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ABSTRACT

Understanding the representational power of Deep Neural Networks (DNNs) and
how their structural properties (e.g., depth, width, type of activation unit) affect
the functions they can compute, has been an important yet challenging question
in deep learning and approximation theory. In a seminal paper, Telgarsky high-
lighted the benefits of depth by presenting a family of functions (based on sim-
ple triangular waves) for which DNNs achieve zero classification error, whereas
shallow networks with fewer than exponentially many nodes incur constant error.
Even though Telgarsky’s work reveals the limitations of shallow neural networks,
it doesn’t inform us on why these functions are difficult to represent and in fact he
states it as a tantalizing open question to characterize those functions that cannot
be well-approximated by smaller depths.
In this work, we point to a new connection between DNNs expressivity and
Sharkovsky’s Theorem from dynamical systems, that enables us to characterize
the depth-width trade-offs of ReLU networks for representing functions based on
the presence of a generalized notion of fixed points, called periodic points (a fixed
point is a point of period 1). Motivated by our observation that the triangle waves
used in Telgarsky’s work contain points of period 3 – a period that is special in
that it implies chaotic behaviour based on the celebrated result by Li-Yorke – we
proceed to give general lower bounds for the width needed to represent periodic
functions as a function of the depth. Technically, the crux of our approach is
based on an eigenvalue analysis of the dynamical systems associated with such
functions.

1 INTRODUCTION

In approximation theory, one typically tries to understand how to best approximate a complicated
family of functions using simpler functions as building blocks. For instance, Weierstrass (1885)
proved a general result stating that every continuous function can be uniformly approximated as
closely as desired by a polynomial. It wasn’t until later that Vitushkin (1959) gave quantitative
bounds between the approximation error and the polynomial’s degree. Drifting away from polyno-
mials and given the recent breakthroughs of deep learning in a variety of difficult tasks like image
classification, natural language processing, game playing and self-driving cars, researchers have
tried to understand the approximation theory that governs neural networks. This question of neural
network expressivity, i.e. how architectural properties like the depth, width or the activation units
affect the functions it can compute, has been a fundamental ongoing challenge with a rich history.
A classical result by (Cybenko (1989), Hornik et al. (1989), Fukushima (1980)) demonstrates the
expressive power of neural networks: it states that even two layered neural networks (using well
known activation functions) can approximate any continuous function on a bounded domain. The
caveat is that the size of such networks may be exponential in the dimension of the input, which
makes them highly susceptible to overfitting as well as impractical, since one can always add extra
layers in their model aiming at increasing the representational power of the neural network.

More recently, in a seminal paper by Telgarsky (2016), it was shown that there exist functions that
can be represented by DNNs, i.e, by some particular choice of weights on their edges (and for a
wide variety of standard activation units in their layers), yet cannot be approximated by shallow
networks unless they are exponentially large. More concretely, he showed that for any positive
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integer k, there exist neural networks with Θ(k3) layers, Θ(1) nodes per layer, and Θ(1) distinct
parameters which cannot be approximated by networks with O(k) layers, unless they have Ω(2k)
nodes. At a high level, he uses the number of oscillations present in certain functions as a notion
of “complexity” that distinguishes between deep and shallow networks’ representation capabilities
via the following facts: a) functions with few oscillations poorly approximate functions with many
oscillations, b) functions computed by networks with few layers must have few oscillations and c)
functions computed by networks with many layers can have many oscillations.

Our main contribution is a novel connection between the theory of dynamical systems and the rep-
resentational power of DNNs via the well-studied notion of periodic points, a notion that captures
the important notion of fixed points of a continuous function.
Definition 1 (Period). We say that a (continuous) Lipschitz function f : [0, 1] → [0, 1] contains a
point of period n ≥ 1 if there exists a point x0 ∈ [0, 1] such that1:

fn(x0) = x0 and (point of period n)

fk(x0) 6= x0, ∀ 1 ≤ k ≤ n− 1.

In particular, all numbers in C = {x0, f(x0), f(f(x0)), . . . , fn−1(x0)} are distinct, each of which
is a point of period n and the set C is called a cycle (or orbit) of period n. Observe that since
f : [0, 1]→ [0, 1] is continuous, it certainly has at least one point of period 1, which is called a fixed
point.

For the rest of this paper, we focus on (continuous) Lipschitz functions f : [0, 1] → [0, 1], unless
otherwise stated. Note that the choice of interval [0, 1] is for simplicity of our presentation and that
our results will hold for any closed interval [a, b].

