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ABSTRACT

We present a systematic framework for the Nesterov’s accelerated gradient flows
in the spaces of probabilities embedded with information metrics. Here two met-
rics are considered, including both the Fisher-Rao metric and the Wasserstein-2
metric. For the Wasserstein-2 metric case, we prove the convergence properties
of the accelerated gradient flows, and introduce their formulations in Gaussian
families. Furthermore, we propose a practical discrete-time algorithm in parti-
cle implementations with an adaptive restart technique. We formulate a novel
bandwidth selection method, which learns the Wasserstein-2 gradient direction
from Brownian-motion samples. Experimental results including Bayesian infer-
ence show the strength of the current method compared with the state-of-the-art.

1 INTRODUCTION

Recently, optimization problems on the space of probability and probability models attract increas-
ing attentions from machine learning communities. These problems include variational inference
(Blei et al., [2017), Bayesian inference (Liu & Wang, [2016), Generative Adversary Networks (GAN,
Goodfellow et al.| (2014)), and policy optimizations (Zhang et al.| 2018)), etc. For instance, vari-
ational inference methods approximate a target density by minimizing the Kullback-Leibler (KL)
divergence as the loss (objective) function.

Gradient descent methods with sampling efficient properties play essential roles to solve these opti-
mization problems. Here the gradient descent direction often relies on the information metric over
the probability space. This direction naturally reflects the change of the loss function with respect to
the metric. In literature, two important information metrics, such as the Fisher-Rao metric and the
Wasserstein-2 (in short, Wasserstein) metric, are of great interests (Amari, 1998} Otto, 2001} |Laf-
ferty, [1988)). For the Fisher-Rao gradient, classical results including Adam (Kingma & Bal [2014)
and K-FAC (Martens & Grosse, [2015) demonstrate its effectiveness in probability models. For the
Wasserstein gradient, many classical methods such as Markov chain Monte Carlo (MCMC) meth-
ods (Geman & Geman, |1987; Neal et al.,2011; Welling & Teh, [201 1)) and particle-based variational
inference (ParVI) methods (Liu & Wang, 2016; /Chen & Zhang} [2017; |Chen et al., 2018)) are based
on this framework in the probability space. The strength of using the Wasserstein gradient is also
shown in probability models such as GANs. (Arjovsky et al.,[2017;|Lin et al.,|2018; L1 et al.,|2019).

The Nesterov’s accelerated method (Nesterov, |1983) is widely applied in accelerating the vanilla
gradient descent under the Euclidean metric. It corresponds to a damped Hamiltonian flow, known
as the accelerated gradient flow (Su et al.l [2016). A natural question is whether there exists a
counterpart of the accelerated gradient flow in the probability space under information metrics. For
optimization problems on a Riemannian manifold, the accelerated gradient methods are studied by
Liu et al.[(2017); Zhang & Sral(2018)). The probability space embedded with information metric can
be viewed as a Riemannian manifold. Several previous works explore accelerated methods in this
manifold under the Wasserstein metric. [Liu et al.|(2018;[2019) propose an acceleration framework of
ParVI methods based on manifold optimization. [Taghvaei & Mehta|(2019) introduce the accelerated
flow from an optimal control perspective. On the other hand, |Cheng et al.| (2017); Ma et al.| (2019)
explore and analyze the acceleration on MCMC, based on the underdamped Langevin dynamics.

In this paper, we present a unified framework of accelerated gradient flows in the probability space
embedded with information metrics, named Accelerated Information Gradient (AIG) flows. From an
information-differential-geometry perspective, we derive AIG flows by damping Hamiltonian flows,
concerning both the Fisher-Rao metric and the Wasserstein metric. Then we focus on the Wasser-
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stein metric with the KL divergence loss function. In Gaussian families, we verify the existence
of the solution to AIG flows. Here we show that the AIG flow corresponds to a well-posed ODE
system in the space of symmetric positive definite matrices. We rigorously prove the convergence
rate of AIG flows based on the geodesic convexity of the loss function. Here we note that our proof
removes the unnecessary technical assumption in (Taghvaei & Mehta,|2019, Theorem 1).

Besides, we handle two difficulties in numerical implementations of AIG flows. On the one hand, as
pointed out by [Taghvaei & Mehtal (2019); [Liu et al.| (2019), the logarithm of density term (Wasser-
stein gradient of KL divergence) is hard to approximate in particle formulations. We propose a novel
kernel selection method, whose bandwidth is learned by sampling from Brownian motions. We call
it the BM method. On the other hand, we notice that the AIG flow can be a numerically stiff system,
especially in high-dimensional sample spaces. This is because the solution of AIG flows can be
close to the boundary of the probability space. To handle this issue, we propose an adaptive restart
technique, which accelerates and stabilizes the AIG algorithm. Numerical results in toy examples,
Gaussian measures and Bayesian Logistic regression indicate the validity of the BM method and the
acceleration effects of the proposed AIG flow.

This paper is organized as follows. Section[2]briefly reviews the information metrics and their corre-
sponding gradient flows and Hamiltonian flows in the probability space. In Section 3] we formulate
various forms of AIG flows and analyze W-AIG flows in Gaussian measures. We theoretically prove
the convergence rate of W-AIG flows in Section[d} Section [5] presents the discrete-time algorithm
for W-AIG flows, including the BM method and the adaptive restart technique. Section [6] provides
numerical experiments.

2  METRIC AND FLOWS IN THE PROBABILITY SPACE

Suppose that € is a region in R™. Let F(2) denote the set of smooth functions on . (-,-) and || - ||
are the Euclidean inner product and norm in R”. V, V- and A represent the gradient, divergence
and Laplacian operators in R™. Denote the set of probability density

P(Q):{pe}'(ﬁ): /de:n:L pZO}.

The tangent space at p € P(R) follows T,(Q2) = {o € F(Q) : [ odx = 0.}. The cotangent space
at p, T,P(£2), can be treated as the quotient space F(£2)/R, which are functions in F(2) defined
up to addition of constants.

Definition 1 (Metric in the probability space) A metric tensor G(p) : T,P(Q2) — T,P(Q2) is an
invertible mapping from the tangent space at p to the cotangent space at p. This metric tensor defines
the metric (inner product) on the tangent space 7,P(£2). Namely, for 01,02 € T,P(£2), we define

gp(01,02) :/JlG(p)agdx: /<I>1G(p)71<1)2dz,
where ®; is the solution to o; = G(p) 1 ®;,i = 1,2.

We present two important examples of metrics on the probability space P(£2): the Fisher-Rao metric
from information geometry and the Wasserstein metric from optimal transport.

Example 1 (Fisher-Rao metric) The inverse of the Fisher-Rao metric tensor is defined by

Gr(p)to=p <<1> - /@pdx) , ®eT;P(Q).

The Fisher-Rao metric on the tangent space is given by

95(01702) = /<I>1<I>2pdx — (/ @wdm) </ @wdw) , 01,02 € T,P(Q),

where ®; is the solution to o; = p (<I>Z- — f @ipdx) i =1,2.

Example 2 (Wasserstein metric) The inverse of the Wasserstein metric tensor is defined by

GV (p) '@ =-V-(pV®), ®eT;P(Q).
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The Wasserstein metric on the tangent space is given by
9?(01,02) = /P (V@,,V&3)dx, 01,02 €T,P(Q),

where ®; is the solution to 0; = =V - (pV®,), i = 1,2.

2.1 GRADIENT FLOWS

In learning, many problems can be formulated as the optimization problem in the probability space,

min FE(p).
uin (p)

Here E(p) is a divergence or metric loss functional between p and a target density p* € P(2). One
typical example of E'(p) is the KL divergence from p to p*,

B(p) = D pll) = [ 10g (p ) .

Another example is the maximum mean discrepancy (MMD, |Gretton et al.|(2012))),

E(p) = MMD(p, p*) / / 2K (2,9) (o) — p* (v))dedy,

where K (z,y) is a given kernel function. The gradient flow for E(p) in (P(£2), g,) takes the form
_19E(pt)
opt

Here is the L? first variation w.r.t. p;. We formulate the gradient flow under either the
Fisher-Rao metric or the Wasserstein metric.

