
Under review as a conference paper at ICLR 2020

WINNING THE LOTTERY WITH CONTINUOUS SPARSIFI-
CATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The Lottery Ticket Hypothesis from Frankle & Carbin (2019) conjectures that, for
typically-sized neural networks, it is possible to find small sub-networks which
train faster and yield superior performance than their original counterparts. The
proposed algorithm to search for such sub-networks (winning tickets), Iterative
Magnitude Pruning (IMP), consistently finds sub-networks with 90 − 95% less
parameters which indeed train faster and better than the overparameterized models
they were extracted from, creating potential applications to problems such as
transfer learning.
In this paper, we propose a new algorithm to search for winning tickets, Continuous
Sparsification, which continuously removes parameters from a network during
training, and learns the sub-network’s structure with gradient-based methods in-
stead of relying on pruning strategies. We show empirically that our method is
capable of finding tickets that outperforms the ones learned by Iterative Magnitude
Pruning, and at the same time providing up to 5 times faster search, when measured
in number of training epochs.

1 INTRODUCTION

Although deep neural networks have become ubiquitous in fields such as computer vision and
natural language processing, extreme overparameterization is typically required to achieve state-of-
the-art results (Xie et al., 2017; Devlin et al., 2018), causing higher training costs and hindering
applications where memory or inference time are constrained. Recent theoretical work suggest that
overparameterization plays a key role in both the capacity and generalization of a network (Neyshabur
et al., 2018), and in training dynamics (Allen-Zhu et al., 2019). However, it remains unclear whether
overparameterization is truly necessary to train networks to state-of-the-art performance.

At the same time, empirical approaches have been successful in finding less overparameterized
neural networks, either by reducing the network after training (Han et al., 2015; 2016) or through
more efficient architectures that can be trained from scratch (Iandola et al., 2016). Recently, the
combination of these two approaches lead to new methods which discover efficient architectures
through optimization instead of design (Liu et al., 2019; Savarese & Maire, 2019). Nonetheless,
parameter efficiency is typically maximized by pruning an already trained network.

The fact that pruned networks are hard to train from scratch (Han et al., 2015; 2016) suggests that,
while overparameterization is not necessary for a model’s capacity, it might be required for successful
network training. Recently, this idea has been put into question by Frankle & Carbin (2019), where
heavily pruned networks are trained faster than their original counterparts, often yielding superior
performance.

A key finding is that the same parameter initialization should be used when re-training the pruned
network. A winning ticket, defined by a sub-network and a setting of randomly-initialized parameters,
is quickly trainable and has already found applications in, for example, transfer learning (Morcos
et al., 2019; Mehta, 2019; Soelen & Sheppard, 2019), making the search for winning tickets a problem
of independent interest.

Currently, the standard algorithm to find winning tickets is Iterative Magnitude Pruning (IMP)
(Frankle & Carbin, 2019; Frankle et al., 2019), which consists of a repeating a 2-stage procedure
that alternates between parameter optimization and pruning. As a result, IMP relies on a sensible

1

Under review as a conference paper at ICLR 2020

choice for pruning strategy, and is time-consuming: finding a winning ticket with 1% of the original
parameters in a 6-layer CNN requires over 20 rounds of training followed by pruning, totalling over
1000 epochs (Frankle & Carbin, 2019). Choosing a parameter’s magnitude as pruning criterion
has also shown to be sub-optimal in some settings (Zhou et al., 2019), leading to the question of
whether better winning tickets can be found by different pruning methods. Moreover, at each iteration,
IMP resets the parameters of the network back to initialization, hence considerable time is spent on
re-training similar networks with different sparsities.

With the goal of speeding up the search for winning tickets in deep neural networks, we design
a novel method, Continuous Sparsification, which continuously removes weights from a network
during training, instead of following a strategy to prune parameters at discrete time intervals. Unlike
IMP, our method approaches the search for sparse networks as a `0-regularized optimization problem
(Louizos et al., 2017), resulting in a method that can be fully described in the optimization framework.
To approximate `0-regularization, we propose a smooth re-parameterization, allowing for the sub-
network’s structure to be directly learned with gradient-based methods. Unlike other work, our
re-parameterization is deterministic and not stochastic, proving more convenient for the task of
finding winning tickets and yielding faster training times.