As we observe, points of period 3 are contained in both Telgarsky (2016) and Schmitt (2000) con-
structions and this could as well have been a coincidence, however we show that the existence of
periodic points of certain periods are actually one of the reasons explaining why depth is needed
to represent functions that contain them (otherwise exponential width is required). Towards this
direction, we will make use of a deep result in the literature of iterated dynamical systems called
Sharkovsky’s Theorem Sharkovsky (1964; 1965).

1.1 SHARKOVSKY’S THEOREM

Consider the set of positive natural numbers N∗ = {1, 2, . . . } and define the following (decreasing)
ordering . called Sharkovsky’s ordering as follows:

3 . 5 . 7 . · · · . (odd numbers bigger than one)
.2 · 3 . 2 · 5 . 2 · 7 . · · · . (odd multiples of two but not two)

.22 · 3 . 22 · 5 . 22 · 7 . · · · . (odd multiples of four but not four)
...

. · · · . 24 . 23 . 22 . 2 . 1 (powers of two in decreasing order).

This is a total ordering; we write l . r or r / l whenever l is to the left of r. Sharkovsky showed that
this ordering describes which numbers can be periods for a continuous map on an interval; allowed
periods need to be a suffix of the Sharkovsky ordering:
Theorem 1.1 (Sharkovsky “Forcing” Theorem Sharkovsky (1964; 1965)). Let I be a closed interval
and f : I → I be a continuous map. If n is a period for f and n . n′, then n′ is also a period for f .
Remark 1.1. Note that the number 3 is the maximum period according to Sharkovsky’s ordering,
so an important corollary is that a function having a point of period 3, must also have points of any
period. This special corollary is a weaker version of Sharkovsky’s theorem and was proved some
years later2 in a celebrated result by Li & Yorke (1975), who coined the term “chaos”, as used in
Mathematics.

1As usual, fn(x0) denotes the composition of f with itself n times, evaluated at point x0.
2Due to historical reasons during the late 20th century, the theory of dynamical systems saw a parallel

development in the USA and the USSR, hence Sharkovsky’s theorem (1964) remained unknown in the USA,
until in 1975 a weaker version was rediscovered by James Yorke and his graduate student Tien-Yien Li, in their
paper called “Period Three Implies Chaos”.
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We conclude the subsection with the definition of a prime period of a function f .
Definition 2 (Prime period). A function f has prime period n as long as it has a cycle of period n,
but has no cycles with period greater than n according to the Sharkovsky ordering.

Before formally stating our main theorems, we present an illustrative example inspired from Telgar-
sky’s triangle wave construction and we connect it to DNNs’ sensitivity to weight perturbations and
their representational power.

1.2 SENSITIVITY ANALYSIS - A MOTIVATING EXAMPLE

An important ingredient in Telgarsky’s proof, was the “triangular wave” function (sometimes re-
ferred to as the tent map or sawtooth) depicted in Figure 1b and given by:

t(x; 2) =


2x, if 0 ≤ x ≤ 1

2

2(1− x), if 1
2 < x ≤ 1

0, otherwise

He shows that the composition of t(x; 2) with itself k times (denoted by tk(x; 2)), will create expo-
nentially (in k) many oscillations and as a result he is able to show a separation for the classification
error when using a shallow vs a deep neural network as a predictor.

Our starting point is the observation that the triangular wave function t(x; 2) contains points of
period 3, e.g. ( 2

9 →
4
9 →

8
9 →

2
9 ). It follows in particular, that t(x; 2) exhibits Li-Yorke Chaos

(Li & Yorke (1975)) in the sense that it contains all periods. The compositions of such functions
will look highly complex (see Figure 2) and in fact Telgarsky heavily relied on the highly oscillatory
behavior of t(x; 2) to prove his depth separation result.

However, his result doesn’t inform us on what would happen if one used a slightly modified version
of the triangle wave t(x; 2)? Observe that since a simple neural network with one hidden layer
can represent the function t(x; 2), the question is basically equivalent to asking how modifying the
weights on the edges of the neural network can affect its representational power (see Figure 1), hence
the title of the current subsection. The main question is can we have a general theory that informs us
on when will the function composition be hard to represent and when not? Our paper’s main point
is to provide an answer by checking if the function at hand has a simple property, relating to the
presence of chaotic behavior.