Orpr = —G(pr)

dE(pt)
Op¢

Example 3 (Fisher-Rao gradient flow) The Fisher-Rao gradient flow is given by
oF oF
Orpy = d
tPt ( 5pf Spe Pt 90)
Example 4 (Wasserstein gradient flow) The Wasserstein gradient flow writes

OF
Oipt =V - <ptv5) .
Pt

2.2 HAMILTONIAN FLOW

In this subsection, we briefly review the Hamiltonian flow in the probability space. By using the
metric g, in the probability space, we can define a Lagrangian by

1
Llpt, 0ept) = 590, Ot Oepe) — Elpr).
The Euler-Lagrange equation for the Lagrangian follows
oL oL
O | =—— | =—+C(), 1
' (5(3%%)) dpt () M

where C'(t) is a spatially-constant function.
Proposition 1 If we let &, = 6L/6(0ipr) = G(pi)Oipy, the equation (1) can be formulated as a
system of (pt, P¢), i.e.,

Bipr — G(pe) '@ = 0,

14 SE 2)
0P+ = — | | ®:G(pr) ' 0id — =0
it t+25ﬂt(/ tG(pt) tx>+5pf )
where @ is up to a spatially-constant function shrift. Here (2) is the Hamiltonian flow
0 5pt/H(/0t7 )|
a[e]-[% 3| i) @

with respect to the Hamiltonian H(p;, ®;) = 5 L [©,G(p) ' @rdx + E(pr).
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Similarly, we can write the Hamiltonian flow under the Fisher-Rao metric or the Wasserstein metric.
Example 5 (Fisher-Rao Hamiltonian flow) The Fisher-Rao Hamiltonian flow follows

Oipr — Purpr + / ®ypidr =0,

1 oFE
6t¢)t + 7‘1)3 - /pt(btdl' (I’t + — = 0.
2 (Spt

The corresponding Hamiltonian is H*' (p;, ®;) = 1 (f ?pydx — (f ptétdx)Q) + E(py).
Example 6 (Wasserstein Hamiltonian flow) The Wasserstein Hamiltonian flow writes
Oips +V - (V) =0,
0F
i =

The corresponding Hamiltonian is #" (p, ®¢) = % [|[V®||?pidx + E(p;). This is identical to
the Wasserstein Hamiltonian flow introduced by |Chow et al.|(2019).

1
1Py + 5||V<1>t||2 + 0.

3 ACCELERATED INFORMATION GRADIENT FLOW

Let ai; > 0 be a scalar function of ¢. We add a damping term «;®; to the Hamiltonian flow (3).

s
0 [g;t] - [aflpj - {_01 (ﬂ ::é Z((’; iiﬂ =0. )
This renders the Accelerated Information Gradient (AIG) flow
oepr — G(py) '@ = 0,
0Py + oy Py + 1o (/ @tG(pt)ltIDtdx> LI 0, (A
2 0p¢ dpt

with initial values py = p° and ®; = 0. The choice of o, depends on the geodesic convexity of
E(p), which has an equivalent definition as follows.

Definition 2 For a functional F(p) defined on the probability space, we say that E(p) has a j3-
positive Hessian (in short, Hess(3)) w.r.t. the metric g, if there exists a constant 3 > 0 such that for
any p € P(2) and any o € T,,P(Q2), we have

gP(HeSS E(p)oa U) > ﬂgp(o—a U)’
Here Hess is the Hessian operator w.r.t. g,,.

If E(p) is Hess(B) for 8 > 0, then oy = 2+/0; if E(p) is Hess(0), then a;; = 3/t.

Remark 1 The Nesterov’s accelerated method (Nesterov, [1983) is a first-order method to optimize
f(z) in the Euclidean space. The corresponding accelerated gradient flow by |Su et al. (2016) is
equivalent to a damped Hamiltonian system

i 0 0 I [V.HE(z,p)] _ B 1
5 L] = | o] [V =0 P = 5l + £
with initial values 2(0) = z( and p(0) = 0. The choice of a; depends on the property of f(x).
If f(x) is B-strongly convex, then oy = 2/3; if f(x) is convex, then oy = 3/t. We apply this
Hamiltonian flow interpretation to construct in the probability space with information metrics.
We give examples of AIG flows under either the Fisher-Rao metric or the Wasserstein metric.
Example 7 (Fisher-Rao AIG flow) The Fisher-Rao AIG flow writes

Opr — Pipr + </ ‘I’tptd33> pt =0,
(F-AIG)

1 SE
at(bt + atq)t + 7q)§ - /ptq)td.'l,' (I)t 4+ — = 0.
2 opt

4
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Example 8 (Wasserstein AIG flow) The Wasserstein AIG flow writes

Oipt +V - (pVP,) = 0,
0E (W-AIG)

1
8t<I>t -+ Oét(I)t -+ *”V(I)t”Q + — = 0

2 dpt
For the rest of this paper, we mainly focus on the Wasserstein metric. Here the AIG flow (Eulerian
formulation in fluid dynamics) has a counterpart in the particle level (Lagrangian formulation).

Proposition 2 Suppose that X; ~ p; and V; = VO, (Xy) are the position and the velocity of a
particle at time t. Then, the differential equation of the particle system corresponding to

writes

dXy =WVidt, dVy = —aVidt —V <§E> (X)dt. (W-AIG-P)
Pt

If E(p) evaluates the KL divergence and p* o exp(—f(x)), (W-AIG-P) is equivalent to
dX; = Vidt, dV; = —cuVidt — V f(Xy)dt — V log pe(Xy)dt. (W-AIG-P-KL)

Remark 2 The V log p; (X} )dt term cannot be simply replaced by a Brownian motion d B; because
p¢ 1s the marginal distribution on X;. Several previous works have studied the accelerated gradient
flow of KL divergence in the probability space under the Wasserstein metric. [Taghvaei & Mehta
(2019) construct the accelerated gradient flow in the probability space based on Wibisono et al.
(2016)’s variational formulation on the Nesterov’s accelerated method. Their flows coincide with
with oy = 3/t after rescaling. The underdamped Langevin dynamics in (Cheng
et al., [2017; Ma et al.| [2019) damps the Hamiltonian flow of the particles, which is different from
as shown in (Taghvaei & Mehta, [2019). [Liu et al.| (2018; [2019) give the discrete-time
accelerated algorithm from the perspective of manifold optimization.

3.1 WASSERSTEIN METRIC RESTRICTED TO GAUSSIAN

In this subsection, we demonstrate that (W-AIG) has an ODE formulation in Gaussian family. De-
note V! to the multivariate Gaussian densities with zero means. Namely, if p°, p* € N2, then we

show that has a solution (p;, ®;) and p; € NP.

Let P™ and S™ represent symmetric positive definite matrix and symmetric matrix with size n X n
respectively. Each p € NV can be uniquely expressed by its covariance matrix ¥ € P" by p(z;X) =
(2m) /2
\/det(X) exp (
totally-geodesic submanifold in P(R™), see (Takatsu, [2008}; Modin, [2016}, Malago et al.,[2018). So
there exists a Wasserstein metric on P”, also known as the Bures metric. For ¥ € P”, the tangent
space and cotangent space follow TxP" ~ T3P" ~ S™.

Definition 3 (Wasserstein metric in Gaussian) For ¥ € P, the metric tensor G(X) : S — S”
is defined by G(X)71S = 2(XS + SX). The Wasserstein metric on S™ is gsn(A;1, A2) =
tr(A1G(X)Az) = tr(S1%S3), where S; € S™ is the solution to A; = 3S5; + S, 2,4 =1,2.

Proposition 3 Given an energy function E(X), the Wasserstein gradient flow in Gaussian writes

- %xTEflx) . The Wasserstein metric on P(R™) induces a metric on V!, which is a

Et = _2(ZtV21E(Zt) + VEtE(Et)Zt)~

Here Vs, is the standard matrix derivative. The Hamiltonian flow is a system of (£, S), i.e.,

Et - (StEt + ZtSt) = 0, (5)
Si 4+ S? +2Vy, B(%) = 0.
The corresponding Hamiltonian writes H(3;, Sy) = tr(S:2.S¢) + 2E(X4).
Therefore, by adding the damping term o, S;, we obtain the Wasserstein AIG flow in Gaussian.
S — (S5 + £4S4) = 0,
e (5 S " (W-AIG-G)
St + O[tSt + St + 2VEtE(Et) = O,
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with initial values ¥ = X% and Sy = 0. For now, we consider F(X) to be the KL divergence.