Experimentally, our method is capable of finding winning tickets in Residual Networks trained on
CIFAR-10 at a fraction of time taken by Iterative Magnitude Pruning. In particular, Continuous
Sparsification successfully finds tickets in under 5 iterations, compared to 20 iterations required by
Iterative Magnitude Pruning in the same setting. To further speed up the search for sub-networks, our
method abdicates parameter rewinding, a key ingredient of Iterative Magnitude Pruning. By showing
superior results without rewinding, our experiments offer insights on how ticket search should be
performed.

2 RELATED WORK

2.1 LOTTERY TICKET HYPOTHESIS

The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) states that for a network f(x;w), w ∈ Rd,
and randomly-initialized parameters w0 ∼ D, there exists a sparse sub-network, defined by a configu-
ration m ∈ {0, 1}d, ‖m‖0 � d, that, when trained from scratch, achieves higher performance than
f(x;w) while requiring fewer training iterations. The authors support this conjecture experimentally,
showing that such sub-networks indeed exist: in particular, they can be discovered by repeatedly train-
ing, pruning, and re-initializing the network, through a procedure named Iterative Magnitude Pruning
(IMP; Algorithm 1) (Frankle et al., 2019). More specifically, IMP alternates between: (1) training the
weights w of a network, (2) removing a fixed fraction of the weights with the smallest magnitude
(pruning), and (3) rewinding: setting the remaining weights back to their original initialization w0.

The sub-networks found by IMP, which indeed train faster and outperform their original, dense
networks, are called winning tickets, and can generalize across datasets (Mehta, 2019; Soelen &
Sheppard, 2019) and training methods (Morcos et al., 2019). In this sense, IMP can be a promising
tool in applications that involve knowledge transfer, such as transfer or meta learning.

Zhou et al. (2019) perform extensive experiments to re-evaluate and better understand the Lottery
Ticket Hypothesis. Relevant to this work is the fact that the authors propose a method to learn the
binary maskm in an end-to-end manner through SGD, instead of relying on magnitude-based pruning.
The authors show that learning only the binary mask and not the weights is sufficient to achieve
competitive performance, confirming that the learned masks are highly dependent on the initialized
values w0, and are also capable of encoding substantial information about a problem’s solution.

2.2 SPARSE NETWORKS

The core aspect of searching for a winning ticket is finding a sparse sub-network that attains high
performance relative to its dense counterpart. One way to achieve this is through pruning methods
(LeCun et al., 1990), which follow a strategy to remove weights from a trained network while
minimizing negative impacts on its performance. In Han et al. (2015), a network is iteratively trained
and pruned using parameter magnitudes as criterion: this iterative, two-stage algorithm is shown to
outperform “one-shot pruning”: training and pruning the network only once.

2

Under review as a conference paper at ICLR 2020

Algorithm 1 Iterative Magnitude Pruning (Frankle et al., 2019)

1: Initialize w ← w0 ∼ D and m← ~1d

2: Minimize L(f(x;m� w)) until wT is produced
3: Set mi = 0 for the active weights with smallest magnitudes (|wT,i| ≤ τ and mi = 1)
4: If satisfied, output ticket f(x;m� wk)
5: Otherwise, set w ← wk and go back to step 2

Algorithm 2 Iterative Stochastic Sparsification (inspired by Zhou et al. (2019))

1: Initialize w ← w0 ∼ D, s← ~s0
2: Minimize Em∼Ber(σ(s)) [L(f(x;m� w))] + λ ‖σ(s)‖1 until wT and sT are produced
3: If satisfied, output ticket f(x;m� wk), m ∼ Ber(σ(sT))
4: Otherwise, set w ← wk, si ← −∞ for si,T < si,0, and go back to step 2

Other methods attempt to approximate `0 regularization on the weights of a network, yielding one-
stage procedures that can be fully described in the optimization framework. In order to find a sparse
setting m ∈ {0, 1}d of a network f(x;m � w), Srinivas et al. (2016) and Louizos et al. (2017)
use a stochastic re-parameterization m ∼ Bernoulli(g(s)) with s ∈ Rd and g : R → [0, 1] applied
element-wise. First-order methods, coupled with gradient estimators, are then used to train both w
and s to minimize the expected loss. This approach performs continuous parameter removal during
training in an automatic fashion: any component si of s that assumes a value during training where
g(si) = 0 effectively removes wi from the network. Moreover, approximating `0 regularization has
the advantage of not requiring a pruning strategy, which might be arbitrarily complex.

