /� 0:9 � 0:6 /� 6:4 � 0:0 /� 0:7 � 0:4 /� 6:4
Permute (Infer) � 1:7 � 5:1 � 0:9 � 7:8

Yang et al. (2016) 83:2 � 0:5 89:7 � 0:6 96:1 � 0:2 65:8 � 0:1

Uniform (Train+Infer / Infer) � 1:0 /� 0:8 +0 :2 /� 6:5 +0 :1 /� 1:5 � 0:7 /� 8:0
Random (Train+Infer / Infer) � 0:9 /� 1:0 � 1:2 /� 8:2 � 0:1 /� 1:8 � 3:0 /� 10:2
Permute (Infer) � 1:8 � 5:1 � 0:7 � 10:7

Table 1: Evaluation results on single sequence tasks. We report the base performance of attention
models and absolute change in accuracy for its variant. We note that across all datasets, degradation
in performance on altering attention weights during inference is more compared to varying them
during both training and inference. Overall, the change in performance is less compared to other
tasks. Please refer tox4.1 for more details.

4.1 HOW DOES ALTERING ATTENTION WEIGHTS AFFECT MODEL OUTPUT ON TASKS?

In this section, we compare the performance of various attention mechanism described inx3 for
different categories of tasks listed inx2. For each model, we analyze its three variants de�ned as:

� Uniform denotes the case when all the inputs are given equal weights, i.e.,� i = 1=T; 8i 2
f 1; :::; Tg. This is similar to the analysis performed by Wiegreffe & Pinter (2019). However,
we consider two scenarios when the weights are kept �xed both during training and inference
(Train+Infer) and only during inference (Infer).

� Random refers to the variant where all the weights are randomly sampled from a uniform
distribution: � i � U(0; 1); 8i 2 f 1; :::; Tg, this is followed by normalization. Similar to
Uniform, we analyze both Train+Infer and Infer.

� Permute refers to the case when the learned attention weights are randomly permuted during
inference, i.e.,� = shu�e( � ). Unlike the previous two, here we restrict our analysis to only
permuting during inference as Tensor�ow currently does not support backpropagation with
shuf�e operation.4

Effect on single sequence tasks:The evaluation results on single sequence datasets: SST, IMDB,
AG News, and YELP are presented in Table 1. We observe that Train+Infer case of Uniform and
Random attentions gives around0:5 and0:9 average decrease in accuracy compared to the base
model. However, in Infer scenario the degradation on average increases to3:9 and4:5 absolute
points respectively. This is so because the model becomes more robust to handle altered weights
in the former case. The reduction in performance from Permute comes around to4:2 across all
datasets and models. The results support the observation of Jain & Wallace (2019); Serrano &
Smith (2019) that alternating attention in text classi�cation task does not have much effect on the
model output. The slight decrease in performance can be attributed to corrupting the existing gating
mechanism which has been shown to give some improvement (Oord et al., 2016; Dauphin et al.,
2017; Marcheggiani & Titov, 2017).

Effect on pair sequence and generation tasks:The results on pair sequence and generation tasks
are summarized in Table 2 and 3, respectively. Overall, we �nd that the degradation in performance
from altering attention weights in case of pair sequence and generation tasks is much more substan-
tial than single sequence tasks. For instance, in Uniform (Train+Infer), the average relative decrease
in performance of single sequence tasks is0:1% whereas in case of pair sequence and generation
tasks it is49:5% and51:2% respectively. The results thereby validate our Proposition 4.1 and show
that altering attention does affect model output for a task where the attention layer cannot be mod-
eled as a gating unit in the network.

Visualizing the effect of permuting attention weights: To further reinforce our claim, similar to
Jain & Wallace (2019), we report the median of Total Variation Distance (TVD) between new and

4https://github.com/tensor�ow/tensor�ow/issues/6269
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SNLI MultiNLI CNN babI 0 babI 1 babI 2

Bahdanau et al. (2015) 75:7 � 0:3 61:1 � 0:1 63:4 � 0:8 96:1 � 4:3 95:8 � 0:3 92:8 � 0:1

Uniform (Train+Infer / Infer) � 41:8 /� 42:9 � 26:6 /� 28:7 � 30:8 /� 55:9 � 44:4 /� 63:4 � 47:4 /� 60:4 � 48:4 /� 62:1
Random (Train+Infer / Infer) � 41:6 /� 43:1 � 26:7 /� 28:6 � 30:9 /� 55:9 � 45:0 /� 62:0 � 47:3 /� 60:4 � 49:9 /� 62:2
Permute (Infer) � 41:0 � 27:6 � 54:8 � 67:8 � 68:3 � 66:7

Rockẗaschel et al. (2016) 78:1 � 0:2 62:4 � 0:6 63:6 � 0:6 98:6 � 1:6 96:2 � 0:9 93:2 � 0:1

Uniform (Train+Infer / Infer) � 44:2 /� 45:4 � 27:5 /� 30:3 � 30:8 /� 43:1 � 47:7 /� 67:8 � 47:9 /� 62:8 � 49:8 /� 60:9
Random (Train+Infer / Infer) � 44:3 /� 44:9 � 27:9 /� 28:3 � 30:6 /� 43:3 � 47:5 /� 64:9 � 48:4 /� 63:3 � 49:8 /� 60:9
Permute (Infer) � 41:7 � 29:2 � 44:9 � 68:8 � 68:3 � 65:2

Table 2: The performance comparison of attention based models and their variants on pair sequence
tasks. We �nd that the degradation in performance is much more than single sequence tasks.