B(E) 2 B(p(+5%)) = 5 [(3(57) ™) ~ logdet(5(27) ) — ] ©

where >* is the covariance matrix of p*. The following theorem proves the well-posedness of
(W-AIG-G) and illustrates the connection between W-AIG flows in P and P (R™).

Theorem 1 Suppose that p°, p* € N and their covariance matrices are 3.0 and X*. E(X) defined

in (0) evaluates the KL divergence from p to p*. Let (34, St) be the solution to with
initial values Yo = X0 and Sy = 0. Then, for any t > 0, ¥; is well-defined and stays positive
definite. Furthermore, we denote

(x) = Mex (—133TZ_1$> D, (z) = leS r+C(t)
Pt det(Et) p 2 t ) t 2 t )

where C(t) = —t + %fot log det(X4(X*)~1)ds. Then, (p;, ®;) is the solution to with
initial values po = p° and ®¢ = 0.

4 CONVERGENCE RATE ANALYSIS ON W-AIG FLOWS

In this section, we prove the convergence rate of (W-AIG).

Theorem 2 Suppose that E(p) satisfies Hess($) for 8 > 0. The solution p; to with
oy = 2+/B satisfies
E(py) < Coe VPt = O(e=VPY).

If E(p) only satisfies Hess(0), then the solution p; to with oy = 3/t satisfies
E(p) < it~ = 0(72).
Here the constants Cy, C{y only depend on py.

Remark 3 Here Hess(5) is equivalent to the 3-geodesic convexity in the probability space w.r.t.
g,. For the Wasserstein metric, it is also known as 3-displacement convexity; see (Villani, 2008,
Chap 16). Consider the case where F(p) is the KL divergence and the target density takes the form
p* o exp(—f(x)). A sufficient condition for Hess(53) is that f(x) is S-strongly convex, see (Otto
& Villani, 2000; Bakry & Emery, 1985). If E(p) satisfies Hess(S3) for 8 > 0, then the classical
analysis indicates that the solution to the Wasserstein gradient flow has an O(e~2%*) convergence

rate. The W-AIG flow improves the convergence rate to O(e"/Bt), especially when £ is close to 0.

Here we provide a sketch in the proof of Theorem 2| Given p;, we can find the optimal transport
plan T} from p; to p*. Let T#p denote the push-forward density from p by the mapping 7". The
following proposition characterizes the inverse of the exponential map in probability space with the
Wasserstein metric.

Proposition 4 Denote the geodesic curve y(s) that connects p; and p* by v(s) = (sTy + (1 —
s)Id)#ps, s € [0,1]. Here Id is the identity mapping from R™ to itself. Then, 7(0) corresponds to
a tangent vector =V - (py(x)(Ty(x) — x)) € T,, P(Q).

We first consider the case where E(p) satisfies Hess(8) for 8 > 0. Motivated by the Lyapunov
function for Nesterov’s ODE in the Euclidean case, we construct the following Lyapunov function.

E(t) = eV (; [ |-vBTi@ - o)+ Vo) mats + B - E(p*>) NG

Proposition 5 Suppose that E(p) satisfies Hess(j3) for B > 0. py is the solution to with
oy = 2+/. Then, E(t) defined in (1) satisfies E(t) < 0. As a result,

E(p) < e VPE(t) < e VPLE(0) = O(eVPY).
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Note that £(0) only depends on pg. This proves the first part of Theorem [2| We now consider the
case where F(p) satisfies Hess(0). We construct the following Lyapunov function.

2 2
pr(@)dz + S (B(py) — E(p)). ®)

E(t) = ;/H—(Tt(x) 1)+ GV () :

Proposition 6 Suppose that E(p) satisfies Hess(0). p; is the solution to with oy = 3/t.
Then, E(t) defined in [®) satisfies £(t) < 0. As a result,

Blp) < &) < 5£(0) = 0.

Because £(0) only depends on pgy, we complete the proof.

Remark 4 For the Hess(0) case, we obtain the same result in (Taghvaei & Mehtal 2019,
Theorem 1).  Their proof comes from the Lagrangian formulation and our
proof is based on the Eulerian formulation (W-AIG). However, their technical assumption
E[(X¢+e Y, —Th=(Xy)) - %Tppfo (X:)] = 0is only valid in 1-dimensional case. In Appendix
IC.4] we prove that this quantity is non-negative. This is due to the Hodge decomposition behind

the optimal transport, see LemmalT]in Appendix [C.3]

5 DISCRETE-TIME ALGORITHM FOR W-AIG FLOWS

In this section, we present the discrete-time implementation of (W-AIG-P-KL). This implementation
is simpler and more stable than the one in (Taghvaei & Mehta, |[2019). Suppose that initial positions
of a particle system { X/} , are given and Vj = 0. The time parameter ¢ is related to the step size
/T viat = \/7k. The update rule follows

Vi = aeVi = VT(VA(X0) + &(Xh),  Xppn = X+ V7V, ©)
fori =1,2...N. If E(p) is Hess(8), then oy, = ;%, if E(p) is Hess(0) or 8 is unknown, then
ap = Z—;; Here &, (x) is an approximation of V log p:(z).

We review two common choices of &, as follows. If X,i follows a Gaussian distribution, then
(@) = —X; (@ — ), (10)

where my, and X, are the mean and the covariance matrix of {X/}¥ . For the non-Gaussian

case, we use the kernel density estimation (KDE, |Singh| (1977)), pr(z) = % Zfil K(x, X}C) to
approximate p;(x). Here K (x,y) is a kernel function. Then, & writes

N i
_ Zi:l va(ﬂvak)
= ~ .
Zi:l K(Iv Xk)
A common choice of K(z,y) is a Gaussian kernel with the bandwidth h, K%(z,y;h) =
(2mh) ™™/ exp (|| — y||?/(2h)). There are two difficulties in the discretization. For one thing, the
bandwidth h strongly affects the estimation of V log p:, so we propose the BM method to adaptively
learn the bandwidth from samples. For another, the second equation in (W-AIG) is the Hamilton-

Jacobi equation, which usually has strong stiffness. We propose an adaptive restart technique to deal
with this problem.

§k(x) = Vlog pr.(x) Y

Remark 5 Our numerical implementations of W-AIG flows can be viewed as a special case of
ParVI methods. Compared to traditional MCMC methods, ParVI methods are more sample-efficient
because make full use of a finite number of particles by taking particle interaction into account.

5.1 LEARN THE BANDWIDTH VIA BROWNIAN MOTION

SVGD uses a median (MED) method to choose the bandwidth, i.e.,

hi median ({||X,§ _ X,g\\2}57j=1) . (12)

1
~ 2log(N +1)
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Liu et al.| (2018) propose a Heat Equation (HE) method to adaptively adjust bandwidth. Motivated by
the HE method, we introduce the Brownian motion (BM) method to adaptively learn the bandwidth.

Given the bandwidth h, { X} | and a step size s, we can compute two particle systems

Yi(h) = X} — s&(x;h), Zp =X} +V2sB', i=1,...N,
where B is the standard Brownian motion. We want to minimize MMD(py-, pz), the MMD be-
tween the empirical distribution py () = Zil §(x—Y{(h))and pz(z) = Zf\il §(xz—Z}). Here,
the kernel K (x, y) for the MMD is the Gaussian kernel with a bandwidth of 1. So we optimize over
h to minimize MMD(py, pz), using the bandwidth hj,_; from the last iteration as the initialization.
For simplicity we denote BM(hy—1, {X:}Y ,, s) as the output of the BM method.
Remark 6 Besides KDE, there are other methods that approximate the V log p;(x) (compute &)

via a kernel function, such as the blob method (Carrillo et al., 2019) and the diffusion map (Taghvaei
& Mehtal [2019). The BM method can also select the kernel bandwidth for these methods.