3 METHOD

Designing a method to quickly find winning tickets requires an efficient way to sparsify networks:
ideally, sparsification should be done as early as possible in training, and the number of removed
parameters should be maximized without harming the model’s performance. In other words, sparsifi-
cation must be continuously maximized following a trade-off with the performance of the network.
This goal is not met by Iterative Magnitude Pruning: sparsification is done at discrete time steps, only
after fully training the network, and optimal pruning rates likely depend on the model’s performance
and current sparsity: factors which are typically not accounted for – note that these are inherent
characteristics of magnitude-based pruning.

In light of this, we turn to `0-regularization methods for learning sparse networks, which consist of
optimizing a clear trade-off between sparsity and performance. Moreover, as we will see, performing
sparsification continuously is not only straightforward, but done automatically by the optimization
method.

3.1 CONTINUOUS SPARSIFICATION BY LEARNING DETERMINISTIC MASKS

We first frame the search for sparse networks as a loss minimization problem with `0 regularization
(Louizos et al., 2017; Srinivas et al., 2016):

min
w∈Rd

L(f(x;w)) + λ · ‖w‖0 (1)

where λ ≥ 0 controls the sparsity of the solution, and, with a slight abuse of notation, L(f(x;w))
denotes the loss incurred by the network f(x;w) (e.g., the cross-entropy loss over a training set). As
`0 regularization is typically intractable, we re-state the above minimization problem as:

min
w∈Rd

m∈{0,1}d
L(f(x;m� w)) + λ · ‖m‖1 (2)

3

Under review as a conference paper at ICLR 2020

Algorithm 3 Continuous Sparsification

1: Initialize w ← w0 ∼ D, s← s0, β ← β0
2: Minimize L(f(x;σ(β · s)� w)) + λ ‖σ(βs)‖1 while increasing β, producing wT , sT , and βT
3: If satisfied, output ticket f(x; b(sT)� wk)
4: Otherwise, set s← min(βT · sT , s0), β ← β0, (optionally, w ← w0), and go back to step 2

−2.5 0.0 2.5

z

−0.5

0.0

0.5

1.0

1.5

b(
z
)

−2.5 0.0 2.5

z

b′
(z

)

−2.5 0.0 2.5

z

σ
(β
z
)

β = 200

β = 4

β = 1

−2.5 0.0 2.5

z

σ
′ (
β
z
)

Figure 1: Illustration of our proposed re-parameterization m = σ(βs), where σ(z) = 1
1+e−z is the

sigmoid function and β acts as a temperature. As β increases, σ(βz) approaches b(z), which can can
be used to frame a `0-regularized problem (Equation 4). Note that the gradients of σ(βs) vanish as β
increases, suggesting that β should be annealed slowly during training.

which uses the fact that, for m ∈ {0, 1}d, ‖m‖0 = ‖m‖1. The `1 term can be minimized with
subgradient descent, however the m ∈ {0, 1}d constraint makes the above problem combinatorial
and poorly suited for local search methods like SGD.

We can avoid the binary constraint m ∈ {0, 1}d by re-parameterizing m as a function of a newly-
introduced variable s ∈ Rd. For example, Louizos et al. (2017) propose a stochastic mapping s 7→ m
and use gradient methods to minimize the expected total loss, while using estimators for the gradients
of s (since m is still binary). Having a stochastic mask (or, equivalently, a distribution over sub-
networks) poses an immediate challenge for the task of finding tickets, as it is not clear which ticket
should be chosen once a distribution overm is learned. Moreover, relying on gradient estimators often
causes gradients to have high variance, requiring longer training to reach optimality. Alternatively,
we consider a deterministic parameterization m = b(s), where s ∈ Rd6=0 and b : R 6=0 → {0, 1} is
applied element-wise:

b(z) =

{
1, if z > 0

0, if z < 0
(3)

Applying this re-parameterization to Equation 2 yields:

min
w∈Rd

s∈Rd
6=0

L(f(x; b(s)� w)) + λ · ‖b(s)‖1 (4)

Clearly, the above problem is again intractable, as it is still equivalent to the original `0 problem in
Equation 1. More specifically, the step function b(z) is non-convex, and having zero gradients make
gradient-based optimization ineffective. Instead, we consider the following smooth relaxation of b(·):

m := σ(β · s) (5)

where β ∈ R>0, and σ is the sigmoid function σ(z) = 1
1+e−z , applied element-wise. By controlling