To illustrate our point, consider the generalized triangle wave function t(x;µ) parameterized by µ:

t(x;µ) =


µx, if 0 ≤ x ≤ 1

2

µ(1− x), if 1
2 < x ≤ 1

0, otherwise

This function, parameterized by µ ranges from [0, µ/2], is closely related to the logistic map
(f(x) := rx(1 − x)) used in Schmitt (2000) and exhibits a variety of limiting behaviors: for in-
stance, it converges to a stable fixed point when µ ≤ 1, it exhibits chaos when µ = 2 etc. Instead of
µ = 2, if we set µ = 1, we get the network depicted in Figure 1a , 1d.

Note that compositions of t(x; 1) (created by the same neural network architecture but with slightly
different weights), behave completely differently since in the µ = 1 case, we will not get a highly
oscillatory behavior. This can be seen in Figure 3. One difference between the two cases is the
relative position of the map with the line y = x and this seems to be pointing that fixed points
and their generalizations i.e. periodic orbits play an important role when dealing with function
compositions. Indeed, despite the wide range of possibilities one can expect by composing such
functions, as we show, their behavior can be characterized using tools from dynamical systems;
the exponential growth in complexity (or lack thereof) of these compositions can be explained by
invoking a fundamental property of these continuous functions on bounded intervals which is the
existence (or not) of periodic points of certain periods.

Similarly, we can argue about changing the parameters of the logistic map which is given by
f(x; r) := rx(1 − x) used in Schmitt (2000) for sigmoidal networks (where f(x; 4) was used).
The properties of the logistic map are well known and was first studied by Robert May and Mitchell
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(a) Neural net with the appropriate weights and
biases (the value indicated inside the hidden and
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(b) Tent map with µ = 2
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(c) Neural net with the appropriate weights and
biases (the value indicated inside the hidden and
output neurons).
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(d) Tent map with µ = 1

Figure 1: The neural network instantiations that are used to create two different tent maps which vary only in
the maximum value. This is effected by a small change of weights in the output layer. All activation functions
are ReLU’s.
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(a) f(x) := 3.9 ∗ x(1− x) on the interval [0, 1]
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(b) f10(x) of the map on the left (zoomed in)

Figure 2: Compositions of the logistic map f(x) = 3.9x(1 − x) defined on the interval [0, 1]. This map is
well known to exhibit chaos and in the above figure has non-vanishing oscillations that grow with the number
of compositions, albeit irregularly.

Feigenbaum (May (1976) and Feigenbaum (1976)). Thus we understand that smoothly changing r,
we can obtain a plethora of behaviors for small changes in the weights. Please refer to Appendix C
for some figures that illuminate these differences in the logistic map.

1.3 INFORMAL DESCRIPTION OF MAIN THEOREMS

We demonstrate that a simple property of f governs the depth-width trade-offs in order to represent
it and we give quantitative bounds for them. This simple property has to do with the periods that
the function f contains. Informally, our first main theorem (Theorem 3.1) states that if a function f
contains periodic points with certain periods, then composing f with itself many times, will result in
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(a) t(x;µ) for the tent map with µ = 2
(blue) and µ = 1 (red)
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(b) t6(x;µ) for the tent map with µ = 2
(blue) and µ = 1 (red).

Figure 3: Compositions of t(x;µ) with different parameters µ = 2 and µ = 1 are shown. The compositions
create (exponential) non-vanishing oscillations when µ = 2, however the compositions remain unchanged
when µ = 1.

exponentially many oscillations, giving rise to complicated behaviors and chaos. Our second main
theorem then (Theorem 4.1) draws the connection between the number of oscillations a function has
and the depth-width trade-offs needed. Formal statements can be found in Section 3 and Section 4.

Using these theorems, we draw connections with previous results Telgarsky (2016), Schmitt (2000)
in a unified way, thus identifying chaotic behavior as the main underlying thread for depth-width
trade-offs. Technically, our approach is based on an eigenvalue analysis of certain matrices associ-
ated with such periodic functions.

1.4 OTHER RELATED WORK

Understanding the benefits of depths on the expressive power a specific computational model can
have, is an important area of research spanning different computational models and results come
in the flavor of depth separation arguments. Roughly speaking, many of the results in this area
rely on a suitably defined notion of “complexity” of a function we would like to represent, and
then proceed by proving that under this notion, deep models have significantly more power than
shallower models. For example, if the computational model of interest is the family of boolean or
threshold circuits, depth lower bounds are given in Hastad (1986); Rossman et al. (2015); Håstad
(1987); Parberry et al. (1994); Kane & Williams (2016). Furthermore, people have analyzed sum-
product networks (summation and product nodes) and studied trade-offs for depth (Delalleau &
Bengio (2011); Martens & Medabalimi (2014)).