5.2 ADAPTIVE RESTART

To enhance the practical performance, we introduce an adaptive restart technique, which shares the
same idea of gradient restart in (Odonoghue & Candes),2015;|Wang et al.,[2019) under the Euclidean
case. Consider

N
pr ==Y (Vi VXD + & (X0) | (13)
i=1
which can be viewed as discrete-time approximation of —gg‘t/(at pe, GV ( Pt)fl%) = —0E(py).

If @) < 0, then we restart the algorithm with initial values X§ = X} and V;j = 0. This essentially
keeps 0. F(p;) negative along the trajectory. The numerical results show that the adaptive restart
accelerates and stabilizes the discrete-time algorithm. The overall algorithm is summarized below.

Algorithm 1 Particle implementation of Wasserstein AIG flow

Require: initial positions { X} ,, step size 7, number of iteration L.
1: Setk=0,V{ =0,i=1,...N. Set the bandwidth hg by MED (T2).
2: forl=1,2,...Ldo
3:  Compute iy based on BM: by = BM(hy—1, { X} }¥.1, /7).
4:  Calculate & (X}) by (T0) or by (TT) with the bandwidth h;.
5:  Set oy, based on whether E(p) is Hess((3) or Hess(0). For i = 1,2, ... N, update
Vi, = Vi —VAVAXD) + (X)), Xipy = Xf+VTVig,.
if RESTART then , 4 '
Compute py = — 350, (Vi V(XL + &(X])) -
If ), < 0, set X; = X; and V = 0 and k = 0; otherwise set k = k + 1.
9: else
10: Setk=Fk+ 1.
11:  endif
12: end for

o R

6 NUMERICAL EXPERIMENTS

In this section, we present several numerical experiments to demonstrate the validity of the BM
method, the acceleration effect of the Wasserstein AIG flow, and the strength of the adaptive restart
technique. Implementation details can be found in Appendix

6.1 TOY EXAMPLE

We first investigate the validity of the BM method in selecting the bandwidth. The target density
p* is a toy bimodal distribution (Rezende & Mohamed, 2015). We compare two types of particle
implementations of the Wasserstein gradient flow over the KL divergence:

Xiyr = Xi = TV(XL) + V2rBy,  Xppy = Xj = 7(VF(X;) + &(X}))-
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Here B ~ N(0,1) is the standard Brownian motion and &, takes the form (TT)). The first method
is known as the MCMC method and the second method is called the ParVI method. For the second
method, the bandwidth & is selected by MED/HE/BM respectively. Figure [I] shows the distribution
of 200 samples based on different methods. Samples from MCMC match the target distribution in a
stochastic way; samples from MED collapse; samples from HE align tidily around the contour lines;
samples from BM arrange neatly and are closer to samples from MCMC. This indicates that the BM
method makes the particle system behave similar to MCMC, though in a deterministic way.

MCMC - MED | HE 7 BM

Figure 1: The effect of the BM method. Samples are plotted as blue dots. Left to right: MCMC,
MED, HE and BM. All methods are run for 200 iterations with the same initialization.

6.2 GAUSSIAN MEASURES

Next, we explore the effectiveness of flow compared to the Wasserstein gradient flow and
demonstrate the strength of the adaptive restart. The target density p* is a Gaussian distribution
with zero mean on R'%9, the covariance matrix of p* is ¥* and W* = (¥*)~!. Let L and 3 be
the largest/smallest eigenvalue of W*. E(p) satisfies Hess(/3) and the step size is 7 = 1/(4L). The
condition number of W* is defined as k = L/. The large L indicates X* is close to be singular.

We first demonstrate the effectiveness of in the ODE level. Detailed discretization is
left in Appendix[D.2] The initial value is set to be ¥y = I. For now, WGF denotes the discretization
of the Wasserstein gradient flow; AIG-(r)(s) denotes the discretization of the Wasserstein AIG flow.
For letters in the parentheses, ‘r’ denotes using the adaptive restart and ‘s’ denotes utilizing 3. Figure
presents the convergence of the KL divergence on two target distributions with small/large L. We
observe that AIG converges faster compared to WGF, which verifies Theorem[2] The adaptive restart
also accelerates the algorithm.

10% 10%

>

@ @ ]
€02 3 g
g0 g g \*M
2 =
) )
> =
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< —O—WGF < 10° [So-wer
| A \q‘\ —*—AG
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Figure 2: The acceleration effect of W-AIG flow and the strength of adaptive restart (ODE level).
The target density is a Gaussian distribution with zero mean on R'%0. Left: L = 1,k ~ 3.8 x 103.
Right: 8 =1,k ~ 4.0 x 10°.

Then, we demonstrate the results in the particle level. The setting of p* is same as the previous
experiment. The initial distribution of samples follows N(0, I) and the number of samples is N =
600. For a particle system {X}} ,, we record the KL divergence E(2:) (8) using the empirical
covariance matrix 3. The left part of Figure [3| (small L) is almost identical to Figure |2, which
verifies the acceleration effect of AIG flows. It also indicates that the adaptive restart helps to
accelerate the convergence. From the right part of Figure [3| (large L), AIG and AIG-s diverge
because of the ill target distribution, and the adaptive restart solves this problem.
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Figure 3: The acceleration effect of W-AIG flow and the strength of adaptive restart (particle level).
The setting of target densities is identical to the ones in Figure @

6.3 BAYESIAN LOGISTIC REGRESSION

We perform the standard Bayesian logistic regression experiment on the Covertype dataset, follow-
ing the same settings as |Liu & Wang| (2016). We compare our methods with MCMC, SVGD (Liu
& Wang|, 2016), WNAG (Liu et al 2018) and WNes (Liu et al., 2019). We select the bandwidth
using either the MED method or the proposed BM method. Figure 4] indicates that the BM method
accelerates and stabilizes the performance of WGF and AIG. The performance of MCMC and WGF
are similar and they achieve the best log-likelihood. In test accuracy, AIG-r converges faster than
other methods and is more stable. The adaptive restart improves the overall performance of AIG.

—~MCMC
<-SVGD
- WNAG

WNes
WGF
AIG
AIG-r

Test accuracy
Log likelihood

osall
“o 1000 2000 3000 4000 5000 6000 o 1000 2000 3000 4000 5000 6000
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-8vGD
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Test accuracy
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AIG
AlG-r
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AG
= AIG-r {
“o 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
Iteration Iteration

Figure 4: Comparison of different methods on Bayesian logistic regression, averaged over 10 inde-
pendent trials. The shaded areas show the variance over 10 trials. Top: BM; Bottom: MED. Left:
Test accuracy; Right: Test log-likelihood.

7 CONCLUSION

In summary, we propose the framework of AIG flows by damping Hamiltonian flows with respect
to certain information metrics in the probability space. AIG flows have been carefully studied in
Gaussian families. Theoretically, we establish the convergence rate of W-AIG flows. Numerically,
we propose the discrete-time algorithm and the adaptive restart technique to overcome the numerical
stiffness of W-AIG flows. We introduce a novel kernel selection method by learning from Brownian-
motion samples. The numerical experiments verify the acceleration effect of AIG flows and the
strength of the adaptive restart. In future works, we intend to systematically explain the stiffness of
AIG flows and the effect of the adaptive restart. We shall apply our results to general information
metrics, especially for the Fisher-Rao metric. We expect to study the related sampling efficient
optimization methods and discrete-time algorithms on general probability models.

10



Under review as a conference paper at ICLR 2020

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251—
276, 1998.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214-223, 2017.

Dominique Bakry and Michel Emery. Diffusions hypercontractives. In Séminaire de Probabilités
XIX 1983/84, pp. 177-206. Springer, 1985.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American Statistical Association, 112(518):859-877, 2017.

José Antonio Carrillo, Katy Craig, and Francesco S Patacchini. A blob method for diffusion. Cal-
culus of Variations and Partial Differential Equations, 58(2):53, 2019.

Changyou Chen and Ruiyi Zhang. Particle optimization in stochastic gradient mcmc. arXiv preprint
arXiv:1711.10927, 2017.

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, and Liqun Chen. A unified particle-
optimization framework for scalable bayesian sampling. arXiv preprint arXiv:1805.11659, 2018.

Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped langevin
mcmc: A non-asymptotic analysis. arXiv preprint arXiv:1707.03663, 2017.