β, which acts as a temperature parameter, we effectively interpolate between σ(s), a smooth function
well-suited for SGD, and limβ→∞ σ(β · s) = b(z), our original goal, which brings computational

4

Under review as a conference paper at ICLR 2020

hardness to the problem. Figure 1 illustrates this behavior. Note that, if L(f(x;w)) is continuous in
w, then:

min
w∈Rd

s∈Rd
6=0

lim
β→∞

L(f(x;σ(βs)� w)) + λ · ‖σ(βs)‖1 = min
w∈Rd

s∈Rd
6=0

L(f(x; b(s)� w)) + λ · ‖b(s)‖1 (6)

Although gradient methods will become ineffective as β →∞ due to vanishing gradients of s, we
can increase β while optimizing s and w with gradient descent. That is, our loss at each iteration will
be a function of β as follows:

Lβ(w, s) = L(f(x;σ(βs)� w)) + λ · ‖σ(β · s)‖1 (7)

How does the soft mask m = σ(β · s) behave as we minimize Lβ(w, s) while increasing β? As
β →∞, every negative component of s will be mapped to 0, effectively removing its correspondent
weight parameter from the network. While analytically the weights will never truly be zeroed-out,
limited numerical precision has the fortunate side-effect of causing actual sparsification to the network
during training, as long as β is increased to a large enough value.

In a nutshell, we learn sparse networks by minimizing Lβ(w, s) for T parameter updates with gradient
descent while jointly annealing β: producing wT , sT and βT , which is ideally large enough such that,
numerically 1, σ(βT · sT) = b(sT). In case m is truly required to be binary (as in the task of finding
tickets), the dependence on numerical imprecision can be avoided by directly outputting m = b(sT)
at the end of training.

Finally, note that minimizing Lβ while increasing β is not generally equivalent to minimizing the
original `0-regularized problem. Informally, the former aims to solve limβ→∞minw,s Lβ(w, s),
while the `0 problem is minw,s limβ→∞ Lβ(w, s).

3.2 TICKET SEARCH THROUGH CONTINUOUS SPARSIFICATION

The method presented above offers a direct alternative to magnitude-based pruning when performing
ticket search, but a few considerations must follow. Most importantly, when searching for winning
tickets, there is a strict constraint that the learned mask m be binary: otherwise, one can also learn
the magnitude of the weights, defeating the purpose of finding sub-networks that can be trained from
scratch. To guarantee that the output mask satisfies this constraint regardless of numerical precision,
we always output b(sT) instead of σ(βT · sT).
Additionally, we also incorporate two techniques from successful methods for learning sparse
networks and searching for winning tickets. First, motivated by Han et al. (2015), where it is shown
that iteratively pruning a network yields improved sparsity compared to pruning it only once, we
enable “kept” weights – those whose corresponding component of s is positive after many iterations –
to be removed from the network at a later stage. More specifically, when β becomes large after T
gradient descent updates, the gradients of s vanish and weights will no longer be removed from the
network. To avoid this, we set s← min(βT · sT , s0), effectively resetting the soft mask parameters
for the remaining weights while at the same time not interfering with weights that have been removed.
This is followed by a reset on the temperature, β ← β0, to allow training of s once again.

Second, we perform parameter rewinding, following Frankle & Carbin (2019), which is a key
component of Iterative Magnitude Pruning. More specifically, after T gradient descent steps, we
reset the weight values back to an earlier stage w ← wk, where k � T . Even though experimental
results in Frankle & Carbin (2019) suggest that rewinding is necessary for successful ticket search,
we leave rewinding as an optinal component of our algorithm: as we will see empirically, it turns out
that ticket search is possible without rewinding weights. Our proposed algorithm to find winning
tickets is presented as Algorithm 3, and referred simply as “Continuous Sparsification”.

1We observed in our experiments that a final temperature of 500 is sufficient for iterates of s when training
with SGD with 32-bit precision. The required temperature is likely to depend on the how s is numerically
represented, as in reality our method relies on numerical imprecision.

5

Under review as a conference paper at ICLR 2020

4 EXPERIMENTS

Our experiments aim at comparing different methods on the task of finding winning tickets in neural
networks, hence our evaluation focuses on the generalization performance of each ticket (sub-network)
when trained from scratch (or from an iterate in early-training). Additionally, we measure the cost of
the search procedure: the number of training epochs to find tickets with varying performance and
sparsity.