Coming closer to neural networks computation where the activation units can be general real-valued
functions, important previous results include Eldan & Shamir (2016); Telgarsky (2015; 2016);
Schmitt (2000); Montufar et al. (2014); Malach & Shalev-Shwartz (2019); Poole et al. (2016);
Raghu et al. (2017); Arora et al. (2016); Liang & Srikant (2016). Regarding the aforementioned
notions of “complexity” used in depth separation arguments, examples include the notion of global
curvature (Poole et al. (2016)), trajectory length (Raghu et al. (2017)), number of oscillations (Tel-
garsky (2015; 2016) and Schmitt (2000)), number of linear regions (Montufar et al. (2014)), fractals
(Malach & Shalev-Shwartz (2019)) and more. Our work is more closely related to Telgarsky (2015;
2016), and Schmitt (2000) since it is easy to see that their maps are chaotic, but we conjecture that
many of the notions of complexity introduced in this line of research to showcase benefits of depth
actually arise due to chaotic behavior. In this sense, we conjecture that chaotic behavior is the main
culprit for the failure of neural networks to represent certain functions, unless they are sufficiently
deep (or have exponential width).
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(a) Covering Lemma 1 relations for cycle of
period three (r = 1).
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(b) Covering Lemma 1 relations for cycle of
odd period at least three.

Figure 4: The covering relations of intervals J0, ..., Jr from Lemma 1. Observe that the graph is a directed
cycle with a self loop at interval J0. Note that there might be more relations (“edges”).

2 FURTHER BACKGROUND: THE COVERING LEMMA

The crux of the proof of Sharkovsky’s theorem provided by Burns & Hasselblatt (2011) contains a
covering lemma that will be our starting point to prove our main results. Before we proceed with
the statement of the Covering Lemma, we provide one more important definition.
Definition 3 (Covering relation). Let f be a function and I1, I2 be two closed intervals. We say that

I1 covers I2 under f , denoted by I1
f−→ I2 as long as I2 ⊆ f(I1).

Lemma 1 (Covering Lemma for odd periods). Let f : [0, 1] → [0, 1] be a continuous function and
assume f has a cycle C of period n, where n > 1 is an odd number. Denote β0, ..., βn−1 ∈ C
the elements of the cycle in increasing order and define the sequence of closed intervals I0, ..., In−2
where Ii = [βi, βi+1] (they have pairwise disjoint interiors). Then, there exists a sub-collection of
the aforementioned intervals (not necessarily in the same ordering) J0, ...Jr with 1 ≤ r ≤ n − 2
such that the following covering relation holds:

1. Ji
f−→ Ji+1, for 1 ≤ i ≤ r − 1,

2. Jr
f−→ J0 and J0

f−→ J0 ∪ J1.

For pictorial illustration of the Covering Lemma, see Figure 4. In particular, observe that for n = 3
we get r = 1 so the covering relation is as in Figure 4. We conclude this section with the formal
definition of crossings (or oscillations).
Definition 4 (Crossings). We say that a continuous function f : [0, 1] → [0, 1] crosses the interval
[x, y] with x, y ∈ [0, 1] if there exist a, b such that f(a) = x and f(b) = y. Moreover we denote
Cx,y(f) the number of times f crosses [x, y]. That is Cx,y(f) = t if there exist numbers a1, b1 <
a2, b2 < · · · < at, bt in [0, 1] so that f(ai) = x and f(bi) = y for all 1 ≤ i ≤ t. Observe that if
If,x,y is used to denote3 the number of intervals the function f̃x,y(z) := 1[f(z) ≥ x+y

2 ] is piecewise
constant and partitions [0, 1], then Cx,y(f) ≤ If,x,y.

3 PERIODS DETERMINE THE NUMBER OF CROSSINGS

3.1 PERIOD THAT IS NOT A POWER OF TWO IMPLIES EXPONENTIAL CROSSINGS

In this section, we prove our main theorem, the statement of which is given below. Technically,
we make use of the Lemma 1 (Covering Lemma) to show the exponential growth of the number of
crossings.
Theorem 3.1. Let f : [0, 1] → [0, 1] be a continuous function. Assume that there exists a cycle of
period n where n = m · p, p is an odd number greater than one and m being a power of two (it

3In Telgrasky’s paper, If is used to denote the number of intervals where 1[f(z) ≥ 1
2
] is piecewise constant

and partitions [0, 1].
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might be m = 1). It holds that there exist x, y ∈ [0, 1] so that Cx,y(fmt) is ct for all t ∈ N∗, where
c is the positive root greater than one of the polynomial equation λp−1 − λp−2 − 1 = 0.