Shui-Nee Chow, Wuchen Li, and Haomin Zhou. Wasserstein hamiltonian flows. arXiv preprint
arXiv:1903.01088, 2019.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. In Readings in computer vision, pp. 564-584. Elsevier, 1987.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672-2680, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Scholkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723-773, 2012.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

John D Lafferty. The density manifold and configuration space quantization. Transactions of the
American Mathematical Society, 305(2):699-741, 1988.

Wuchen Li, Alex Tong Lin, and Guido Montifar. Affine natural proximal learning. Geometric
science of information, 2019, 2019.

Alex Tong Lin, Wuchen Li, Stanley Osher, and Guido Montifar. Wasserstein proximal of gans.
CAM report 18-53, 2018.

Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, Jun Zhu, and Lawrence Carin. Ac-
celerated first-order methods on the wasserstein space for bayesian inference. arXiv preprint
arXiv:1807.01750, 2018.

Chang Liu, Jingwei Zhuo, Pengyu Cheng, Ruiyi Zhang, and Jun Zhu. Understanding and acceler-
ating particle-based variational inference. In International Conference on Machine Learning, pp.
4082-4092, 2019.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference
algorithm. In Advances in neural information processing systems, pp. 2378-2386, 2016.

Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, and Licheng Jiao. Accelerated first-order
methods for geodesically convex optimization on riemannian manifolds. In Advances in Neural
Information Processing Systems, pp. 4868—4877, 2017.

11



Under review as a conference paper at ICLR 2020

Yi-An Ma, Niladri Chatterji, Xiang Cheng, Nicolas Flammarion, Peter Bartlett, and Michael I Jor-
dan. Is there an analog of nesterov acceleration for memc? arXiv preprint arXiv:1902.00996,
2019.

Luigi Malago, Luigi Montrucchio, and Giovanni Pistone. Wasserstein riemannian geometry of
positive definite matrices. arXiv preprint arXiv:1801.09269, 2018.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408-2417, 2015.

Klas Modin. Geometry of matrix decompositions seen through optimal transport and information
geometry. arXiv preprint arXiv:1601.01875, 2016.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k?). Soviet Mathematics Doklady, 27(2):372-376, 1983.

Felix Otto. The geometry of dissipative evolution equations: the porous medium equation. Commu-
nications in Partial Differential Equations, 26(1-2):101-174, 2001.

Felix Otto and Cédric Villani. Generalization of an inequality by talagrand and links with the loga-
rithmic sobolev inequality. Journal of Functional Analysis, 173(2):361-400, 2000.

Brendan Odonoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15(3):715-732, 2015.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770, 2015.

Radhey S Singh. Improvement on some known nonparametric uniformly consistent estimators of
derivatives of a density. The Annals of Statistics, pp. 394-399, 1977.

Weijie Su, Stephen Boyd., and Emmanuel J. Candés. A differential equation for modeling Nesterov’s
accelerated gradient method: Theory and insights. Journal of Machine Learning Research, 2016.

Amirhossein Taghvaei and Prashant G Mehta. Accelerated flow for probability distributions. arXiv
preprint arXiv:1901.03317, 2019.

Asuka Takatsu. On wasserstein geometry of the space of gaussian measures. arXiv preprint
arXiv:0801.2250, 2008.

Cédric Villani. Topics in optimal transportation. American Mathematical Soc., 2003.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Yifei Wang, Zeyu Jia, and Zaiwen Wen. The search direction correction makes first-order methods
faster. arXiv preprint arXiv:1905.06507, 2019.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681-688,
2011.

Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. A variational perspective on accelerated
methods in optimization. proceedings of the National Academy of Sciences, 113(47):E7351-
E7358, 2016.

Hongyi Zhang and Suvrit Sra. Towards riemannian accelerated gradient methods. arXiv preprint
arXiv:1806.02812, 2018.

Ruiyi Zhang, Changyou Chen, Chunyuan Li, and Lawrence Carin. Policy optimization as wasser-
stein gradient flows. arXiv preprint arXiv:1808.03030, 2018.

12



Under review as a conference paper at ICLR 2020

A THE PROOFS AND DERIVATIONS IN SECTION [2]

In this section, we provide the derivation of the Euler-Lagrange equation, proofs in Section [2] and
the Euler-Lagrange formulation of (AIG).

A.1 DERIVATION OF THE EULER-LAGRANGE EQUATION

We derive the Euler-Lagrange equation (IJ) in this subsection. For a fixed T > 0 and two given
densities p¥, pT, consider the variational problem
po=p",pr = ,OT} :

Let by € F(£2) be the smooth perturbation function that satisfies [ h,dz = 0,¢ € [0,T] and
ho = hr = 0. Denote p; = p; + eh;. Note that

oL
L(pt, O dt+e/ /< Gh)dxdt—i-oe.
Pt / Pt tPt 5pt 5(epr) titt ()

= 0, it follows that

e=0
oL
————0Oth; | dxdt = 0.
/ /<5Pt 3tpf) ! t) !

Note that hy = hpr = 0. Perform integration by parts w.r.t. ¢ yields

oL
hiydxdt = 0.
/ /<5Pt 3tpt)> v

Because [ hydz = 0, (I) holds with a spatially constant function C'(¢).

T
t 0

dI(pS
From 7(? )
€

A.2 THE PROOF OF PROPOSITION[I]IN SECTION[2]

In this subsection, we derive the Hamiltonian flow in the probability space. First, we give a useful
identity. Given a metric tensor G(p) : T, P(Q2) — T;P(£2), we have

/O’lG(p)UQdSC:/G(p)O’ldgdl':/(I)lG(p)_lq)gd(L':/G(p)_lq)l‘:I)Qd{E. (14)

Here ®; = G(p)~'oy and &3 = G(p)~oa. We then check that

0 0
57/),5 </ 3tptG(pt)3tptdx> = _Tpt (/ (I)tG(pt)_l(I)tdl') . (15)

Let p; = pi + €h, where h € T,,, P(Q2). For all o € T, P, it follows
G(ps + ¢h) " G(p + eh)o = 0.
The first-order derivative w.r.t. € of the left hand side shall be 0, i.e.,

AG(py) ! G (pt) >
—_— -h|o=0.
< Ipt dpt 7

) o+ 6l (

Because d;p; = G(p) 1@, applying (T4) yields

/amt (agg’t) -h) Oy prda: = /@tG(pt)_l (8 (p0) ~h> By prda
= P

G
Opt
—1 —1
__/q)t 0G(p) ", G<pt)atptdx:_/ (26D N 6 e
8pt apt

13

(16)
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Based on basic calculations, we can compute that

_ oG
/3t/)tG(Pt)atPtdl’ - /8t/)tG(Pt)5tPtd$ = G/atpt < a;pt) : h) Opedx +o(e),  (17)
t

-1
—/q)tG(ﬁt)_l‘I)tdl"f'/q)tG(pt)_l(I)tdl‘: —6/‘1% (méppt)
t

Combining (T6), and (I8) yields (I3). Hence, the Euler-Lagrange equation (I)) is equivalent to

16 OF 16 oF
0P, = — — /a G(p:)d, dx>—:—(/<I>G 1<I>dx>—~
1 Dy 250, ( 01 G (pe)Ope S 23p; +G(pt) t Sp;

. h> O.dx +o(e). (18)

This equation combining with 9;p; = G(p)~'®, recovers the Hamiltonian flow (). In short, the
Euler-Lagrange equation (] is from the primal coordinates (p;, d;p;) and the Hamiltonian flow
is from the dual coordinates (p;, ®;). Similar interpretations can be found in (Chow et al.,|2019).