Besides comparing our proposed method to Iterative Magnitude Pruning (Algorithm 1), we also
design a baseline method, Iterative Stochastic Sparsification (ISS, Algorithm 2), motivated by the
procedure in Zhou et al. (2019) to find a binary maskmwith gradient descent in an end-to-end fashion.
More specifically, ISS uses a stochastic re-parameterization m ∼ Bernoulli(σ(s)) with s ∈ Rd, and
trains w and s jointly with gradient descent a straight-through estimator (Bengio et al., 2013). When
ran for multiple iterations, all components of the mask parameters s which have decreased in value
from initialization are set to −∞, such that the corresponding weight is permanently removed from
the network. While this might look arbitrary, we observed empirically that ISS was unable to remove
weights quickly without this step unless λ was chosen to be large – in which case the model’s
performance decrease in exchange for sparsity.

4.1 CONVOLUTIONAL NEURAL NETWORKS

We train a neural network with 6 convolutional layers on the CIFAR-10 dataset (Krizhevsky, 2009),
following Frankle & Carbin (2019). The network consists of 3 blocks of 2 resolution-preserving
convolutional layers followed by 2× 2 max-pooling, where convolutions in each block have 64, 128
and 256 channels, a 3× 3 kernel, and are immediately followed by ReLU activations. The blocks
are followed by fully-connected layers with 256, 256 and 10 neurons, with ReLUs in between. The
network is trained with Adam (Kingma & Ba, 2015) with a learning rate of 0.0003 and a batch size
of 60.

Learning a Supermask: As a first baseline, we consider the task of learning a “supermask” (Zhou
et al., 2019): a binary mask m that, when applied to a network with randomly initialized weights,
yields competitive performance compared to a network when training its weights. This task is
equivalent to pruning a randomly-initialized network, or learning an architecture that performs well
prior to training with a fixed initialization. We compare ISS and CS , where each method is run for a
single iteration composed of 100 epochs. When ran for a single iteration, ISS is equivalent to the
algorithm proposed in Zhou et al. (2019) to learn a supermask, referred here as simply Stochastic
Sparsification. We control the sparsity of the learned masks by varying s0 between −5 and 5 for
Stochastic Sparsification (which showed to be more effective than varying λ), while for Continuous
Sparsification we vary λ between 10−11 and 10−7 (which results in stable and consistent training,
unlike varying s0). SS uses SGD with a learning rate of 100 to learn its mask parameters, while
CS uses Adam with 3× 10−4.

Results are presented in Figure 2: CS outperforms SP in terms of both training speed and the quality
of the learned mask. In particular, CS finds masks with over 75% sparsity that yield over 75% test
accuracy, while masks learned by SP suffer visible performance drop with more than 50% sparsity
(i.e., less than 40% test accuracy with 75% sparsity). Moreover, CS makes faster progress in training,
suggesting that optimizing a deterministic mask is indeed faster than learning a distribution over
masks due to a stochastic re-parameterization.

Finding Winning Tickets: We run IMP and ISS for a total of 30 iterations, each consisting of 40
epochs, where the network weights are trained with Adam (Kingma & Ba, 2015) and learning rate
of 3× 10−4, following Frankle & Carbin (2019). For IMP, we use pruning rates of 15%/20% for
convolutional and fully-connected layers. We initialize the Bernoulli parameters of ISS with s0 = ~1,
and train them with SGD and a learning rate of 20 and `1 regularization of λ = 10−8. For CS , we
anneal the temperature from β0 = 1 to β0 = 100 following an exponential schedule (βt = 100

t
T),

training both the weights and the mask with Adam and a learning rate of 3× 10−4.