Counting the number of oscillations. For a given continuous function f : [0, 1] → [0, 1], let
J0, . . . , Jr, where 1 ≤ r ≤ n − 2, be the intervals as promised from Lemma 1. We define a
sequence of vectors δt ∈ Nr+1 such that δti is defined as the number of times the function f t crosses
the interval Ji for all 0 ≤ i ≤ r. In particular we define f0 to be the identity function and hence
δ0 = (1, . . . , 1) (all ones vector). For what follows, we will try to express recursively δt in terms of
δt−1 and in the end we will show that δk0 is Ω(ck) where c is some constant that depends on r. To
build some intuition, we first analyze the case of period three and then we prove the general case.

3.1.1 WARM UP: THE CASE OF PERIOD 3 AND THE FIBONACCI SEQUENCE

Assume that f has a cycle of period 3, that is the numbers {x0, f(x0), f2(x0)} are distinct and
f3(x0) = x0 for some x0 ∈ [0, 1]. Let β0 < β1 < β2 be the numbers x0, f(x0), f2(x0) in
increasing order. We define I0 = [β0, β1] and I1 = [β1, β2]. From Lemma 1, when n = 3, we can
see that r = 1 and thus we have the following possibilities for the covering relations:

• Either I0
f−→ I0 ∪ I1,

• or I1
f−→ I0 ∪ I1.

We define J0 to be the interval among I0, I1 that involves the self-loop covering and J1 to be the
remaining interval. Define δt ∈ N2 as above, and so we get that:(

δt+1
0

δt+1
1

)
≥
(

1 1
1 0

)(
δt0
δt1

)
, (3.1)

where δ00 = 1 and δ01 = 1. The matrix A :=

(
1 1
1 0

)
can be interpreted as the adjacency matrix

that corresponds to the covering relations between J0, J1 (which consists of a directed cycle with
a self-loop at vertex J0). The reason we have an inequality instead of an equality is because the
Covering Lemma only guarantees that the number of times J0 “covers” J0 and J1 is at least one and
not necessarily exactly one.

We set α0 = δ0 and we define αt+1 = Aαt. It is clear that δt ≥ αt (entry-wise) for all t ∈
N. Moreover, αt0 is the well-known Fibonacci sequence Ft+1 (with F0 = F1 = 1), therefore

αt0 =

(
1+
√

5
2

)t+2
−
(

1−
√

5
2

)t+2

√
5

. We conclude that δt0 ≥
(

1+
√
5

2

)t
. See also Figure 5 for a pictorial

illustration about the proof for t = 1, 2, 3, 4.

3.1.2 EVERY PERIOD GREATER THAN 3 BUT NOT POWER OF TWO

Assume that f has a cycle of period n > 3 with n odd, that is the numbers
{x0, f(x0), f2(x0), ..., fn−1(x0)} are distinct and fn(x0) = x0 for some x0 ∈ [0, 1]. Let
β0 < β1 < β2 < ... < βn−1 be the numbers x0, f(x0), f2(x0), ..., fn−1(x0) in increasing order.
We define Ii = [βi, βi+1] for 0 ≤ i ≤ n− 2. From Lemma 1 it follows that there is a subcollection
of the intervals I0, ..., In−2 (with not necessarily the same ordering) J0, ..., Jr (1 ≤ r ≤ n− 2) such
that

1. Ji
f−→ Ji+1, for 1 ≤ i ≤ r − 1,

2. Jr
f−→ J0 and J0

f−→ J0 ∪ J1.

The interval J0 is the one that involves the self-loop covering. As in the case for n = 3, we define
δt which is in Nr+1, with δti capturing the number of times f t crosses the interval Ji. We get that:
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δt+1
0

δt+1
1
...

δt+1
r

 ≥ A


δt0
δt1
...
δtr

 , (3.2)

where δ0 = (1, . . . , 1) (all ones vector) and A ∈ R(r+1)×(r+1) is defined to be:
Aji = 1, if i = 0, j = 0

Aji = 1, if j = i+ 1 and 0 ≤ i ≤ r − 1

Aji = 1, if i = r, j = 0

Aji = 0, otherwise

(3.3)

In words,A is the adjacency matrix of a graph with r+1 nodes that is a directed cycle that involves a
self-loop at vertex J0. We define αt in a similar way as in the case for period three, i.e., αt+1 = Aαt

and α0 = δ0 so that δt ≥ αt (entry-wise) for all t ∈ N. We can easily observe that the following
holds: αt+1 = At+1α0.