A.3 THE EULER-LAGRANGIAN FORMULATION OF AIG FLOWS

We can formulate as a second-order equation of py,
D? oE
— 0 G(p) ' — =
th Pt + QO Pt + (pt) 5,015
Here D?/Dt? is the covariant derivative in metric G. We can also explicitly write % p as follows.
D2

1 1)
Wpt = Oupr — (0:G(pr) ") Ospr + iG(pt)_lrpt (/ 8tptG(pt)(“)tptdx> )

B THE PROOFS IN SECTION [3]

In this section, we present proofs of propositions and theorems in Section 3]

B.1 THE PROOF OF PROPOSITION[2]IN SECTION

We start with an identity. For a twice differentiable ®(x), we have
1
5V\|V<I>||2 = V20Vd = (VP - V)V, (19)

From (W-AIG), it follows that

This is the continuity equation of p;. Hence, on the particle level, X; shall follows
dX: = VO, (X,)dt.
Let V; = V®;(X;). Then, by the conservation of momentum and (W-AIG), we have
dVy = (0y + VO,(Xy) - V)V, (X,)dt

1 0F
= (—atV(Dt(Xt) — §VHV<1>||2 ~ Va;;) dt + (V® - V)Vddt
t
0F §F
= — atV<I’t(Xt)dt - V*(Xt)dt = —Oét‘/tdt - V*(Xt)dt

5Pt (Spt
B.2 THE PROOF OF PROPOSITIONB]IN SUBSECTION@
In this subsection, we derive the Hamiltonian flow in Gaussian. For A € S®, we define the linear
operator M 4 : S™ — S™ by
MsB=AB+ BA, BeS".

14
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It is easy to verify that if A € P™, then Mgl is well-defined. For a flow ¥; € P",t > 0, we define
the Lagrangian L(X¢, %) = g5,(3;, %) — E(3;). The corresponding Euler-Lagrange equation

writes
ddL i
dtdy, d¥’
Let S; = Mz_tlilt, e, =S, + 3,5, Then, it follows

2L

gs, (Et, Zt) = tr(StEtSt) = 5 tI‘((StEt + EtSt)St) = 5 tr(EtSt) = 5 tr(ZtMgtIZt).

This leads to d%t = ngit = S;. For simplicity, we denote g = g5, (Et, Zt). First, we show that

dg _ 2
E— St'

Because S; = M, Z_tli]t. Given 3, S; can be viewed as a continuous function of 3. For any A € S™,
define ZA = tr((EtSt + StZt)A)

_dla_0S,0La  0la _ 05,
S dy, 0%, 0S5, 0%, 0%,

Here we view 0S7/0%; as a linear operator on S™. Let B = AY; + XA, then A = Mz_lB.

t

0 (AS; + %, A) + (AS, + S,A).

ggi B+ Msg, ME_tlB = 0 holds for all B € S™. Therefore, we have ggj =—Msg, Mgﬁl. Hence,
dg S, dg dg 4 ) , ,
== 2+ = = Mg M (S + 2:S, S2 = _MoS,+8%2=_52
dEt 3Et 85} + 32:& Sy, ( 2t + 2t t) + t SOt + t i
As a result, the Euler-Lagrange equation (2) is equivalent to
S dL 52
3T an - o VEGW 22
2 dy 5~V (%) (22)

Combining (22) with ¥ = S5, + 24S; renders the Hamiltonian flow ().

B.3 THE PROOF OF THEOREM [I]IN SUBSECTION[3.1]

We first show that 3, stays in P™. Suppose that 3, € P,, for 0 < ¢ < T Define H; = H (X, S;) =
tr(S:X¢S:) /2 + E(X;). We observe that (W-ATG-G) is equivalent to

0H; . OH;

—, St =-S5t —2—. 23
as5,’ Qo (23)

0%y
We show that H; is decreasing with respect to t.

dH, OH, . OH,. OH, OH,\ _0H, dH,
Do (208, Es ) =t [ L2t —aps, — 2900 ) 28 O
a " (ast 5t oy, t) o (ast ( 05t azt> HEE> 35t>

Y, =2

OH
= — O tr (Stast> = —% tr(St(EtSt + StEt)) = —Qy tI'(StZtSt) S 0.
t

For simplicity, we denote W* = (¥*)~1. Let A\; be the smallest eigenvalue of X;. Then,
log det(X,W*) > log det(X;) = nlog A:. Therefore,

Do A +1) < —%[logdet(EtW*) +nl < B(S)) < H(t) < H(0),

which indicates that )
At > exp (—H(O) — 1) . 24)
n

This means that as long as ¥; € P, the smallest eigenvalue of ¥; has a positive lower bounded.
If there exists 7' > 0 such that ¥ ¢ P,,. Because ¥ is continuous with respect to ¢, there exists
Ty < T,suchthatX; € P,,0 <t <Tjand Ay, < exp (—2H(0)/n — 1), which violates (24).

15
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We then reveal the relationship between (W-AIG) in P(R™) and P™. We can compute that

o .
=yl =y nt

g det(Et) = det(Zt)tr(Z;lit% 3t

ot
Combining with 3 = 2.5, + 5%, we obtain
(B0 = tr(Sh + 578 E) = 2tx(Se),
tr(zX; 12,8 ) = tr(a T2 S + 275, 2 a) = 2tr(S, 2 L aaT).

Therefore, it follows

0 1 1 —1¢ -1
Opr(x) = En (det(ZQ) det(E¢)pe(z) + B tr(a 5, 185 ) pr ()

=— %tr(E;lzt)pt(x) +tr(Se X tea ) pr(2) = — tr(Sy (I — 2 taa)) pe ().

Note that V®,(x) = Syz. Hence,

n

=V (p: V) = Z 0i(pe () Six); Z [pt(2)0;(Stx); + (Stx)i0;pi(x)]

i=1

= — pe() [tr(Sy) + (Stz) (=X '0)] = —pu() te(Se(I = By twa”)) = Oypi().
The first equation of (W-AIG)) holds. Because 0;®;(x) = xTStx/Q + C(t),
1 1
01 Py (z) + o @y () + §||V<I>t(a:)||2 ixTStx + - TStm + a: 82z + C(t)
. 1
=—2TVs, BE(Z)z +C(t) = ixT(zgl —W*)z + C(t).
Note that p* is the Gaussian density with the covariance matrix X*. Because C’(t) =
1 log det(X;W*) — 1, we can compute
0FE
5Pt

= 3T (S = Wha — O(t) = —(0ui(a) + () + 5[V ().

Therefore, the second equation of (W-AIG) holds. Because ¥y = X%, Sy = 0 and C(0) = 0, we
have py = p° and @ = 0. This completes the proof.

1 1
= log pi(z) —logp*(z) +1 = fixT(Et_l - Wz — B log det (32, W*) 4+ 1

C THE PROOFS IN SECTION [4]

In this section, we briefly review some geometric properties of the probability space as a Riemannian
manifold and present proofs of propositions in Section 4]

C.1 A BRIEF REVIEW ON THE GEOMETRIC PROPERTIES OF THE PROBABILITY SPACE

Suppose that we have a metric g, in the probability space P(€2). Given two probability densities
p°, pt € P(R), we define the distance as follows

1 1/2
a6 = (int { [ (060 36ds 220 = 50 = 1 })
The minimizer v(s) of the above problem is defined as the geodesic curve connecting p” and p*. An
exponential map at p € P(1) is a mapping from the tangent space ToP(£2) to P(Q). It requires
that 0 € T,0P(£2) is mapped to a point pt € P(£) such that there exists a geodesic curve (s)
satisfying v(0) = p%, 4(0) = o and y(1) = p'.
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C.2 THE PROOF OF PROPOSITION 4] IN SECTION[4]

In this subsection, we characterize the inverse of the exponential map in the probability space with
the Wasserstein metric. Let 77 = (sT; + (1 — s)Id)~1,s € [0,1]. Then, based on the theory of
optimal transport (Villanil [2003), we can write the explicit formula of the geodesic curve (s) by

V(s) =Ty #pr = det(VIY)py o Ty .

Through basic calculations, we can compute that

d d
—T7 =— —(sTy+ (1 —s)1d) =1d -T;.
dst <=0 ds =0
d d
— det(VTY) = —det(I + s(I — DT}) + o(s)) =tr( — DT3).
ds s=0 ds s=0
Therefore,
d
570 (@) =t = VI)pe(2) + (Vor(@), & = ¢ (2))
s=0

=V - (z = Ti(z))pe(x) + (Vpe(2), 2 — Ti(x)) = =V - (pe(2) (T2 (2) — ),
which completes the proof.

C.3 THE PROOF OF PROPOSITION[3] AND [l IN SECTION[4]

The main goal of this subsection is to prove the Lyapunov function £(t) is non-increasing.