To test whether our method is capable of finding winning tickets in a limited amount of time, we
limit each run of CS to 4 iterations only, in contrast with IMP and ISS which are run for 30. We
perform different runs of CS while varying the mask initialization s0 between −0.03 and 0.03 and

6

Under review as a conference paper at ICLR 2020

100.0 51.4 26.5 13.7
Percentage of weights remaining (%)

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

Stochastic Sparsification
Continuous Sparsification

100.0 51.4 26.5 13.7
Percentage of weights remaining (%)

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

Stochastic Sparsification
Continuous Sparsification

Figure 2: Learning a binary mask with weights frozen at initialization with Stochastic Sparsification
(SS, Algorithm 2 with one iteration) and Continuous Sparsification (CS), on a 6-layer CNN on CIFAR-
10. Left: Training curves with hyperparameters for which masks learned by SS and CS were both
approximately 50% sparse. CS learns the mask significantly faster while attaining similar early-stop
performance. Right: Sparsity and test accuracy of masks learned with different settings for SS
and CS: our method learns sparser masks while maintaining test performance, while SS is unable to
successfully learn masks with over 50% sparsity.

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0
Percentage of weights remaining (%)

60

65

70

75

80

85

Te
st

 A
cc

ur
ac

y
(%

)

Iterative Magnitude Pruning
Iterative Stochastic Sparsification
Continuous Sparsification
Continuous Sparsification (Pareto)

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0
Percentage of weights remaining (%)

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

Iterative Magnitude Pruning
Continuous Sparsification 1
Continuous Sparsification 2
Continuous Sparsification 3
Continuous Sparsification (Pareto)

Figure 3: Test accuracy of tickets found by different methods, when weights start from initialization
or early training.

keeping λ = 10−10, such that sparsification is not enforced during training, but heavily biased at
initialization.

Figure 3 (left) presents the quality of tickets found by each method, measured by their test accuracy
when trained from scratch. In only 2 iterations, CS finds a ticket with over 77% sparsity which
outperforms every ticket found by IMP in 30 iterations: compare purple and blue curves. The green
line indicates the optimal curve for tickets found by CS: it strictly dominates IMP for tickets with
more than 3% remaining weights, where ticket performance is similar to the original network: note
that each ticket (marker) of the optimal curve was found in at most 4 iterations by CS, showing its
elevated potential as a method to quickly find winning tickets.

4.2 FINDING WINNING TICKETS IN RESIDUAL NETWORKS WITHOUT REWINDING

Our method proved successful in quickly finding winning tickets in a small CNN trained with small
learning rates, but searching for tickets in more realistic and complex models is not straightforward and
might require additional strategies. Frankle et al. (2019) show that IMP fails at finding winning tickets
in ResNets (He et al., 2016) unless the learning rate is significantly smaller than the recommended
value, leading to worse overall performance and defeating the purpose of ticket search. However, the
authors propose a slight modification to IMP that enables search for winning tickets to be successful
on complex networks: instead of training a ticket from scratch, weights from early training are used
to initialize each ticket.

7

Under review as a conference paper at ICLR 2020

With this in mind, we evaluate how Continuous Sparsification performs in the time-consuming task
of finding winning tickets on a ResNet-18 (He et al., 2016) trained on CIFAR-10: a setting where
IMP might take over 10 iterations (850 epochs) to succeed. We follow the setup in Frankle & Carbin
(2019) and Frankle et al. (2019): in each iteration, the network is trained by SGD with a learning
rate of 0.1 and a momentum of 0.9 for a total of 85 epochs, using a batch size of 128. The learning
rate is decayed by a factor of 10 at epochs 56 and 71, and a weight decay of 0.0001 is applied to the
weights (for CS , we do not apply weight decay to the mask parameters s). The two skip-connections
that perform 1× 1 convolutions and the output layer are not sparsified: for IMP, their parameters are
not pruned, while for CS their weights do not have a correspondent mask m nor mask parameters s.

When training the returned tickets in order to evaluate their performance, we initialize their weights
with the iterates from the end of epoch 2 (780 parameter updates), similarly to Frankle et al. (2019).
Unlike when searching for winning tickets in the 6-layer CNN, IMP performs global pruning,
removing 20% of the remaining parameters with smallest magnitude, ranked globally (across different
layers). IMP runs for a total of 30 iterations, while CS is limited to only 5 iterations for each run,
where the sparsity of the found ticket is controlled by varying the initialization s0 for the mask
parameters. To allow for even faster ticket search, we run CS without parameter rewinding: that is,
the weights w are transferred from one iteration to another, removing the need to re-train the network
as the method progresses through iterations.