Our next plan is to compute a lower bound on the spectral radius of the matrix A> (denoted by
sp(A>)) with the following claim (proof in Appendix A).
Claim 3.1. The characteristic polynomial of A> is:

π(λ) = λr+1 − λr − 1. (3.4)

Let us call ρr the largest root in absolute value of the polynomial π(λ) in A.1. Since A is a non-
negative matrix, the largest root in absolute value is actually a positive real number (by the Perron-
Frobenius theorem). It is easy to see that the polynomial in A.1 has always a root greater than one and
less than two (by Bolzano’s theorem, see π(1) = −1 < 0 and π(2) = 2r+1− 2r− 1 = 2r− 1 > 0).

Hence we have sp(A) = ρr > 1. Furthermore, it is easy to see that since A is a non-negative matrix
(and powers of A are also non-negative), it holds that∥∥At∥∥∞ =

r∑
j=0

At0j

for all t ≥ 1, that is the row with the largest sum of its entries is the first row (row for i = 0). Using
the fact that ∥∥At∥∥∞ ≥ sp(At) = ρtr,

that is the spectral radius of a matrix is always at most any matrix norm, we conclude that∑r
j=0A

t
0j ≥ ρtr.

The case of odd period greater than three follows by noting that
∑r
j=0A

t
0j = αt0, thus δt0 ≥ αt0 ≥

ρtr. Observe that for period three, we have that r = 1 and also ρ1 = 1+
√
5

2 (the largest root of
λ2 − λ− 1 = 0).

We would like to make the following two remarks:
Remark 3.1. The spectral radius ρr is strictly decreasing in r: this is easy to see since ρr > 1 and
is satisfying the equation xr+1 − xr = 1 (note that xr+1 − xr is increasing in r for x > 1). This
implies that smaller odd periods can potentially have a number of crossings that grows at faster rates
than larger odd periods, hence giving rise to more complex behaviors. See also Remark 4.1.
Remark 3.2 (The case of even period but not power of two). Our result above is applied for cycles
of period n = m ·n′ where m is a power of two and n′ is an odd number greater than one. The trick
is to observe that if a function has cycle of period n, then fm has a cycle of period n′ (which is an
odd number greater than one). Therefore, the number of oscillations Cx,y(fmt) with x, y being the
endpoints of J0, is at least ρtn′−2 for t ∈ N.

Proof of Theorem 3.1. The proof now follows from the case analysis carried out in Sections 3.1.1,
3.1.2 and Remark 3.2.
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3.2 PERIOD THAT IS A POWER OF TWO MAY HAVE POLYNOMIAL CROSSINGS

Lemma 2 (Period power of two - proof in Appendix A). There exist continuous functions f with
prime period n that is a power of two so that the number of crossings Cx,y(f t) scales at most
polynomially with t for any x, y ∈ [0, 1].

4 PERIOD-DEPENDENT LOWER BOUNDS FOR DNNS

Building on Telgarsky (2015; 2016), the representation power of different networks will be measured
via the classification error. For a given collection of n points (xi, yi)

n
i=1 with yi ∈ {0, 1}, one can

define the classification error of a function g to be:

R(g) =
1

n

n∑
i=1

1[g̃(xi) 6= yi]

In this section, we argue that functions with cycles of period not a power of two, will have compo-
sitions for which any shallow neural network will have classification error a positive constant.

Assume we are given a continuous function f : [0, 1]→ [0, 1] so that f has a cycle of period m× p
where p is an odd number greater than one and m is a power of two. From Theorem 3.1, there exist

x, y ∈ [0, 1] so that Cx,y(f tm) is at least
ρtp−2

2 where ρr is defined to be the root that is greater than
one of the polynomial equation λr+1 − λr − 1 = 0. We set ρ := ρp−2, h := fk·m and assume that
g : [0, 1] → [0, 1] is a neural network with l layers and u nodes (ReLU activations) per layer. In
Lemma 2.1 of Telgarsky (2015), it is proved that a neural network with u ReLU units per layer and
with l layers is piecewise affine with at most (2m)l pieces.

We define as h̃(z) = 1[h(z) ≥ x+y
2 ] and g̃(z) = 1[g(z) ≥ x+y

2 ] (note that we changed the threshold
to be x+y

2 instead of 1
2 that was used in Telgarsky (2015)).