Preparations. We first give a better characterization of the optimal transport plan 73. We can write
T, = VU, where U, is a strictly convex function, see (Villani, 2003). This indicates that V7}; is
symmetric. We then introduce the following proposition.

Proposition 7 Suppose that E(p) satisfies Hess(() for § > 0. Let T;(x) be the optimal transport
plan from p; to p*, then
oF

B 2 Bpo) + [ (D)~ 2.V 5 ) pio+ 5 [ 1) = alP e

This is a direct result of 8-geodesic convexity of F(p) based on Proposition
Next, let us denote u; = 8t(Tt)’1 o T;. We show that u; satisfies

Because (T}) " 1#p* = py, letuy = 0,(Ty) "t oTy and Xy = (1)~ Xo, where X ~ p*. This yields
%Xt = u¢(X¢). The distribution of X; follows p;. By the Euler’s equation, p; shall follows
815[)15 + V- (ptut) =0.
Combining this with the continuity equation yields (23).
Then, we formulate 9;7;(x) with u;. By the Taylor expansion,
Tirs(x) = Te(x) + s0: Ty () + o(s).
Lety = (T}) . it follows
(Tivs) (@) = (T1) (@) + sus((Ty) (@) + 0(s) = y + sus(y) + os).
Therefore,
0=Tiys((Trys) (@) — 2 = Tiys(y + sur(y) + o(s)) — @
=T (y + sur(y)) + sO: T (y + su(y)) — x + o(s)
=Ti(y) + sVTi(y)ui(y) + s0:Ti(y) — = + o(s)
=s [VT(y)ue(y) + 0T (y)] + o(s).
We shall have VT (y)u:(y) + 0:T:(y) = 0. Replacing y by x gives
W Ti(x) = —VTi(x)u (). (26)

The following lemma illustrates two important properties of u; and 9,7;.
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Lemma 1 For u; satisfying 23), we have
/ <V<I>t — Uy, VTtV@t> ptd.’L' Z 07 / (V@t — Uy, VTt({E)(Tt({E) - .’L')) Pt = 0.

PROOF We first notice that u; — V&, is divergence-free in term of p;. From —VTiu; = O,T; =
Vo, V., we observe that —VT;u, is the gradient of 0, V,. Therefore,

/<V‘I’t — ug, VIyug) pr = — / (004, V- (pe(V®; — up))) = 0.

Based on our previous characterization on the optimal transport plan T}, V1; = VW, is symmetric
positive definite. This yields that

/ <V¢t — Uy, VTtV<1>t> ptd.')f == / <V(I)t — Uy, VTtVCI)t> ptd(E - / <V(I)t — Uy, VTtut> Pt
:/ <V(I)t — Uy, VTt(V(I)t — ’U,t)> ptdl' Z 0.
The last inequality utilizes that V'T; is positie definite and p; is non-negative. Then, we prove the

equality in Lemma [I| Because VT}(z)(T3(z) — z) = sV(|Ti(z) — z||* + Ti(z) — ||z]?) is a
gradient. Similarly, it follows

/(V@t —ug, VT (2)(Te(x) — x)) pr = 0.
Lemma [T]and the relationship (26)) gives

— / <8tTt, V(I)t> ptdx = / <Ut, VTtV<I>t> ptdl' S /<V(I)t, VTtV(I)t> ptdl‘, (27)

/ (0T, Ty(2) — o) prdar = — / (Y, VT,(2)(Ty(x) — 2)) peda. (28)

Proof of Proposition[5} Based on the definition of the Wasserstein metric, we have

oE
8,5E(pt) = — / Tptv . (ptvq)t)d.'l,‘

Differentiating £ () (7) w.r.t. ¢ renders

E(t)e VP! zﬁ/ (0, Ty, Ty(z) — x) prda — g/ Ty (z) — z||*V - (0, V®,)dx
- \/B/ <8tTt, V(I)t> ptdil? - \/B/ <ﬂ(1') — T, 3tV<I>t> ptdl'
+ \/B/m(x) —x,V®t>V~(ptV<I>t)dx—|—/(V@t,atvfbt)ptdx
)
- %/HV@HQV (Pt V) — / Tiv (peVO;)dx
+ @ / |V ®,||2pydx — B/(Tt(x) — 1z, V®;i(x)) prdx

3
2[00 — ol + /BB B ) @)
For the part (29), Proposition [7]renders

VE [ 11it0) = el e+ FE) < VB [ (i)~ 0.V Y pude. GO

We first compute the terms with the coefficient 3° in & (t)e*\/ﬁt. We observe that

1 SE
/(V@t,8t®t>ptda:— §/||V<I)t||2v-(ptV@t)da:—/é—V-(ptV@t)ptdaj
1 OF ’ S
:/ <atv(bt + §V||v¢t”2 + Vép,V(I)t> ptdl‘ = —2\/3/ qu)tnzptdl',
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where the last equality uses (W-AIG) with o, = 2+//3. Substituting (30) and (31) into the expression
of £(t)e~ VP yields

E(t)e VPt gﬁ/ (0T, Ty (x) — x) prdx — g/ T3 (2z) — 2|2V - (p, V®,;)dx
- 5/ (Ti(z) — 2, V) prdx — JB/ (8, Ty, V®,) peda:
- \/B/ (Ti(z) — x, 0, V) prdx — \/B/ <Tt(:17) - x,ng> prdx

+ \/B/<Tt(x) — 2, V)V - (VP )dx — —/HVCI) 12 pedaz.

(32)

Then, we deal with the terms with V - (p; V®;). We have the following two identities
/(Tt(x) —z,VO) V- (p: VP, )dx = — / (V{(Ti(z) — 2, V&) , V) prdx
=— / (V,, V2P (2)(Ti(z) — 2) + (VTy(z) — I)VD,) prda (33)

1

:—§/<Tt($)—.T,V||V<I)t||2>ptd$—/<v®t7VTtV®t>ptd$+/HV(I)tHQPtd.’E

1
=5 [ 1) = 2l (V8o = [ (V) - D(Ti(a) - 2), T8 puda
(34)
= / (Ty(z) — 2, VIV ;) pidr — / (Ti(x) — x, V) peda.
Hence, we can proceed to compute the terms with the coefficient /3. 27) and (33) yields
oF
_ \/’/ (i Ty, V) prda — f/<Tt —xz,0, VP, +V5 >ptd$
s / IV ®,||%psda + \/E/ (Ti(z) — 2, V®) V - (0 VP )d
=— \/B/ (8, T, + VT,V ®,, V) ppdx — L= / V@2 peda: 35)
E ,
- \/B Ty(x) —z,0/V®; + V(T + *V”V‘i’t” prdx
Substituting (34) and (33)) into (32) gives
E(t)e VP 4 g / VD, | prda
<6 [ 0T Ti(w) ~ a) puo = [ [Tie) = 5IPV - (V@)
- ﬁ/ (Ti(x) — x, V) prdx + Qﬂ/ (Ti(x) — x, V) prdx
:ﬂ/ (0T + VIV, Ty (z) — x) prdx = 0,
where the last equality uses (28). In summary, we have

gV < V7 J 1wz <o
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Proof of Proposmon@ Differentiating () (§) w.r.t. ¢, we compute that

E(t) :/ (O Ty, Ty (x) — ) prdx — %/ T3 (z) — z||*V - (p, V®,;)dx

t 1 t
_ / <8tTt, 2V¢)t> ptd.lj — / <Tt(.13) — T, §V¢>t + 26tV<I>t> ptdl'

t t 1 t
+ / <Tt(:v) -z, V<I>t> V- (pe VO )dr + / <V<I>t, §V<I>t + 28tV<I>t> prdx

o e

Because E(p) is Hess(0), Proposition|[7] yields

(VB )z — / (V) + (B (o)~ B(p")).
(36)

B(p) = Blp) ~ B") < - [ <Tt<x> s, vgf> pud. 37

Utilizing the inequality (37) and substituting the expressions of terms involving 9; T} and V- (p; V®;)

in (36) with the expressions in (27) (28) and (33) (34), we obtain
E(t) < - / (V®,, VT (x)(Ty(x) — x)) ped + / (Ty(x) — x, VT,V®;) prda

t
_/<Tt(x) —x,V@t>ptd1:+§/(Vfbt,VTtV@t)ptdx

1 t
—5 / (Ty(x) — x, V) prdx — 3 / (VO Ty () — x) prdx
t t
- Z/(Tt(m) —z,V||V®|?) prdz — 5/(Vc1>t,VTtV<1>t>ptd:c (38)

t t t2
+§/||V‘I>t||2f0td$+Z/HV‘I’tHthdl‘-&-Z/<V¢’t,3tV¢>t>ptda:

t2 ) t2 SE
+ = [ (VO V|VE|?) prda + — [ ( VP, V— ) prda
8 4 5Pt

t OF
-3 / <Tt(x) - x,V(Spt> prde.