The results presented in Figure 3 (right) show that CS is able to successfully find winning tickets
with varying sparsity in under 5 iterations, significantly outperforming IMP in both performance of
the found tickets and time spent in the search. Most notably, CS is capable of quickly sparsifying
the network in a single iteration: for example, by removing over 94% of the weights in the first
iteration, followed by a drastic performance increase in the second iteration, where it outperforms
IMP (compare yellow and blue curves). Once again, the best tickets found by CS (green curve)
strictly dominate the ones found by IMP when sparsity is less than 97%, even though most tickets
were found in 2 or less iterations, and all were found in less than 5 iterations total.

We associate the performance drop of highly sparse tickets found by our method from the second
iteration onwards (yellow and purple curves) to the lack of weight rewinding. We speculate that,
when rewinding is not performed between iterations, the distance between initialization values
and the parameter iterates produced by gradient descent increase significantly with the number of
iterations. This in turn can result in the learned mask to be highly sub-optimal for weight values
close to initialization, which are posteriorly used to train the found tickets. This might suggest that in
order to avoid re-training the network and hence make the search for winning tickets more efficient,
rewinding should not be performed between iterations. In this case, the search must complete quickly,
before performance degradation occurs due to “overtraining”, requiring optimal ways to perform
sparsification without negatively impacting the model’s performance.

5 DISCUSSION

With Frankle & Carbin (2019), we now realize that sparse sub-networks can indeed be successfully
trained from scratch, putting in question the belief that overparameterization is required for proper
optimization of neural networks. Such sub-networks, called winning tickets, can be potentially used
to significantly decrease the required resources for training deep networks, as they are shown to
transfer between different, but similar, tasks (Mehta, 2019; Soelen & Sheppard, 2019).

Currently, the search for winning tickets is a poorly explored problem, where Iterative Magnitude
Pruning (Frankle & Carbin, 2019) stands as the only algorithm suited for this task, and it is unclear
whether its key ingredients – post-training magnitude pruning and parameter rewinding – are the
correct choices for the task. Here, we approach the problem of finding sparse sub-networks as
an `0-regularized optimization problem, which we approximate through a smooth, parameterized
relaxation of the step function. Our proposed algorithm for finding winning tickets, Continuous
Sparsification, removes parameters automatically and continuously during training, and can be fully
described by the optimization framework. We show empirically that, indeed, post-training pruning
might not be a sensible choice for finding winning tickets, raising questions on how the search for
tickets differs from standard network compression. With this work, we hope to further motivate the
problem of quickly finding tickets in overparameterized networks, as recent work suggests that the
task might be highly relevant to transfer learning and mobile applications.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation. arXiv e-prints, art. arXiv:1308.3432,
2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv e-prints, art. arXiv:1810.04805,
2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the
Lottery Ticket Hypothesis. arXiv e-prints, art. arXiv:1903.01611, 2019.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. NIPS’15, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CVPR, 2016.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt
Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size.
arXiv:1602.07360, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In NIPS. 1990.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. ICLR,
2019.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning Sparse Neural Networks through
L0 Regularization. arXiv e-prints, art. arXiv:1712.01312, 2017.

Rahul Mehta. Sparse Transfer Learning via Winning Lottery Tickets. arXiv e-prints, art.
arXiv:1905.07785, 2019.

Ari S. Morcos, Haonan Yu, Michela Paganini, and Yuand ong Tian. One ticket to win them
all: generalizing lottery ticket initializations across datasets and optimizers. arXiv e-prints, art.
arXiv:1906.02773, 2019.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
Understanding the Role of Over-Parametrization in Generalization of Neural Networks. arXiv
e-prints, art. arXiv:1805.12076, 2018.

Pedro Savarese and Michael Maire. Learning implicitly recurrent CNNs through parameter sharing.
In ICLR, 2019.

Ryan Van Soelen and John W. Sheppard. Using winning lottery tickets in transfer learning for
convolutional neural networks. In IJCNN, 2019.

Suraj Srinivas, Akshayvarun Subramanya, and R. Venkatesh Babu. Training Sparse Neural Networks.
arXiv e-prints, art. arXiv:1611.06694, 2016.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. CVPR, 2017.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. ArXiv, abs/1905.01067, 2019.

9

	Introduction
	Related Work
	Lottery Ticket Hypothesis
	Sparse Networks

	Method
	Continuous Sparsification by Learning Deterministic Masks
	Ticket Search through Continuous Sparsification

	Experiments
	Convolutional Neural Networks
	Finding Winning Tickets in Residual Networks without Rewinding

	Discussion