Since Cx,y(h) is at least ρk, it holds that there exist points (xi, yi)
2n
i=1 with n := bρkc

2 such that
h(xj) = x, yj = 0 for j odd and h(xj) = y, yj = 1 for j even. It is clear that for this collection of
points the classification error of the function h is zero, whereas the classification error for function
g is bounded from below by

R(g) ≥ n− 4(2u)l

2n
=

1

2
− (2u)l

n
.

The above inequality is an application of Lemma 2.2 of Telgarsky (2015) (with careful counting it

has been slightly improved). By choosing u to be at most ρ
k
l

8 it holds that the classification error
R(g) ≥ 1

4 for any neural network g with u ReLUs and l layers.

The above discussion implies the following theorem:

Theorem 4.1 (Classification Error Theorem). Let k be a positive integer and f be a function of
periodm×p with p an odd number greater than one andm being a power of two (it might holdm =
1). We set ρ to be the positive root greater than one of the polynomial equation λp−1−λp−2−1 = 0.
We can construct a sequence of points (xi, yi)

2n
i=1 with n := bρkc

2 so that the classification error of
function fmk is zero, whereas the classification error of any neural network of l layers and u nodes

with u ≤ ρ
k
l

8 satisfiesR(g) ≥ 1
4 .

Remark 4.1. Observe that if the number of units u per layer is constant and the number of layers l
is o(k), then the classification error is always a positive constant for any neural network (whereas
for fmk is zero). Moreover, observe that since ρ is decreasing in p (recall p is the odd factor of the
period), it holds that the classification error decreases as p increases (with fixed number of layers and
nodes per layer). This indicates that the composition of functions with large odd period is simpler
than of functions with small odd period (period greater than one) following the intuition we have
from the Sharkovsky’s ordering.
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A APPENDIX

Claim A.1. The characteristic polynomial of A> is:

π(λ) = λr+1 − λr − 1. (A.1)

Proof. Let I denote the identity matrix of size (r + 1)× (r + 1). We consider the matrix:

A> − λI =



1− λ 1 0 0 0 . . . 0
0 −λ 1 0 0 . . . 0
0 0 −λ 1 0 . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 0 −λ 1
1 0 0 0 . . . 0 −λ

 .

Observe that λ = 0, 1 are not eigenvalues of the matrix A>., hence we can multiply the first row by
1

λ−1 , the second row by 1
λ(λ−1) , the third row by 1

λ2(λ−1) ,. . . , the i-th row by 1
λi−1(λ−1) (and so on)

and add them to the last row. Let B be the resulting matrix:

B =



1− λ 1 0 0 0 . . . 0
0 −λ 1 0 0 . . . 0
0 0 −λ 1 0 . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 0 −λ 1
0 0 0 0 . . . 0 −λ+ 1

λr−1(λ−1)

 .

It is clear that det(B) = 0 as an equation has the same roots as det(A> − λI) = 0. Since B is an
upper triangular matrix, it follows that

det(B) = (−λ)r−1(1− λ)

(
−λ+

1

λr−1(λ− 1)

)
.

We conclude that the eigenvalues of A> (and hence of A) must be roots of (λr − λr−1)λ − 1 and
the claim follows.
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(a) This figure captures one composition of function
f . Observe that f crosses the interval [2, 3] two times
(once for x ∈ [1, 2] and once for x ∈ [2, 3]) and it
crosses the interval [1, 2] once. In particular, δ1 =
(2, 1).
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(b) This figure captures two compositions of func-
tion f . Observe that f crosses the interval [2, 3]
three times (two times for x ∈ [2, 3] and once for
x ∈ [1, 2]) and it crosses the interval [1, 2] two times
(once for x ∈ [1, 2] and once for x ∈ [2, 3]). In
particular, δ2 = (3, 2).
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(c) This figure captures three compositions of func-
tion f . Observe that f crosses the interval [2, 3]
five times (three times for x ∈ [2, 3] and twice for
x ∈ [1, 2]) and it crosses the interval [1, 2] three
times (once for x ∈ [1, 2] and twice for x ∈ [2, 3]).
In particular, δ3 = (5, 3).
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(d) This figure captures four compositions of func-
tion f . Observe that f crosses the interval [2, 3] eight
times (five times for x ∈ [2, 3] and three times for
x ∈ [1, 2]) and it crosses the interval [1, 2] five times
(twice for x ∈ [1, 2] and three times for x ∈ [2, 3]).
In particular, δ4 = (8, 5).