The expression of (38)) can be reformulated into

: 3 3t
-5 [ To) -0 Vo) pde+ 7 [ |V Pprde
t

! 5E
- / <Tt(x) 5,0V, + SV + vépt> puda

12 1 )
+ —/ V®,, 0,V + =V||V®||? + V—) pdz.
4 2 (Spt

From (W-AIG) with a; = 3/¢, we have the following equalities.

t2

5E
a <v<1>t,atvq>t+ SVIVaE+ V5 >ptdx/V<I>t| puda,

t OF 3
_2/<Tt( ) —z,0,VP, + VHV(I)tH2—|—V6 >ptdCL’ 2/<Tt(m)—x,V<I>t>ptdx.

As aresult, £(t) < 0. This completes the proof.
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C.4 COMPARISON WITH THE PROOF IN THE ACCELERATED FLOW

The accelerated flow in (Taghvaei & Mehtal [2019) is given by
dX; dY;

oF
— QTN — ot tBite X
dt e ts dt e V (5Pt) ( t) (39)

Here the target distribution satisies po () = p*(z) x exp(—f(x)). Suppose that we take oy =
logp — logt, B; = plogt + log C and v; = plogt. Here we specify p = 2 and C' = 1/4. Then

the accelerated flow is identical to (W-AIG-P-KT)) if we replace Y; by 2¢~3V;. The Lyapunov
function in (Taghvaei & Mehtal 2019)) follows

V(1) =%]EH|Xt + 7Y, = Ty (X)) + 7 (E(p) — E(p"))

2

_1 / H—(Tt(x) — )+ EV@(J:) pi(x)dz + %(E(pt) — EB(p)).

The last equahty is based on the fact that V; = V&, (X;) and T; = T P” is the optimal transport plan

Pt
from pt to p*. This indicates that the Lyapunov function in (Taghvaei & Mehtal |2019) is identical to
ours (8). The technical assumption in (Taghvaei & Mehtal, [2019)) follows

- * d
0=E <Xt +e %Y;f - T;é)t (Xt)) dtTﬁt (Xt):|

=E :<Xt + %V} - Tt(Xt)) : jtTt(Xt)}

=E :(Xt + %Vt - Tt(Xt)) (0T (Xe) + VTtVt)}

t
:/ <l‘ — Tt(.ﬁ) + §V(I)t($), &th + VTtV(I)t> ptdx
Based on 9;T; = —VT;u; and Lemmal[l] we have
/ (x — Ty(x), 0Ty + VIV ®,) prdax = / (x — Ty (x), VI (VP — uy)) prdx = 0.

/ <V‘I)t, 8,5Tt + VTtV<I>t> ptdl' = / <V‘bt, VTt(VcI)t — Ut)> ptd.'lf

= / <V‘I)t — Uy, VTt(V(I’t — Ut)> ptdl' Z 0.
As a result, we have

d t
E |:(Xt + 6_’”}/; - T;:O (Xt)) %T;im (,Xt):| = /(Vq)t — Uy, VTt(Vq)t - Ut)> ptdl' 2 0.

In 1-dimensional case, because V - (p;(u; — V®;)) = 0 indicates that p;(u; — V®;) = 0. For
pe(z) > 0, we have u;(z) — V&, (x) = 0. So the technical assumption holds. In general cases,
although u; = 0;(T}) ! o Ty satisfies V - (py(uy — V®;)) = 0, but this does not necessary indicate

that u; = V®,. Hence, E [(X; + ™Y, — TF=(X,)) - U‘litTpptm (X:)] = 0 does not necessary hold
except for 1-dimensional case.

D IMPLEMENTATION DETAILS IN THE NUMERICAL EXPERIMENTS
In this section, we elaborate on the implementation details in the numerical experiments.

D.1 DETAILS IN SUBSECTION [6.1]

The initial distribution of the particle system follows the standard Gaussian N (0, I). The objective
density function is

p*(z) o< exp(—2(||z]| — 3)?)(exp(—2(z1 — 3)) + exp(—2(z1 + 3)?)), =z € R
All methods run for 200 iterations using the same fixed step size 7 = 0.1.
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D.2 DETAILS IN SUBSECTION[6.2]

The discretization the Wasserstein gradient flow in Gaussian follows
Yht1 =2k — 27(Ek Ve, E(Zk) + Ve, E(Zr) k). (40)
The discretization of is given by
Skt1 = apSy = VT(SE + 2V, E(Z1)), g1 = (L + V7S, ) Sk (I + VT Ski1).  (41)

The choice of «y, is same as the one for @]) based on whether 3 is known. To ensure the update
of Y51 won’t blow up, we check whether tr(7.5%) > n. If this holds, we restart the algorithm. In
fact, the update on X, can be viewed as the exponential map from X;, with the direction XSk 11 +
Sk+12k. Nevertheless, this is an exponential map if and only if I + /7Sy 1 is positive definite.
The update rule of /75,1 can rewrite into

VTSki1 = TSk — (V7Sk)* — 27V s, B(S)). (42)

Because of the existence of —(+/7S%)?, as long as the spectral radius (the eigenvalue with the largest
absolute value) of /75, is greater than 1, then I 4 /7Sk+1 cannot maintain to be positive definite.
So at this time we need to restart the algorithm. Nevertheless, to compute the spectral radius is
computational costly. Instead, we use a weaker condition tr(7.S7) > n.

We also introduce the adaptive restart technique for (4I). Consider
Pk = — tI‘(SkJrlEkVEkE(Ek)).

This restarting criterion corresponds to the particle version of (I3). Similarly, if ¢ < 0, we restart
the algorithm using initial values ¥y = Xj and .Sy = 0.

For the particle implementation, the update rule of WGF writes
Xj = —7(VF(Xp) + &(X5),
where &, is computed based on KDE (TI)).

D.3 DETAILS IN SUBSECTION[6.3]

We follow the same setting as (Liu & Wang,|2016)), which is also adopted by |Liu et al.| (2018}2019).
The data set is split into 80% for training and 20% for testing. The mini-batch size is taken as 50.
For MCMC, the number of particles is N = 1000; for other methods, the number of particles is
N = 100. The BM method is not applied to SVGD in selecting the bandwidth.

The initial step sizes for the compared methods are given in Table [I} The step size of SVGD is
adjusted by Adagrad, which is same as (Liu & Wang, 2016). For WNAG, AIG and WRes, the step
size is give by 7, = 1/ 199 for > 1. The parameters for WNAG and Whnes are identical to (Liu
et al., 2018) and (Liu et al., 2019). For MCMC, WGF and AIG-r, the step size is multiplied by 0.9
every 100 iterations. We record the cpu-time for each method in Table 2] The computational cost

Method | MCMC | SVGD | WNAG | Wnes | WGF | AIG | AIG-r
Step size T le-5 0.05 le-6 le-5 le-5 | le-5 | le-6

Table 1: Initial step sizes of algorithms in comparison.

of the BM method is much higher than the MED method because we need to evaluate the MMD of
two particle systems several times in optimizing the subproblem.

Method | MCMC | SVGD | WNAG | Wnes | WGF AlIG AlIG-r
BM 13.962 | 5.539 | 78.038 | 78.509 | 79.006 | 79.094 | 78.945
MED 13.909 | 5.581 5.623 5.625 | 5.395 | 5.890 | 5.689

Table 2: Averaged cpu time(s) cost for algorithms in comparison.
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