Dataset Multi30k News Commentary

Bahdanau et al. (2015) 31:3 � 0:1 12:6 � 0:1

Uniform (Train+Infer / Infer) � 10:4 /� 29:4 � 8:7 /� 11:8
Random (Train+Infer / Infer) � 10:1 /� 29:4 � 8:8 /� 11:9
Permute (Infer) � 29:7 � 12:1

Luong et al. (2015) 31:5 � 0:2 12:7 � 0:2

Uniform (Train+Infer / Infer) � 10:6 /� 29:7 � 8:8 /� 12:0
Random (Train+Infer / Infer) � 10:3 /� 29:8 � 8:9 /� 12:0
Permute (Infer) � 30:1 � 12:2

Table 3: Evaluation results on neural machine translation. Similar to pair sequence tasks, we �nd
that the deterioration in performance is much more substantial than single sequence tasks. Please
refer tox4.1 for more details.

original prediction on permuting attention weights for each task. The TVD between two predictions
ŷ1 andŷ2 is de�ned as: TVD(ŷ1; ŷ2) = 1

2

P jYj
i =1 jŷ1i � ŷ2i j; wherejYj denotes the total number of

classes in the problem. We use TVD for measuring the change in output distribution on permuting
the attention weights. In Figure 2, we report the relationship between the maximum attention value
and the median induced change in model output over100permutations on all categories of tasks. For
NMT task, we present change in output at the25th-percentile length of sentences for both datasets.
Overall, we �nd that for single sequence tasks even with the maximum attention weight in range
[0:75; 1:0], the change in prediction is considerably small (the violin plots are to the left of the
�gure) compared to the pair sequence and generation tasks (the violin plots are to the right of the
�gure).

4.2 DO ATTENTION WEIGHTS CORRELATE WITH FEATURE IMPORTANCE MEASURES?

In this section, similar to the analysis of Serrano & Smith (2019), we investigate the importance
of attention weights only when one weight is removed. Leti � be the input corresponding to the
highest attention weights and letr be any randomly selected input. We denote the original model's
prediction asp and output after removingi � andr input asqf i � g andqf r g respectively. Now, to
measure the impact of removingi � relative to any randomly chosen inputr on the model output, we
compute the difference of Jensen-Shannon (JS) divergence betweenJS(p; qf i � g) andJS(p; qf r g)
given as:�JS = JS( p; qf i � g) � JS(p; qf r g): The relationship between the difference of attention
weights corresponding toi � andr , i.e.,� i � � � r and�JS for different tasks is presented in Figure 3.
In general, we found that for single sequence tasks, the changeJSdivergence is small even for cases
when the difference in attention weight is considerable. However, for pair sequence and generation
tasks, there is a substantial change in the model output.

4.3 HOW PERMUTING DIFFERENT LAYERS OF SELF-ATTENTION BASED MODELS AFFECT
PERFORMANCE?

In this section, we analyze the importance of attention weights on the performance of self-attention
based models as described inx3.4. We report the accuracy on single, and pair sequence tasks and
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Figure 2: Relationship between maximum attention weight and median change in output on per-
muting attention weights. For single sequence tasks,� , � indicate negative and positive class. For
MultiNLI, � , � , � denotes contradiction, entailment and neutral respectively. The results rein-
force the claim that altering attention weights in single sequence tasks does not have much effect on
performance while the same does not hold with other tasks. Refer tox4.1 for details.

Figure 3: Analysis of correlation between attention weights and feature importance measure. We
report relationship between difference in zeroed attention weights and corresponding change inJS
divergence for different tasks. Please refer tox4.2 for more details.

BLEU score for NMT on WMT13 dataset on permuting the attention weights of layers cumulatively.
For Transformer model, we analyze the effect of altering attention weights in encoder, decoder, and
across encoder-decoder (denoted by Across). The results are presented in Figure 4. Overall, we
�nd that unlike the pattern observed inx4.1 andx4.2 for single sequence tasks, altering weights in
self-attention based models does have a substantial effect on the performance. We note that this is
because while computing attention weights over all tokens with respect to a given token, Proposition
4.1 does not hold. Thus, altering them does have an impact across all three tasks. We note that in
the case of transformer model, altering the weights in the �rst step of Decoder and in Across has
maximum effect as it almost stops the �ow of information from encoder to decoder.

4.4 ARE ATTENTION WEIGHTS HUMAN INTERPRETABLE?

To determine if attention weights are human interpretable, here, we address the question of inter-
pretability of attention weights by manually analyzing them on a representative dataset of single and
pair sequence task. For each task, we randomly sample100samples with original attention weights
and100 with randomly permuted weights. Then, we shuf�e all 200 samples together and present
them to annotators for deciding whether the top three highest weighted words are relevant for the
model's prediction.
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