Figure 5: Compositions of a piecewise linear function that has a point of period 3.
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Figure 6: A piecewise linear function f : [1, 4]→ [1, 4] that has prime period four.

Lemma 3 (Period power of two). There exist continuous functions f with prime period n that is a
power of two so that the number of crossings Cx,y(f t) scales at most polynomially with t for any
x, y ∈ [0, 1].

Proof. The easiest example one can construct is the function f : [0, 1] → [0, 1] that is defined
f(x) = 1 − x. Observe that for any a ∈ [0, 1] one has f(f(a)) = a and moreover if a 6= 1

2 then
f(a) 6= a. Hence f is a function of prime period two. It is also clear that f t(x) = x if t is even and
f t(x) = 1− x if t is odd, so the number of crossings is always one for all t ∈ N∗.

One other less trivial example is the following function (see also Figure 6):

f(x) =


−x+ 5, 1 ≤ x ≤ 2

−2x+ 7, 2 ≤ x ≤ 3

x− 2, 3 ≤ x ≤ 4.

It is not hard to see that this function has prime period four (f(1) = 4, f(4) = 2, f(2) = 3, f(3) =
1). Let J0 = [1, 2], J1 = [2, 3], J2 = [3, 4]. It is clear that

• f(J0) = J2, f(J1) = J0 ∪ J1 and f(J2) = J0.

By letting δti be the number of crossings of the function f for the interval Ji (i ∈ {0, 1, 2}), one has
recursively  δt+1

0

δt+1
1

δt+1
2

 =

(
0 1 1
0 1 0
1 0 0

) δt0
δt1
δt2

 (A.2)

where δ0 = (1, 1, 1) (all ones vector). It is easy to observe that the matrix A =

(
0 1 1
0 1 0
1 0 0

)
has

spectral radius one (as opposed to the case of odd period greater than one) and moreover it holds
that

∑2
i=0

∑2
j=0A

t
ij = t+ 3 for all t ∈ N∗. We conclude that αt0 + αt1 + αt2 = t+ 3, therefore the

number of crossings for J0, J1, J2 of the function f t grows linearly with t (and not exponentially).
Since the function we defined is of prime period four and is piecewise monotone (and so is any
composition with itself) in each interval J0, J1, J2, we conclude that the number of crossings of f t
for any possible pairs of values is at most linear in t.

B AN EXAMPLE WHICH IS PERIOD 5 BUT NOT PERIOD 3 (LI & YORKE
(1975))

We show below an example function, that has a point of period 5, but not period 3, thereby respecting
the Sharkovsky ordering. Our proof approach for general odd periods is similar to the case of
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(a) δ1 = (1, 1, 2, 2).
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(b) δ2 = (2, 2, 3, 2).

0 1 2 3 4 5 6

x

0

1

2

3

4

5

6

f3
(x

)

(c) δ3 = (2, 3, 5, 4).
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(d) δ4 = (4, 5, 7, 5).

Figure 7: Compositions of a piecewise linear function that has a point of period 5. We start with the all ones
vector for δ0 and each composition arises from the covering relation between the sets.

period 3, by using the induced covering graph and counting the crossings over each interval. This is
illustrated below in Figure 7.

C THE HETEROGENITY OF THE LOGISTIC MAP

In this section, we illustrate how the compositions of the logistic map f(x; r) := rx(1−x) behaves
as r varies slightly. We give certain examples in the form of Figure 8. It is known that the map when
r = 3.9, has a point of period 3. In contrast when r is reduced to 3.5 the map has a point of period
4 and further bringing r down to 3.2 will ensure that the map has a point of period 2. The figures
below illustrate how the oscillations grow under these scenarios.
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(a) Here f(x; 3.9) := 3.9x(1− x) is shown.
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(b) Here f6(x; 3.9) is shown.
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(c) Here f(x; 3.5) := 3.5x(1− x) is shown.
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(d) Here f6(x; 3.5) is shown.
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(e) Here f(x; 3.2) := 3.2x(1− x) is shown.
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(f) Here f6(x; 3.2) is shown.

Figure 8: The compositions of the logistic map f(x; r) := rx(1 − x) with different parameter values are
shown here. The left column has the functions themselves while the right column shows the corresponding
compositions. We can see that oscillations in these family of functions vary vastly with changes in r and these
changes are made in the weights of an appropriate neural network (see Telgarsky (2016),Schmitt (2000)).
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